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Abstract

During the past decades, major advances have been made in both the generation and detection of infrared light;
however, its efficient wavefront manipulation and information processing still encounter great challenges. Efficient
and fast optoelectronic modulators and spatial light modulators are required for mid-infrared imaging, sensing,
security screening, communication and navigation, to name a few. However, their development remains elusive, and
prevailing methods reported so far have suffered from drawbacks that significantly limit their practical applications. In
this study, by leveraging graphene and metasurfaces, we demonstrate a high-performance free-space mid-infrared
modulator operating at gigahertz speeds, low gate voltage and room temperature. We further pixelate the hybrid
graphene metasurface to form a prototype spatial light modulator for high frame rate single-pixel imaging, suggesting
orders of magnitude improvement over conventional liquid crystal or micromirror-based spatial light modulators. This
work opens up the possibility of exploring wavefront engineering for infrared technologies for which fast temporal
and spatial modulations are indispensable.

Introduction

Emerging infrared technologies lie at the core of

advanced photonic research because of their great poten-

tial for numerous applications. Despite the tremendous

efforts in the development of sources1 and detectors2,

prevailing methods previously reported for free-space

infrared light modulation, which is essential for many

applications3–5, have suffered from drawbacks particularly

in the modulation depth and speed. For example, solid-

state infrared light modulators based on semiconductor

quantum wells either have a small modulation depth or

require sophisticated material growth and cryogenic tem-

peratures6,7. In addition, state-of-the-art liquid crystal8 and

micromirror9-based spatial light modulators (SLMs) suffer

from limitations including slow modulation speeds of a

few kilohertz and complex and expensive instrumentation.

In this context, active metamaterials/metasurfaces com-

posed of planar subwavelength resonators and reconfi-

gurable functional materials/devices have provided an

alternative approach10. In the microwave region, the

integration of electronic devices (e.g., varactor diodes) has

resulted in reprogrammable coding metasurfaces11–13. In

the far-infrared region, the integration of metasurfaces and

compound semiconductors (e.g., GaAs) has enabled the

modulation of terahertz (THz) waves with high modula-

tion depth and speed at room temperature14–17. However,

such configurations are difficult to scale up to the mid-

and near-infrared regions, where electronic devices fail to

operate and the optical conductivity of conventional

semiconductors can only be slightly adjusted18,19, resulting

in limited dynamic modulations.

In contrast, graphene has demonstrated exceptional

electrical and optical properties and a widely tunable
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electro-optical response through the entire infrared

region20–23. In addition, the compatibility of graphene

with CMOS processing makes it an extremely promising

material for cost-effective optoelectronics in high-

frequency applications24,25. Most recently, hybrid gra-

phene metasurfaces have shown unprecedented cap-

abilities in developing electrically reconfigurable infrared

optoelectronic devices26–30,46,47, although in these designs

the modulation relies on a high voltage bias and the

modulation speed is limited, and many studies have

focused on a waveguide configuration22,25,31. In this paper,

we present the experimental demonstration of hybrid

graphene metasurface free-space mid-infrared modulators

that enable a large intensity modulation depth of up to

90% and a high modulation speed exceeding 1 GHz over a

broad bandwidth by tuning the Fermi level of graphene at

a low gate voltage bias of ∼7 V. The low-voltage operation

achieved by the design architecture of our device is

essential for obtaining a high-quality modulation signal

and an ultra-high modulation speed under ambient con-

ditions. Furthermore, a prototype mid-infrared SLM is

demonstrated to function as an electrically encoded

aperture or mask, realizing single-pixel imaging with a

high frame rate.

Results

A major issue in frequency-tunable hybrid graphene

metamaterial absorbers is the requirement of a high vol-

tage bias27–30,46,47, which also limits the modulation speed

and the scope of applications. Operating at mid-infrared

wavelengths, the high gate voltage is due to the thick

dielectric spacer (typically a few hundred nanometers)

between the metal ground plane and metallic resonator

array32. When graphene is integrated into the resonator

array, the metamaterial absorber is essentially a field-

effect transistor (FET) structure in which the application

of a gate voltage Vg tunes the graphene conductivity by

varying the Fermi level μC according to21,33 μC= ħv(πCVg/

e)1/2. To lower the gate voltage, it is necessary to increase

the capacitance C by decreasing the gate dielectric

thickness (i.e., the dielectric spacer in metamaterial

absorbers). Although we cannot reduce the dielectric

spacer thickness of a metamaterial absorber, an alter-

native solution is to replace a large portion of the

dielectric spacer with a material that is conducting for the

applied voltage bias but behaves as a dielectric in the mid-

infrared range. This strategy is demonstrated by using the

FET structure schematically shown in Fig. 1a, where the

slightly conducting a-Si layer serves as part of the gate

electrode, and the gate dielectric is provided by the

ultrathin Al2O3 layer to increase the capacitance. In this

way, we are able to significantly reduce the gate voltage to

a few volts to reach the graphene charge neutrality point

and effectively tune the graphene conductivity, as shown

in Fig. 1b, c where we plot the drain-source currents Ids
and resistance Rds as functions of gate voltage Vg for a few

different drain-source biases Vds.

Following this strategy, our hybrid graphene metasur-

face structure is schematically shown in Fig. 2a, where the

dielectric spacer is mainly formed by the a-Si layer. The

metamaterial absorber can be considered as a sub-

wavelength cavity formed between the nanoantenna array

and the ground plane, where the dispersion of the

nanoantenna resonant response results in a phase con-

dition such that the multireflection experiences destruc-

tive interference, leading to the cancellation of the overall

reflection and induction of high absorption over a narrow
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Fig. 1 Tuning graphene conductivity with a low gate voltage

bias. a Schematic of the FET structure in which a-Si serves as part of

the back-gate electrode and the ultrathin Al2O3 layer serves as the
gate dielectric. b Measured drain-source current Ids across the

graphene as a function of gate voltage Vg at different drain-source

biases Vds. c Graphene resistance Rds as a function of gate voltage at
Vds=−0.50V, revealing the graphene charge neutrality point at

approximately 2 V
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wavelength range28,34. That is, the incident light is trapped

within the metamaterial cavity and eventually absorbed by

the metallic structure, the lossy dielectric spacer, or both.

Because the optical loss of a-Si is negligible in the mid-

infrared region, the absorption mainly occurs via ohmic

dissipation at the metallic resonator array integrated with

graphene. These two facts give rise to the possibility of

tuning the resonant dispersion of the nanoantenna array

with the goal of satisfying the phase condition and thereby

the absorption at a different wavelength by tuning the

conductivity of the integrated graphene through the

application of a gate voltage. In Fig. 2c, we plot the

measured reflection spectra of the hybrid graphene

metasurface (SEM image shown in Fig. 2b) when applying

different gate voltages. They all show a deep reflection dip

that suggests high absorption, as the transmission is zero.

Upon applying the gate voltage bias, the resonance shifts

from λ= 7.3 μm (reflection minimum ∼16%) to 8.3 μm

(reflection minimum ∼5%) when the low gate voltage

changes from +7 V to −3 V. The corresponding change of

reflection ∆R(λ)= R+7 V(λ)− R
−3 V(λ) and modulation

depth M= |∆R(λ)|/max[R+7 V(λ), R−3 V(λ)] are plotted in

Fig. 2d as functions of wavelength, revealing the max-

imum reflection change of 46.7% (from 53.1% at +7 V to

6.4% at −3 V) at λ= 8.5 μm and a modulation depth as

high as ∼90% in this wavelength range.

The shifting of the plasmonic resonance dispersion can

be visualized through near-field imaging of localized

plasmonic modes in the hybrid graphene metasurface

with different gate voltages35,36. The gate-tunable plas-

monic modes are clearly shown in Fig. 3 within a unit cell

of the hybrid graphene metasurface. When the applied

gate voltage is −3 V, the electromagnetic field is highly

confined and enhanced in the gap area between two

nanoantennas, as shown in Fig. 3a, at λ= 8.3 μm, corre-

sponding to the reflection minimum in Fig. 2c. The field

confinement and enhancement are much less obvious at

the off-resonance wavelength λ= 7.3 μm, as shown in

Fig. 3b. In contrast, when the gate voltage is increased to

+7 V, the enhanced field can be clearly seen at λ= 7.3 μm,

as shown in Fig. 3d, rather than at λ= 8.3 μm, as shown in

Fig. 3c.

In addition to the high modulation depth, the hybrid

graphene metasurface modulator enables an ultra-high

modulation speed. Our characterization system, schema-

tically shown in the inset to Fig. 4, allows one to measure

only the modulation up to 1 GHz, where the modulation

signal does not yet show any significant decay, as revealed

by the red stars shown in Fig. 4. To quantify the mod-

ulation cut-off frequency, we purposely reduce the device

operation speed by loading an external resistor15 with a

resistance of either R0= 2 kΩ or 4 kΩ. The cyan circles
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Fig. 2 Hybrid graphene metasurface allows for electrically tunable resonant absorption. a Schematic of the hybrid graphene metasurface.
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functions of wavelength λ
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and green triangles in Fig. 4 represent the measured

optical modulation signals as a function of the gate fre-

quency with R0= 2 kΩ and 4 kΩ external resistors,

respectively, from which we can clearly observe the dif-

ferent modulation cut-off frequencies. Using the high-

frequency circuit model27, the experimental data are fitted

with a set of circuit parameters. The results are shown as

the solid curves. Based on the same set of device circuit

parameters, the intrinsic modulation is shown as the red

curve in Fig. 4, retrieved by removing the external resistor.

A 3 dB cut-off frequency of 7.2 GHz is inferred, which

represents the fastest free-space mid-infrared optical

modulation to date using an electrical approach. In

addition to the low-voltage operation, this high modula-

tion speed is attributed to the reduction of the electrical

contact area and the thickness increase of the insulating

layer underneath the top electrode, both of which sig-

nificantly reduce the parasitic capacitance of the device.

The high modulation depth and fast modulation speed

make the hybrid graphene metasurface an ideal platform
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to create SLMs for wavefront coding in mid-infrared

applications, such as high frame rate single-pixel imaging,

where the traditional liquid crystal and micromirror-

based SLMs suffer from limitations in modulation speed.

In the fabricated metasurface SLM prototype device

consisting of 6 × 6 functional pixels shown in Fig. 5a, b,

the electrically isolated functional pixels allow us to

independently switch ‘ON’ or ‘OFF’ the individual pixels

by applying a gate voltage of +7 V or −3 V, respectively.

We first characterize its operation by raster scanning the

functional pixels—measuring the reflection intensity as

we turn only one pixel ‘ON’ or ‘OFF’ following the mask

patterns of the four letters in “CINT”, while all other

pixels remain ‘OFF’. The corresponding results are shown

in the insets to Fig. 5c, clearly visualizing the mask pat-

terns measured at the wavelength of λ= 8.3 μm. By

simultaneously turning on the functional pixels in the

corresponding mask patterns, the red curve in Fig. 5c

plots the real-time reflected light signal that displays a

variation upon changing to different mask patterns. Most

of the temporal noise is caused by the Globar infrared

light source. The single-pixel imaging capability of the

hybrid graphene metasurface SLM was demonstrated

using the setup schematically shown in Fig. 5d. In Fig. 5e,

we show exemplary reconstructed images of a cross-

shaped object at different wavelengths, demonstrating the

broadband single-pixel imaging capability. A high image

contrast is observed in the middle two panels for λ= 7 μm

and 8.5 μm due to their excellent modulation depth, in

contrast to the lower imaging contrast at λ= 5.5 μm and

9.5 μm due to their reduced modulation depth (see

Fig. 2d). The frame rate (speed of image acquisition) of

the single-pixel imaging system can be estimated to be 23

kHz, which is more than two orders of magnitude faster

than the value of 50 Hz for state-of-the-art infrared

cameras, assuming that they have the same imaging

resolution (640 × 480). Our result can be further

improved by utilizing compressive imaging techni-

ques37,38. Thus, this imaging system is suitable for the

detection of transient thermal phenomena and holds great

potential for security screening, navigation, and medical

detection3,4.

Discussion

We have demonstrated a hybrid graphene metasurface

modulator for free-space mid-infrared light based on a

tunable metamaterial absorber design. With a gate bias of

a few volts to tune the graphene conductivity, the room

temperature device achieves high modulation depths of

up to 90% and a modulation speed exceeding 1 GHz,

which is the fastest free-space mid-infrared modulator to

the best of our knowledge. The intrinsic modulation

speed was inferred to be approximately 7 GHz, which

could be further improved by reducing the device active

area or the pixel size in the SLMs. The low-voltage

operation is attributed to the reduction of gate capaci-

tance by effectively decreasing the gate dielectric thick-

ness through the replacement of a large portion of the
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dielectric material with a semiconducting material (a-Si)

in the spacer of the metamaterial absorber. For the mid-

infrared light, the a-Si layer can be considered as a

dielectric material with negligible loss, but the semi-

conducting properties make it suitable to serve as part of

the electrode for applying a gate voltage bias to tune the

graphene conductivity, resulting in shifted/damped reso-

nant dispersion of the nanoantenna array and thus fre-

quency tuning of the metasurface absorption. The high-

speed modulation is in part due to the low voltage

operation and the significant reduction of parasitic capa-

citance from the electrodes.

The hybrid graphene metasurface modulator was then

formed into a pixel array to serve as a prototype mid-

infrared SLM. We showed that single-pixel imaging can be

achieved by creating a series of spatial mask patterns,

revealing orders of magnitude faster imaging speeds than

those obtained using traditional liquid crystal and micro-

mirror spatial light modulators. The speed of single-pixel

imaging can be further enhanced by adopting a com-

pressive single-pixel imaging algorithm37,38. This work

opens up the possibility of exploring wavefront engineer-

ing for infrared technologies for which fast temporal and

spatial modulations are indispensable, and the demon-

strated high frame-rate imaging approach holds great

potential for many applications, such as the detection of

transient thermal phenomena, real-time thermal imaging,

security screening, navigation, and medical detection.

We note that the optics in Fig. 5d for casting the image

of an object onto the SLM shares the same working

principle as a camera or a telescope equipped with a

sensor array to record or an eyepiece to magnify the

image. Therefore, the quality and field of view of the

image are essentially determined by this part of the optics.

The rest of the optical path is basically a microscope (with

the same objective) to capture the SLM-coded image

using the single-pixel detector rather than a microscope

eyepiece. To recover the image of a more complex object

using compressive single-pixel imaging algorithms, in the

future, we must increase the area and pixel number of the

SLM and reduce the pixel size to the scale of the opera-

tional wavelength. In this case, the current design of top

electrodes becomes impractical, and the SLM must be

redesigned to allow for a large array of back gates39. We

would like to emphasize that the prototype mid-infrared

SLM can be scaled to operate at other frequencies,

including terahertz, near-infrared, and even visible, since

graphene has been proven to maintain the high optical

conductivity and have opto-electronic responses at these

frequencies due to the intra-band (terahertz and mid-

infrared) and inter-band (near-infrared and visible) tran-

sitions22,23,40–42. The basic principle is the same, but when

approaching shorter wavelengths, the concern is the

increasing absorption in the amorphous silicon spacer

layer, which can potentially reduce the modulation depth.

Additionally, when scaling to operate at shorter wave-

lengths, the further reduced critical dimension of the

metasurface structure and back gate array can potentially

create fabrication challenges.

Materials and methods

Structure design and fabrication

Figure 1a schematically illustrates the field-effect tran-

sistor (FET) structure for tuning graphene conductivity,

which consists of a 150 nm-thick Au ground plane by e-

beam evaporation, a 400 nm-thick e-beam-evaporated

amorphous silicon (a-Si) layer with a 1 nm-thick Ti

adhesion layer also by e-beam evaporation, a 6 nm-thick

ultrathin Al2O3 gate dielectric grown by atomic layer

deposition (ALD), two photolithography-defined 150 nm-

thick gold strips serving as source and drain electrodes,

and a transferred monolayer graphene grown by low-

pressure chemical vapor deposition (LPCVD). Figure 2a

depicts the device schematic of our hybrid graphene

metasurface modulator operating in reflection mode,

which is based on a modified metamaterial perfect

absorber design28,43. Compared to the FET structure

shown in Fig. 1a, the source and drain electrodes were

replaced by a 6 × 6 array of top rectangular-loop-shaped

electrodes each surrounding a square active area of 75

μm× 75 μm (see Fig. 5a), which were defined before the

graphene transfer using standard photolithographic

methods followed by e-beam deposition of a 750 nm-thick

Al2O3 insulating layer and 3 nm/30 nm Ti/Au layers and a

lift-off process. Graphene was then transferred and pat-

terned to align with the electrode array, with graphene

between electrodes removed by photolithography and O2

plasma etching, defining electrically isolated functional

pixels as depicted by the optical micrograph in Fig. 5a for

a completed device. An array of 30 nm-thick ‘I’-shaped Au

nanoantennas with a 1.5 nm-thick Ti adhesion layer was

finally fabricated within each pixel using standard e-beam

lithography methods, metal deposition, and a lift-off

process, with a scanning electron microscopy (SEM)

image shown in Fig. 2b. Upon the completion of sample

fabrication, the sample was diced into a 9 mm× 9mm

chip and wire bonded to external pins of a chip carrier

through a predefined electrode array, as shown in Fig. 5b.

Graphene growth and transfer

Graphene was grown on a piece of copper foil (0.025

mm thick, 99.8%, Alfa Aesar) in a home-built LPCVD

system44,45. The copper foil was first loaded in a quartz

tube and annealed at 1000 °C for 1 h while maintaining

the H2/Ar pressure at 1 Torr under a 200 sccm flow.

Graphene was then grown for 30min by introducing 50

sccm CH4 at a total pressure of 1.7 Torr. The furnace was

then rapidly cooled to room temperature. The growth
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conditions outlined above produced a large-area, con-

tinuous graphene film with very few multi-layer regions or

cracks. To transfer the graphene layer to the substrate,

PMMA (950 A4) was spin-coated onto one side of the

graphene/copper/graphene foil and stored in vacuum

overnight. The graphene on the backside was then

removed with O2 plasma etching. The sample was then

placed in an FeCl3-based etchant for 2 h, allowing the

copper to completely dissolve. The remaining graphene/

PMMA film was cleaned in HCl solution, rinsed with DI

water, transferred onto the substrate, and put into acetone

to remove the PMMA layer.

Device characterization

Each pixel of the 6 × 6 pixel array was independently

connected to one of the 36 channels (output voltage, −4V

∼+8 V) of a DAC evaluation board (EVAL-AD5370,

Analog Devices Inc.), which was then controlled by a

microprocessor (Raspberry Pi 3, Raspberry Pi Foundation)

using home-built Python codes. The reflection spectra of

the individual pixels under different voltage biases were

measured using a Fourier transform infrared spectroscopy

microscope (FTIR, Bruker). The plasmonic resonance

modes were visualized using a scattering-type near-field

scanning optical microscope (s-NSOM, neaSpec)35,36

equipped with a broadband infrared beam by difference

frequency generation (DFG) to cover a wide mid-infrared

range from 650 to 2400 cm−1. The raw data contain

spectral information due to the use of broadband illumi-

nation, and we used Matlab programming to extract near-

field images at specific wavelengths. The modulation

speed was measured for individual pixels using the setup

schematically shown in the inset to Fig. 4. We used a

tunable continuous-wave quantum cascade laser (CW-

QCL, MIRcat-1100, Daylight Solutions) light source and a

thermoelectrically cooled mercury cadmium telluride

(TE-MCT, PVI-2TE-10.6, VIGO System S.A.) detector.

The mid-infrared light (λ= 6.75 μm) was transmitted

through a beam splitter (55/45) and focused onto the

hybrid graphene metasurface modulator with a mid-

infrared objective. The reflected light was collected by the

same objective, reflected by the beam splitter, and focused

into the TE-MCT detector using an off-axis parabolic

mirror. A functional pixel of the device was applied with a

variable frequency sine voltage with offset 0 V and

amplitude 1 V from a function generator integrated with

an oscilloscope (Tektronix, MDO 3104). The response of

the TE-MCT detector was measured with the oscillo-

scope, determining the optical modulation signal of the

device. Note that we were only able to measure the

modulation frequency up to 1 GHz due to the limited

frequency range of the function generator and TE-MCT

detector and the low signal-to-noise ratio of our mea-

surement setup. Reduction of the modulation cut-off

frequency (at 3 dB) within the measurement range was

achieved by inserting different series resistors (e.g., R0= 2

kΩ and 4 kΩ) into the driving circuit15. The intrinsic

modulation speed was then inferred using a high-

frequency circuit model of the device. The spatial light

modulation was characterized using the FTIR microscope

by raster scanning the functional pixels—measuring the

reflection intensity using a single-pixel detector as we

turned only one pixel ‘ON’ or ‘OFF’ while all other pixels

remained ‘OFF’. The imaging capability of the hybrid

graphene metasurface SLM was demonstrated using the

setup schematically shown in Fig. 5d. Mid-infrared light

from the Globar broadband source illuminates a cross-

shaped object, and the image (X) is projected onto the

SLM through an infrared objective lens. The reflected

light thus represents the image encoded by the SLM mask

(forming the measurement matrix Φ) and is collected by

the same objective and focused onto the MCT single-pixel

detector (Y). For a proof-of-concept demonstration, a

raster-scan measurement matrix Φ of the SLM mask

was employed by sequentially turning on/off only one

pixel for each measurement, resulting in a 36 × 36

identity matrix Φ. The original image X was then recon-

structed by X=Φ−1Y, where Φ−1 is the inverse mea-

surement matrix.

High-frequency circuit model

A simplified high-frequency circuit model of the device

was developed, as shown in the inset to Fig. 2a, where CE

(CG) represents the capacitance between the top Au

electrode (graphene) and the a-Si layer across the 750 nm-

thick (6 nm-thick) Al2O3 insulating layer, RG and RS are

the resistances of the graphene and a-Si, respectively, and

R0 is the externally loaded resistance. The high-frequency

modulation voltage from a function generator was applied

to the device as the gate voltage Vg(ω), and the modula-

tion voltage Vm(ω) at the functional pixel and the

frequency-dependent modulation depth η(ω) of the device

were derived as

Vm ωð Þ ¼ η ωð ÞVg ωð Þ ð1Þ

η ωð Þ ¼ 1
1þiωCG RSþRGð Þ

´

RSþRGþ
1

iωCG

� �

RSþ
1

iωCE

� �

RSþRGþ
1

iωCG

� �

RSþ
1

iωCE

� �

þR0 RSþRGþ
1

iωCG

� �

þ RSþ
1

iωCE

� �h i

ð2Þ
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