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Hybrid Harris hawks optimization 
with cuckoo search for drug design 
and discovery in chemoinformatics
essam H. Houssein1*, Mosa e. Hosney2, Mohamed elhoseny3, Diego oliva4,5*, 

Waleed M. Mohamed1 & M. Hassaballah6

one of the major drawbacks of cheminformatics is a large amount of information present in the 

datasets. In the majority of cases, this information contains redundant instances that affect the 
analysis of similarity measurements with respect to drug design and discovery. therefore, using 

classical methods such as the protein bank database and quantum mechanical calculations are 

insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid 
metaheuristic algorithm called cHHo–cS, which combines Harris hawks optimizer (HHo) with two 

operators: cuckoo search (cS) and chaotic maps. the role of cS is to control the main position vectors 

of the HHo algorithm to maintain the balance between exploitation and exploration phases, while 

the chaotic maps are used to update the control energy parameters to avoid falling into local optimum 

and premature convergence. feature selection (fS) is a tool that permits to reduce the dimensionality 

of the dataset by removing redundant and non desired information, then fS is very helpful in 

cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. 
the support vector machines (SVMs) are then used by the proposed cHHo–cS as an objective function 

for the classification process in FS. The CHHO–CS-SVM is tested in the selection of appropriate 
chemical descriptors and compound activities. Various datasets are used to validate the efficiency 
of the proposed CHHO–CS-SVM approach including ten from the UCI machine learning repository. 
Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and 
monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical 
compounds activities. the extensive experimental and statistical analyses exhibit that the suggested 

CHHO–CS method accomplished much-preferred trade-off solutions over the competitor algorithms 
including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, 
Salp swarm algorithm, and sine–cosine algorithm surfaced in the literature. the experimental results 

proved that the complexity associated with cheminformatics can be handled using chaotic maps and 

hybridizing the meta-heuristic methods.

�e prediction and analysis of molecules are essential tasks in cheminformatics, which use methods from math-
ematics and computer science to enhance their performance. �e implementation of these methods depends on 
databases. �e processes that generate most of the a�ectations are the storage and retrieval of molecular structures 
and properties (e.g., pharmacogenomics data). Typically, the behavior of the compounds can be investigated 
using molecular analysis. �e molecular analysis helps to develop and test molecules for decreasing the e�ects 
of speci�c  diseases1. One drawback associated with cheminformatics is the exponential increment of the search 
space owing to features in the  dataset2. However, cheminformatics is still being widely used in drug design, where 
the protein structures are estimated and the interactions of molecules and biological targets can be determined 
by considering the basis of the cellular  processes1.
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A drug is an organic molecule that can inhibit the e�ects of a disease. �e main points for drug design and 
discovery are: (1) structure  optimization3, (2) establishment of the quantitative structure-activity relationship 
(QSAR)4, and (3) docking of the ligand into a receptor denovo design of  ligands5. �us, drug design and discov-
ery aim to develop new medicines based on the knowledge about a biological  target6. �e features contained in 
the datasets are essential for cheminformatics, but due to the big amount of generated information, it results in 
complicated to handle them in most of the  cases7.

Generally speaking, feature selection (FS) is an important preprocessing step for performance enhancement 
in data mining. FS is especially used for classi�cation and regression problems. FS approaches are widely used 
to eliminate the irrelevant and redundant features from the original dataset, therefore, the dimensionality of the 
dataset is  reduced8. As was mentioned cheminformatic datasets are huge and the use of FS is mandatory in order 
to identify the best subset of information. Typically, the FS approaches can be divided into wrapper and �lter 
 methods9. �e wrapper-based approaches o�en cope with the �lters, because the proposed subset of features is 
directly assessed using feedback from the learning algorithm as to its  accuracy10,11. In the wrapper techniques, 
the option of using machine learning algorithms is wide open, then it is possible to �nd implementations of the 
most popular algorithms including support vector machines (SVMs) and K-nearest neighbor (KNN), among 
others. Nevertheless, in order to �nd an e�cient FS technique, researchers have put signi�cant e�orts, particularly 
those working with metaheuristic algorithms (MAs). In this regard, a wide spectrum of MAs are either used 
 alone12 or with others to form hybrid  methods13 for e�cient results, since a comprehensive list can be easily 
found in this  review14.

Due to the success of MAs in solving complex  problems15, they can be employed in cheminformatics. Har-
ris hawks optimization (HHO) is a recent method introduced  in16. Apart from its novelty, HHO is a powerful 
optimization tool that is robust, exhibits smooth transitions between exploration and exploitation, and provides 
competitive results to complex  problems17. However, there is no perfect MA, and HHO has some disadvantages. 
In HHO, exploration, and exploitation are unbalanced and it has premature convergence when the problems are 
highly  multimodal18. In this context, the cuckoo search (CS) algorithm is inspired by the breeding behavior of the 
cuckoo birds. It has been introduced as an alternative method for global  optimization19. Since its publication, CS 
has been widely used by the scienti�c  community20–22. In addition, CS is applied for secondary protein structure 
 prediction23. Generally, the advantages of CS are that it ensures global convergence and maintains a well balance 
between exploration and  exploitation24. �e use of L ́e vy �ights in CS permits them to perform a successful global 
search, which is re�ected in their capabilities to obtain space using sub-optimal solutions. However, chaos is part 
of the nonlinear dynamic systems. Chaos is described as a behavior of complex systems, where small, random, 
and unpredictable changes can be observed over time with respect to the initial conditions. �e concepts of chaos 
are helpful in optimization because they help to generate accurate solutions. Chaos is commonly used instead 
of random distributions to improve MA  performance25. �e inclusion of chaotic maps in optimization methods 
increases the diversity of solutions by avoiding local solutions and speeding up the convergence.

In the basic HHO, the control energy parameter E, as well as the position vectors, called Xrand and Xrabbit plays 
the main role in avoiding the local optima and balancing the exploitation and exploration. �erefore, in this study, 
we introduce a hybrid method that combines the bene�ts of HHO with those of CS and chaotic maps (C); this 
algorithm can be referred to as CHHO–CS. �e concept of the CHHO–CS is to enhance the search process of 
HHO to obtain near-optimal solutions. To be speci�c, a new formulation of the initial escape energy E0 , escaping 
energy factor E and the initialization of solutions with chaotic maps are presented. �e inclusion of chaotic maps 
may avoid the local optima and accelerates the convergence. Additionally, in CHHO–CS method, CS is used to 
control the position vectors called Xrand and Xrabbit of the basic HHO. �e objective (or �tness) function is then 
shared in the entire optimization process. It means that the CS works with the same objective function used by 
HHO. Finally, the CHHO–CS is combined with the support vector machine (SVM) to select the appropriate 
chemical descriptors (features) and compounds activities. In addition, this study investigates the in�uence of 
the chaotic map with respect to the cheminformatics problems. Several experiments and comparisons have been 
conducted with respect to di�erent versions to select the version which provides the most accurate solutions. 
Furthermore, twelve datasets are used to evaluate the e�ciency of CHHO–CS compared to seven well-known 
metaheuristic algorithms, including:  HHO16,  CS19, particle swarm optimization (PSO)26, moth-�ame optimiza-
tion (MFO)27, grey wolf optimizer (GWO)28, salp swarm algorithm (SSA)29, and sine–cosine algorithm (SCA)30. 
�e CHHO–CS method achieves the best results of classi�cation accuracy and the number of selected features 
when compared with the remaining competitor algorithms. �e major contributions of this work are as follows: 

1. A new CHHO–CS method is proposed based on combining HHO with the bene�ts of CS and chaotic maps. 
CS and chaotic maps (C) are used to enhance the limitations of the original HHO.

2. �e SVM classi�er is utilized in the CHHO–CS to select the chemical descriptors and chemical compound 
activities.

3. Several experiments are conducted on various datasets to con�rm the superiority of the proposed CHHO–CS 
method in combination with SVM compared with other metaheuristic algorithms.

�e rest of this paper is structured as follows. Literature review is presented in “Related work” section. “Mate-
rials and methods”  section introduces the necessary material and methods used in the study, such as QSAR, 
SVM, HHO, the theory of Cuckoo search (CS) algorithm, and the chaotic maps. Meanwhile, “�e proposed 
CHHO–CS”  section explains the pre-processing process and introduces the proposed CHHO–CS method. �e 
experimental result and discussion are presented in “Results” section. Finally, the conclusion of the paper is 
provided in “conclusion”  section.
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Related work
A previously conducted study has investigated drug design and discovery, exhibiting di�erences in  e�ciency31. 
�e available tools used to identify chemical compounds which are known as computer-aided drug design 
(CADD) allows the reduction of di�erent risks associated with the subsequent rejection of lead compounds. 
CADD has an important role and exhibits high success rates for the identi�cation of the hit  compounds32.

�e CADD methodology has two related concepts: ligand/hit optimization and ligand/hit identi�cation. 
Methods hitting identi�cation/optimization are based on the e�ciency of the virtual screening techniques used 
to achieve the target binding sites. �ey are known to dock huge libraries for small molecules including chemical 
information or ZINC database, to identify the compounds based on the pharmacophore modeling tools (dock-
ing) to predict the optimal medicines and proteins obtained using the information from the ligand. �e Pymol 
 so�ware33 is useful in selecting the optimal ligand as the optimal drug, and the AutoDock so�ware is employed 
to calculate the  energy5. �us, genetic algorithms (GAs) are applied in the AutoDock so�ware and AutoDock 
 Vina34. Also,  in35, fuzzy systems have been introduced to address the optimization of the chemical product design. 
Another important method for drug design called QSAR is derived from CADD to extract the description of the 
correlation among di�erent structures from a set of molecules and the response to the  target36.

Drug design and discovery are the main aspects of  cheminformatics37. Cheminformatics can be divided 
into two sub-processes. �e �rst process considers three-dimensional information; this process is called encod-
ing. �e second process, which is called mapping, comprises building a model using machine learning (ML) 
 techniques38. In the encoding process, the molecular structure is transformed based on the calculation of the 
 descriptors36. Moreover, the mapping process aims to discover di�erent mappings created between the feature 
vectors and their properties. In cheminformatics and drug discovery, the mapping can be performed using 
various machine  learning2,39.

Chaotic maps are random-like deterministic methods that constitute dynamic systems. �ey have nonlinear 
distributions indicating that chaos is a simple deterministic dynamic system and a source of randomness. Chaos 
has random variables instead of chaotic variables and absolute searches can be performed with higher speeds 
when compared with stochastic search methods mainly based on probabilities. In a previous  study40, chaotic 
maps have been considered to improve the performance of the whale optimization algorithm and balance the 
exploration and exploitation phases. Also, a grey wolf optimizer and �ower pollination algorithm have been 
enhanced using ten chaotic maps to extract the parameters of the bio-impedance  models41. Meanwhile,  in42, 
the grasshopper optimization algorithm with chaos theory is employed to accelerate its global convergence and 
avoid local optimal.  In43 the schema of the CS algorithm based on a chaotic map variable value is introduced.

In fact, the methodology of hybridizing MAs is widely used in di�erent domains of optimization other than 
feature  selection44. In this vein, combinations of di�erent ML techniques and MAs (e.g., search strategies) have 
been applied in many �elds with modi�cations and hybridization to bene�t from one technique in upli�ing 
search e�ciency. For instance, the salp swarm algorithm combined with k-NN based on QSAR is an interest-
ing alternative, which provides competitive  solutions45. Also, Houssein et al.37 introduced a novel hybridiza-
tion approach for drug design and discovery-based hybrid HHO and SVM. However, in this study, we applied 
hybridization to select the chemical descriptor and compound activities in cheminformatics. Particularly, this 
study proposes an alternative classi�cation approach with respect to cheminformatics, termed as CHHO–CS-
based SVM classi�er, for selecting the chemical descriptor and chemical compound activities; the hybrid HHO 
and CS were enhanced based on the chaos (C) theory.

Materials and methods
In this section, we brie�y discus the QSAR model, the basics of SVM, the original HHO, the original CS, and 
the chaotic map theory.

Quantitative structure-activity relationship. QSAR provides information based on the relation 
between the mathematical models associated with the biological activity and the chemical structures. QSAR is 
widely used because it can detect major characteristics of the chemical compounds. �erefore, it is not neces-
sary to test and synthesize compounds. �e inclusion of ML methods to study QSAR helps to predict whether 
the compound activity is similar to a drug-like activity in case of a speci�c disease or a chemical test. �e com-
pounds possess complex molecular structures, containing many attributes for their description. Some of the 
features include characterization and topological indices. �erefore, molecular descriptors are highly important 
in pharmaceutical sciences and  chemistry4.

Support vector machine. SVM is an important supervised learning algorithm commonly used for 
 classi�cation46. SVM extracts di�erent points from the data and maps them in a high-dimensional space using a 
nonlinear kernel function. SVM works by searching for the optimal solution for class splitting. �e solution can 
be used to maximize the distance with respect to the nearest points de�ned as support vectors, and the result of 
SVM is a hyperplane. For obtaining optimal results, SVM has some parameters that have to be tuned. �e C con-
trols the interaction between smooth decision boundaries and the accurate classi�cation of the training points. 
If the C has a signi�cant value, more training points will be accurately obtained, indicating that more complex 
decision curves will be generated by attempting to �t in all the points. �e di�erent values of C for a dataset can 
be used to obtain a perfectly balanced curve and prevent over-�tting. Ŵ is utilized to characterize the impact of 
single training. Low gamma implies that each point will have a considerable reach, whereas high gamma implies 
that each point has a close reach. �e implementation of SVM has been extended to cheminformatics. In this 
work, steps of SVM are presented in Algorithm 1, and its graphical description is presented in Fig. 1. 
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Harris hawks optimization. HHO16 is a metaheuristic algorithm and is implemented as a competitive 
solution for complex problems. HHO is inspired by the attitude of Harris hawks, which are intelligent birds. 
�is species possesses a mechanism that allows them to catch prey even when they are escaping. �is process is 
modeled in the form of a mathematical expression, allowing its computational implementation. HHO is a sto-
chastic algorithm that can explore complex search spaces to �nd optimal solutions. �e basic steps of HHO can 
be obtained with respect to various states of energy. �e exploration phase simulates the mechanism when Har-
ris’s hawk cannot accurately track the prey. In such a case, the hawks take a break to track and locate new prey. 
Candidate solutions are the hawks in the HHO method, and the best solution in every step is prey. �e hawks 
randomly perch at di�erent positions and wait for their prey using two operators, which are selected on the basis 
of probability q as given by Eq. (1), where q < 0.5 indicates that the hawks perch at the location of other popula-
tion members and the prey (e.g., rabbit). If q ≥ 0.5 , the hawks are at random positions around the population 
range. For facilitating the understanding of HHO, a list of symbols used in this algorithm is de�ned as follows: 

1. Vector of hawks position (search agents) Xi

2. Position of Rabbit (best agent) Xrabbit

3. Position of a random Hawk Xrand

4. Hawks average position Xm

5. Maximum number of iterations, swarm size, iteration counter T, N, t
6. Random numbers between (0, 1) r1 , r2 , r3 , r4 , r5 , q
7. Dimension, lower and upper bounds of variables D, LB, UB
8. Initial state of energy, escaping energy E0 , E

�e exploration step is de�ned as:

�e average location of the Hawks Xm is represented by:

(1)X(t + 1) =

{

Xrand(t) − r1|Xrand(t) − 2r2X(t)| q ≥ 0.5

(Xrabbit(t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5

Figure 1.  General structure of a decision boundary in SVMs classi�cation.
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where Xi(t) shows the positions in the iteration for each Hawk t and N identi�es the total number of Hawks. 
�e average position can be obtained by using di�erent methods, but this is the simplest rule. A good transition 
from exploration to exploitation is required, here a shi� is expected between the di�erent simulated exploitative 
behaviors based on the escaping energy factor E of the prey, which diminishes dramatically during the escaping 
behavior. �e energy of the prey is computed by Eq. (3).

where E, E0 , and T represent the initial escape energy, the escape energy and the maximum number of iterations, 
respectively.

�e so� besiege is an important step in HHO, it is shown if r ≥ 0.5 and |E| ≥ 0.5 . In this scenario, the rab-
bit has all su�cient energy. When it occurs, the rabbit performs random misleading shi�s to escape, but in the 
metaphor, it cannot. �e besiege step is de�ned by the following rules:

where �X(t) is the di�erence locations vector for all rabbits and for presently positions in the iteration t, and 
J = 2(1 − r5) Is the rabbit’s spontaneous jumping ability throughout the escaping phase. �e J value varies ran-
domly in each iteration to represent the rabbit’s behavior. In the extreme siege stage when r ≥ 0.5 and |E| < 0.5 , 
�e prey is exhausted and has no escaping strength. �e Harris hawks are hardly circling the trained prey, and 
they can make an assault of surprise. For this case, the current position is changed using:

Consider the behavior of hawks in real life, they will gradually choose the best dive for the prey if they want to 
capture speci�c prey in competitive situations. �is is simulated by:

�e so� besiege presented in the previous Eq. (7) is performed in progressive rapid dives only if |E| ≥ 0.5 but 
r < 0.5 . In this case, the rabbit has su�cient energy to escape and is applied for a so� siege before the attack 
comes as a surprise. �e HHO models have di�erent patterns of escape for a leap frog and prey movements. 
�e Lévy �ights (LF) are launched here to emulate the various movements of the Hawk and rabbit dives. Eq. (8) 
computes such patterns.

where S represents the random vector for size 1 × D and LF is for the levy �ight function, using this Eq. (9):

Here u, v are random values between (0, 1), β is the default constant set to 1.5.
�e �nal step in the process is to update positions of the hawks using:

where Y and Z are obtained using Eqs. (7) and (8).
During progressive fast dives, HHO is also hard-pressed, where it may happen if |E| < 0.5 and r < 0.5 . Here 

the strength of the rabbit to escape is not su�cient and the hard siege is suggested before the numerous surprise 
attacks are made to catch and kill the prey. In this step, Hawks seek to reduce the various distances between their 
prey and the average position. �is operator is explained as follows:

�e values of Y and Z are proposed by using new rules in Eqs. (12) and (13), where Xm(t) is obtained using Eq. 
(2).

(2)Xm(t) =

1

N

N∑

i=1

Xi(t)

(3)E = 2E0

(

1 −

t

T

)

(4)X(t + 1) =�X(t) − E|JXrabbit(t) − X(t)|

(5)�X(t) =Xrabbit(t) − X(t)

(6)X(t + 1) = Xrabbit(t) − E|�X(t)|

(7)Y = Xrabbit(t) − E|JXrabbit(t) − X(t)|

(8)Z = Y + S × LF(D)

(9)LF(x) = 0.01 ×
u × σ

|v|
1
β

, σ =







Ŵ(1 + β) × sin

�

πβ
2

�

Ŵ

�

1+β
2

�

× β × 2

�

β−1

2

�







1
β

(10)X(t + 1) =

{

Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(11)X(t + 1) =

{

Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(12)Y =Xrabbit(t) − E|JXrabbit(t) − Xm(t)|

(13)Z =Y + S × LF(D)
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cuckoo search. Fundamentally, Cuckoo Search (CS) is a metaheuristic algorithm used o�en for solving 
complex problems of  optimization19. �e cuckoo quest hypothesis is inspired by a bird known as the cuckoo. 
Cuckoos are interesting creatures not only because they can make beautiful sounds but also for their aggressive 
strategy of reproduction. In the nests of other host birds or animals, adult cuckoos lay their eggs. Cuckoo search 
is based on three main rules: 

1. Growing cuckoo lays one egg at a time and dumps the egg in a nest selected randomly.
2. �e best nest with high-quality eggs will be delivered to the next generation.
3. �e number of host nests available is set and the host bird �nds the egg laid by a cuckoo with a probability 

ρa ∈ [0, 1].

�e probability is based on these three rules such that the host bird can either throw away the egg or leave the 
nest and build a completely new nest. �is statement may be approximated by a fraction ρa of n nests that are 
replaced by new nests (with new random solutions). �e pseudo-code of CS is shown in Algorithm 2. 

chaotic maps. �e majority of MAs have been established based on stochastic rules. �ese rules primar-
ily rely on certain randomness obtained using certain distributions of probabilities, which are o�en uniform 
or Gaussian. In principle, the replacement of this randomness with chaotic maps can be bene�cial because of 
the signi�cant dynamic properties associated with the behavior of chaos. �is dynamic mixing is important to 
ensure that the solutions obtained using the algorithm are su�ciently diverse to enter any mode in the objective 
multimodal landscape. �ese approaches, which use chaotic maps, are called chaotic optimization instead of 
random distributions. �e mixing properties of chaos will perform the search process at higher speeds than tra-
ditional searches based on the standard probability  distributions47. One-dimensional non-invertible maps will 
be used to produce a set of variants of chaotic optimization algorithms to achieve this ability. Table 1 presents 
some of the prominent chaotic maps used in this study. In addition, chaotic maps are obliged to result in 0/1 
based on the normalization concept.

�e main task of chaotic maps is to avoid the local optima and speed up the convergence. Here, it is important 
to mention that the nature of chaotic maps could also increase the exploration due to the intrinsic randomness. It 
is necessary to properly select the best map that helps each algorithm for a speci�c problem. Another important 
point to be considered is that chaotic maps do not take decision about the exploration and exploitation of the 
algorithms. However, along with the iterations, the chaotic values generated by the maps permit to change the 
degree of exploration or exploitation of the search space.

the proposed cHHo–cS
In this section, the proposed CHHO–CS is explained in detail, which is used to improve the search-e�ciency 
of basic HHO. Typically, HHO has the characteristics of acceptable convergence speed and a simple structure. 
However, for some complex optimization problems, HHO may fail to maintain the balance between exploration 
and exploitation and fall into a local optimum. Especially in the face of high dimension functions and multi-
modal problems, the shortcomings of HHO are more obvious. �e optimization power of the basic HHO depends 
on the optimal  solution57. In this paper, we introduced two strategies (Chaotic maps, and CS) to enhance the 
performance of the basic HHO.

�e following points are worthwhile:

• Chaotic maps in�uence: applying chaos theory to the random search process of MAs signi�cantly enhances 
the e�ect of random search. Based on the randomness of chaotic local search, MAs can avoid falling into local 
optimum and premature convergence. In the basic HHO algorithm, the transition from global exploration 
to local exploitation is realized according to Eq. (3). As a result, the algorithm will easily fall into a local opti-
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mum. Hence, in the CHHO–CS algorithm, a new formulation of initial escape energy E0 and escaping energy 
factor E with chaotic maps are employed as demonstrated in Algorithm 3. Figure 2 shows the in�uence of a 
chaotic map on the energy parameter E obtained by the proposed method versus the basic HHO. Notably, 
the curve in the le�-side linearly decreasing versus the proposed non-linear energy parameter de�ned by 
the new formulation of E, which clearly focuses on providing the search direction towards the middle of the 
search process to infuse enough diversity in population during the exploitation phase.

• CS method in�uence: in the basic HHO, the position vectors Xrand and Xrabbit are responsible for the explo-
ration step de�ned by Eq. (1), which plays a vital role in balancing the exploitation and exploration. More 
signi�cant values of position vectors expedite global exploration, while a smaller value expedites exploitation. 
Hence, an appropriate selection of Xrand and Xrabbit should be made, so that a stable balance between global 
exploration and local exploitation can be  established58. Accordingly, in the CHHO–CS algorithm, we borrow 
the merits CS method to control the position vectors of HHO. At the end of each iteration T, CS trying to �nd 
the better solution (if better solution found then update Xrabbit and Xrand ; otherwise le� obtained values by 
HHO unchanged). Consequently, CS will determine the �tness value of the new solution, if it is better than 
the �tness value of the obtained from HHO, then the new solutions will be set; otherwise the old remains 
unchanged.

To be speci�c, the steps of the CHHO–CS algorithm are executed as; chaotic maps are employed to avoid fall-
ing into local optimum and premature convergence. Moreover, a balancing between exploration and exploitation 
is performed by CS. �en, SVM is used for classi�cation purposes. �e �owchart of the proposed CHHO–CS 
method is represented in Fig. 3. �e pseudo-code of the proposed CHHO–CS method is illustrated in Algo-
rithm 3. Here is important to mention that for SVM and feature selection, in the CHHO–CS each solution of the 

Table 1.  Details of chaotic maps applied on CHHO–CS.

No. Map name Ref. Map equation Notes

M1 Tent 48 xk+1 =

{

xk
0.7

, xk ≺ 0.7
10
3

(1 − xk), xk ≥ 0.7
–

M2 Logistic 49 xk+1 = axk(1 − xk) xo ∈ (0, 1) for kth chaotic number

M3 Sinusoidal 49
xk+1 = ax

2

k
sin(πxk) µ is a parameter between 0.9 and 1.08

M4 Singer 50
xk+1 = µ(7.86xk − 23.31x

2

k
+ 28.75x

3

k
− 13.3x

4

k
) –

M5 Sine 51
xk+1 =

a

4
sin(πxk) 0 ≺ a ≺ 4

M6 Chebyshev 52
xk+1 = cos(k cos−1(xk)) –

M7 Circle 53
xk+1 = xk + b − ( a

2π
) sin(2πxk)mod

a = 0.5 and b = 0.2, it generates chaotic sequence in 
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1−xk
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, 1 − P ≤ xk ≺ 1

�e control parameter P ∈ (0, 0.5) and x ∈ (0, 1) and 
P  = 0

Figure 2.  In�uence of proper selection of energy parameter E.
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population is encoded as a set of indexes that correspond to the rows of the dataset. For example, if a dataset has 
100 rows a possible candidate solution in the population for �ve dimensions could be [10, 20, 25, 50, 80], such 
values are rows with the features to be evaluated in the SVM. �e location vector in the so� and hard besiege 
with progressive rapid dives in HHO is updated as follows:

(14)X(t + 1) =

{

Y if LF(fobj(D,G,Y)) < LF(fobj(D,G,X((t)) ∗ X((t)

Z if LF(fobj(D,G,Z)) < LF(fobj(D,G,X((t)) ∗ X((t)

Figure 3.  General �owchart of the proposed CHHO–CS method.
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feature selection. FS is a data pre-processing step, which is used in combination with the ML techniques. 
FS permits the selection of a subset without redundancies and desired data. FS can e�ectively increase the learn-
ing accuracy and classi�cation performance. �erefore, the prediction accuracy and data understanding in ML 
techniques can be improved by selecting the features that are highly correlated with other features. Two features 
show perfect correlation; however, only one feature is introduced to su�ciently describe the data. �erefore, 
classi�cation is considered to be a major task in the ML techniques; in classi�cation, data are classi�ed into 
groups depending on the information obtained with respect to di�erent features. Large search spaces are a major 
challenge associated with FS; therefore, di�erent MAs are used to perform this task.

fitness function. Each candidate solution is evaluated along with the number of iterations to verify the 
performance of the proposed algorithm. Meanwhile, in classi�cation, the dataset needs to be divided into train-
ing and test sets. �e �tness function of the proposed CHHO–CS method is de�ned by the following equation:

and

where R refers to the classi�cation error and C is the total number features for a given dataset D. β refer to the 
subset length and α represents the classi�cation performance de�ned in the range [0, 1]. T is a necessary condi-
tion and G is a group column for the speci�c classi�er. Each step in the algorithm is compared with T, where the 
obtained �tness value must be greater than in order to maximize the solution. It is important to remark that the 
�tness (or objective) function in Eq. (15) is also used by the CS to compute the the positions of Xrand and Xrabbit.

Results
To perform the experiments and comparisons, it is necessary to set up the initial values of the problem. In this 
way, the number of search agents is 30, the problem dimensions 1,665 for the �rst dataset, and 41 for the second 
dataset. Meanwhile, the number of iterations is set to 100 and 1,000, number experiments (runs) 30, α is the �t-
ness function 0.99, β in the �tness function 0.01, lower bound 0 and upper bound 1. For comparative purposes, 
seven meta-heuristics algorithms including the standard Cuckoo Search (CS) and Harris Hawks Optimizer 
(HHO), also ten chaotic maps to verify which of them provides better results are used to verify the proposed 
method but due to the lack of space we have added the results of the best map only. �e selected meta-heuristics 
and the proposal have the same elements in the population and all of them are randomly initialized. �e internal 
parameters for all the algorithms are provided in Table 2.

A common machine learning classi�er has been used in experiments including called SVM also was combined 
with the proposed CHHO–CS method for the classi�cation purpose.

Performance analysis using UCI datasets. Description and pre-processing of the datasets, results, and 
comparison of the proposed CHHO–CS is described in the following subsections.

UCI Data description. �e proposed algorithm is examined on ten benchmark datasets obtained from the UCI 
machine learning  repository59 illustrated in Fig. 3 and it is available at “https ://www.openm l.org/searc h”.

Statistical results. SVM is used for the classi�cation task. Following the previous methodology, in this experi-
ment, iterations are set to 1,000 for each of the 30 runs. �e experimental results are reported in Tables 4 and 5. 
In this experiment, the CHHO–CS-Piece based on SVM achieves the best mean and Std.

Classi�cation results. Since SVM is one of the most promising methods of classi�cation, its performance needs 
to be analyzed. In this experiment, the number of iterations are set to 1,000, also the obtained results are reported 
in Tables 6 and 7. Notably, the CHHO–CS-Piece based on SVM obtains the best classi�cation accuracy, sensitiv-
ity, speci�city, recall, precision, and F-measure.

performance analysis using chemical datasets. Description of chemical datasets. In this study, two 
di�erent datasets are used to experimentally evaluate the performance of the proposed method. (1) �e MAO 
dataset comprises 68 molecules and is divided into two classes: 38 molecules that inhibit MAO (antidepres-
sants) and 30 molecules that do not. MAO is available at http://iapr-tc15.greyc .fr/links .html. Each molecule 
should have a mean size of 18.4 atoms, and the mean degree of the atoms is 2.1 edges. In addition, the smallest 
molecule contains 11 atoms, whereas the largest one contains 27 atoms; each molecule has 1,665 descriptors. 
(2) �e QSAR biodegradation dataset comprises 1,055 chemical compounds, 41 molecular descriptors, and one 
class; it is available at http://archi ve.ics.uci.edu/ml/datas ets/QSAR+biode grada tion. �ese chemical compounds 
are obtained from the National Institute of Technology and Evaluation of Japan (NITE). �e MAO dataset is 
transformed into a line notation form to describe the structure of the simpli�ed molecular-input line-entry 
system (SMILES) using the open babel  so�ware60; E-dragon61 is subsequently applied to obtain the molecular 
descriptor. Information obtained with respect to the second QSAR biodegradation dataset was preprocessed by 
the Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca and is available at http://
www.miche m.unimi b.it/

(15)Fitness function (fobj) = α + β
|R|

|C|
− G.

(16)Fitness > T

https://www.openml.org/search
http://iapr-tc15.greyc.fr/links.html
http://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation
http://www.michem.unimib.it/
http://www.michem.unimib.it/
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Data preprocessing. Here, the required steps to preprocess the data set information are presented. �e informa-
tion obtained from the molecules is transferred to the features representing chemical  compounds36,39. �e data 
obtained from the proteins are stored in a special chemical format. Further, the so�ware should be used to trans-
fer the information into the isomeric SMILES. �e data set contains di�erent instances with speci�c multidi-
mensional attributes (commonly two-dimensional 2D and 3D according to the QSAR model. �e E-dragon so�-
ware is used to compute the descriptors from this dataset. �e descriptors contain physicochemical or structural 
information as solvation properties, molecular weight, aromaticity, volume, rotatable bonds, molecular walk 
counts, atom distribution, distances, interatomic, electronegativity, and atom types. �ey are used for determin-
ing values of generations and instances which belong to a class as shown in Fig. 4.

Statistical results. Here, the SVM is used for the classi�cation task. Following the previous methodology, in 
the �rst experiment, iterations are set to 100 for each of the 30 runs. �e experimental results are reported in 
Tables 8. In this experiment, the CHHO–CS-Piece based on SVM obtains the best mean and Std. �e same 
rank is obtained for maximizing the classi�cation accuracy solution, Sensitivity, Speci�city, Recall, Precision, 
and F measure. In this case, the HHO–CS with SVM is the second-ranked in mean value, Std, and maximizing 
the classi�cation accuracy solution, sensitivity, speci�city, recall, precision, and F-measure. �e iterations are 
con�gured to 1,000; the idea is to obtain the best solutions. In this case, the results are presented in Table 9, 
where the CHHO–CS-Piece combined with the SVM is the �st ranked approach for the mean value, and Std, 
the same occurs for maximizing the classi�cation accuracy solution, sensitivity, speci�city, recall, precision, and 

Table 2.  Parameters setting of competitor algorithms used in the comparison and evaluation.

Methods Parameters

PSO
Agents number = 50

Velocity = 65

MFO
Agents number = 50

B = 1

GWO
Agents number = 50

Number domination = 100

SSA
Agents number = 50

L = 2 and C = rand

SCA
Agents number = 50

A = 2

HHO

Agents number = 50

E0 variable change from − 1 to 1 (Default)

Beta = 1.5

CS

Agents number = 50

Discovery rate of align eggs solution = 0.25

Levy distribution parameter = 1.5

Step length = 0.01

HHO–CS Both HHO and CS parameters

CHHO–CS
Both HHO and CS parameters

x0 = rand default for maps

Table 3.  Description of the UCI machine learning repository datasets.

No Dataset Instances No features Classes

D1 Breast cancer 669 9 2

D2 KCL 2,110 21 2

D3 WineEW 178 13 3

D4 WDBC 569 30 2

D5 Lung Cancer 226 23 2

D6 Diabetic 1,151 19 2

D7 Stock 950 9 2

D8 Scene 2,407 299 2

D9 Lymphography 148 18 4

D10 Parkinsons 195 22 2
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F-measure. Meanwhile, the second algorithm in the rank is the HHO–CS with SVM for mean value, Std, and 
maximizing the classi�cation accuracy solution.

Classi�cation results. Since SVM is one of the most promising methods of classi�cation, its performance needs 
to be analyzed. In the �rst experiment, iterations are set to 100; the experimental results are reported in Table 10. 
In this experiment, the CHHO–CS-Piece based on SVM obtains the best results. In this case, the HHO–CS with 
SVM is the second-ranked in most of the assessment criteria. A �nal experiment for SVM is performed by using 
1,000 iterations and the reported values in Table 11 con�rms that the CHHO–CS-Piece combined with the SVM 

Table 4.  Values of the statistical measures obtained by the competitor algorithms using the SVM classi�er 
with 1,000 iterations over D1, D2, D3, D4 and D5.

Dataset Methods Mean Std Best Worst

D1

PSO 8.79E+01 7.80E−01 85.587 84.972

MFO 8.85E+01 77.70E−01 87.985 87.481

GWO 8.37E+01 7.90E−01 87.503 87.399

SSA 8.55E+01 7.85E−01 86.301 85.930

SCA 8.75E+01 7.70E−01 85.602 85.099

HHO 8.95E+01 7.55E−01 87.501 86.430

CS 8.90E+01 7.90E−01 82.503 82.399

HHO–CS 9.80E+01 7.66E−01 90.102 89.890

CHHO–CS-Piece 9.89E+01 7.20E−01 91.202 90.591

D2

PSO 8.79E+01 7.80E−01 84.087 83.872

MFO 8.85E+01 7.70E−01 88.097 87.881

GWO 8.37E+01 7.90E−01 86.103 86.099

SSA 8.55E+01 7.85E−01 88.101 87.930

SCA 8.75E+01 7. 70E−01 87.402 86.909

HHO 8.95E+01 7.55E−01 89.501 88.430

CS 8.90E+01 7.95E−01 82.000 81.469

HHO–CS 8.80E+01 7.66E−01 91.292 91.199

CHHO–CS-Piece 9.89E+01 7.19E−01 91.502 91.299

D3

PSO 8.79E+01 7.82E−01 85.187 85.179

MFO 8.85E+01 7.75E−01 87.197 86.980

GWO 8.37E+01 7.90E−011 86.103 86.999

SSA 8.55E+01 7.85E−01 87.301 87.131

SCA 8.75E+01 7. 74E−011 87.112 86.909

HHO 8.75E+01 7.70E−01 90.001 89.230

CS 8.90E+011 7.95E−01 82.000 81.869

HHO–CS 8.80E+01 7.66E−01 90.992 91.999

CHHO–CS-Piece 8.97E+01 7.11E−01 91.002 90.299

D4

PSO 8.70E+01 7.82E−01 85.187 84.970

MFO 8.80E+01 7.73E−01 86.177 85.780

GWO 8.33E+01 7.91E−01 87.121 86.980

SSA 8.50E+01 7.85E−01 88.103 87.930

SCA 8.72E+01 7. 73E−01 87.122 86.660

HHO 8.86E+01 7.56E−01 90.551 89.990

CS 8.77E+01 7.92E−01 82.312 81.960

HHO–CS 8.89E+01 7.66E−01 91.991 90.980

CHHO–CS-Piece 9.09E+01 7.76E−01 92.113 91.950

D5

PSO 8.70E+01 7.88E−01 87.180 86.920

MFO 8.81E+01 7.75E−01 87.377 86.980

GWO 8.30E+01 7.93E−01 87.121 86.980

SSA 8.50E+01 7.80E−01 87.910 87.310

SCA 8.70E+01 7. 75E−01 92.910 91.560

HHO 8.90E+01 7.85E−01 92.510 91.410

CS 8.99E+01 7.80E−01 84.01 83.900

HHO–CS 8.96E+01 7.76E−01 92.990 91.990

CHHO–CS-Piece 9.89E+01 7.06E−01 93.801 92.990
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is the �rst ranked approach. Meanwhile, HHO–CS with SVM is the second-ranked algorithm in most of the 
assessment criteria.

the convergence analysis. �is section aims to analyze the convergence of the proposed CHHO–CS 
based chaotic maps presented in this paper. Figures 5 and 6 shows the convergence curves for the competitor 
algorithms over the ten UCI Machine Learning Repository datasets along the iterative process 100, and 1,000 
iterations respectively. Over the ten UCI datasets, the convergence curves plotted in Figs. 5 and 6 provides evi-
dence that the proposed CHHO–CS method using SVM obtained the best results compared with the original 

Table 5.  Values of the statistical measures obtained by the competitor algorithms using the SVM classi�er 
with 1,000 iterations over D6, D7, D8, D9 and D10.

Dataset Methods Mean Std Best Worst

D6

PSO 8.73E+01 7.82E−01 87.160 86.500

MFO 8.80E+01 7.72E−01 91.100 91.120

GWO 8.36E+01 7.90E−01 90.012 88.691

SSA 8.55E+01 7.80E−01 89.120 88.900

SCA 8.70E+01 7. 70E−01 87.530 87.091

HHO 8.85E+01 7.55E−01 90.910 90.769

CS 8.80E+01 7.70E−01 84.000 83.599

HHO–CS 8.90E+01 7.66E−01 91.780 90.890

CHHO–CS-Piece 9.11E+01 7.02E−01 91.590 90.180

D7

PSO 8.29E+01 7.53E−01 82.120 81.920

MFO 8.39E+01 7.69E−01 87.100 86.431

GWO 8.30E+01 7.81E−01 84.100 83.771

SSA 8.29E+01 7.89E−01 82.991 80.190

SCA 8.13E+01 7.90E−01 84.012 83.060

HHO 8.49E+01 7.13E−01 85.101 82.920

CS 8.66E+01 7.30E−01 82.191 81.090

HHO–CS 8.65E+01 7.17E−01 86.021 85.431

CHHO–CS-Piece 8.79E+01 7.02E−01 87.709 85.310

D8

PSO 8.29E+01 7.53E−01 82.120 81.920

MFO 8.32E+01 7.66E−01 87.070 86.530

GWO 8.33E+01 7.82E−01 84.010 83.570

SSA 7.83E−01 82.930 82.930 81.990

SCA 8.13E+01 7. 80E−01 84.011 83.261

HHO 8.42E+01 7.19E−01 85.011 84.901

CS 8.52E+01 7.29E−01 82.090 81.199

HHO–CS 8.55E+01 7.14E−01 86.020 85.730

CHHO–CS-Piece 8.77E+01 7.01E−01 87.507 86.610

D9

PSO 8.28E+01 7.75E−01 87.190 87.070

MFO 8.23E+01 7.70E−01 87.020 86.980

GWO 8.28E+01 7.79E−01 90.502 89.920

SSA 8.40E+01 7.83E−01 91.502 90.091

SCA 8.44E+01 7. 92E−01 91.990 90.861

HHO 8.80E+01 7.45E−01 90.041 89.919

CS 8.21E+01 7.89E−01 84.090 83.990

HHO–CS 8.86E+01 7.10E−01 90.821 89.931

CHHO–CS-Gauss 8.82E+01 7.02E−01 93.639 92.470

D10

PSO 8.24E+01 7.79E−01 79.180 78.471

MFO 8.25E+01 7.78E−01 80.120 79.080

GWO 8.26E+01 7.79E−01 80.001 79.022

SSA 8.43E+01 7.89E−01 80.102 80.090

SCA 8.47E+01 7. 94E−01 80.891 79.360

HHO 8.82E+01 7.35E−01 81.090 80.910

CS 8.24E+01 7.80E−01 878.091 76.091

HHO–CS 8.88E+01 7.30E−01 80.991 80.230

CHHO–CS-Piece 8.81E+01 7.09E−01 82.019 80.012
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HHO and CS algorithms and the other competitor algorithms along with the two-stop criteria (100 and 1,000 
iterations).

On the other hand, the convergence curves plotted in Fig.  7a–d provide evidence that the proposed 
CHHO–CS method with SVM classi�er obtained over the two datasets (MAO and QSAR biodegradation) the 
best results compared with the original HHO and CS algorithms and the other competitor algorithms along with 
the two-stop criteria (100 and 1,000 iterations).

Table 6.  Classi�cation values obtained by the competitor algorithms using the SVM classi�er with 1,000 
iterations over D1, D2, D3, D4 and D5.

Dataset Methods Accuracy Sensitivity Speci�city Recall Precision F-measure

D1

PSO 85.587 32.800 46.100 32.800 54.430 40.950

MFO 87.985 33.150 47.450 33.150 54.990 41.750

GWO 87.503 33.100 47.150 33.100 55.150 41.710

SSA 86.301 33.150 47.120 33.150 54.190 41.540

SCA 85.602 31.990 46.350 31.990 54.550 40.570

HHO 88.709 33.250 47.700 33.250 54.490 41.420

CS 84.003 31.510 45.300 31.510 54.690 40.760

HHO–CS 90.102 33.950 48.930 33.950 56.570 41.910

CHHO–CS-Piece 91.202 33.590 48.950 33.590 55.330 42.590

D2

PSO 84.087 30.851 47.420 30.851 54.740 41.940

MFO 88.097 32.151 48.426 32.151 55.150 40.847

GWO 86.103 31.551 47.906 31.551 54.945 41.940

SSA 88.101 31.950 48.920 31.950 55.240 41.980

SCA 87.402 31.350 48.120 31.350 54.940 40.540

HHO 89.501 32.150 48.920 32.150 55.750 41.240

CS 82.000 29.950 47.420 29.950 51.955 40.640

HHO–CS 91.292 33.150 49.120 33.150 56.940 41.647

CHHO–CS-Piece 91.502 33.250 47.250 33.250 55.950 41.840

D3

PSO 85.187 30.851 47.920 30.851 54.745 40.940

MFO 87.197 30.961 48.420 30.961 55.145 41.347

GWO 86.103 30.450 48.150 30.450 55.045 41.150

SSA 87.301 30.650 47.450 30.650 55.145 41.350

SCA 87.102 30.750 47.410 30.750 54.950 41.370

HHO 90.001 32.450 49.120 32.450 56.140 42.940

CS 82.000 30.150 45.120 30.150 52.145 39.940

HHO–CS 90.992 33.551 49.250 33.551 54.340 40.947

CHHO–CS-Piece 91.002 33.750 49.750 33.750 54.600 41.240

D4

PSO 85.187 30.950 47.936 30.950 54.640 40.247

MFO 86.177 31.100 48.150 31.100 54.950 40.807

GWO 87.121 31.250 48.540 31.250 55.140 41.240

SSA 88.103 31.300 48.860 31.300 55.250 41.740

SCA 87.122 31.100 48.156 31.100 54.145 40.940

HHO 90.551 32.150 49.960 32.150 55.640 42.940

CS 82.312 29.750 46.520 29.750 53.140 39.640

HHO–CS 91.991 32.350 49.120 32.350 55.740 42.870

CHHO–CS-Piece 92.113 32.890 49.996 32.890 55.995 42.970

D5

PSO 87.180 31.710 48.240 31.710 55.200 43.940

MFO 87.377 30.200 48.220 30.150 54.250 41.970

GWO 87.121 31.650 47.160 31.650 54.950 41.250

SSA 87.910 31.700 48.720 31.700 55.850 43.280

SCA 92.910 32.300 48.100 31.200 55.730 42.140

HHO 92.510 32.350 48.710 32.350 55.350 43.990

CS 84.010 30.100 47.220 30.100 53.451 40.150

HHO–CS 92.990 33.160 49.740 33.160 56.255 44.870

CHHO–CS-Piece 93.801 33.250 49.190 33.250 56.850 44.590
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Discussion. According to the aforementioned results for both of the UCI datasets and the two chemical 
datasets (MonoAmine Oxidase (MAO) and QSAR biodegradation datasets), the CHHO–CS maximizes the 
accuracy and reduces the number of selected features. Also, the obtained Std values are increasing directly when 
the number of iterations increases for the proposed CHHO–CS method with the SVM classi�er. �e statistic 
metrics as mean, Std, best, and worst, as well as the classi�cation assessment, indicate that chaotic maps intro-
duce better results in comparison with the standard approaches. �e evidence of this fact can be observed in the 
convergence curves as shown in Figs. 5, 6 and 7, where the CHHO–CS method based chaotic map with SVM is 
applied over the UCI datasets and the two chemical datasets (MOA and QSAR).

Table 7.  Classi�cation values obtained by the competitor algorithms using the SVM classi�er with 1,000 
iterations over D6, D7, D8, D9 and D10.

Dataset Methods Accuracy Sensitivity Speci�city Recall Precision F-measure

D6

PSO 87.160 30.280 48.490 30.280 55.560 43.890

MFO 91.100 30.390 48.770 30.390 55.100 43.893

GWO 90.012 30.299 47.790 30.299 54.740 43.471

SSA 89.120 30.650 48.550 30.120 54.999 43.595

SCA 87.530 31.996 48.290 31.996 55.470 442.25

HHO 90.910 32.895 48.990 32.895 55.994 44.397

CS 82.312 29.750 46.520 29.750 53.140 39.640

HHO–CS 91.780 32.766 49.990 32.766 56.492 44.992

CHHO–CS-Piece 91.590 33.252 49.660 33.252 56.991 44.899

D7

PSO 82.120 31.901 48.742 31.901 55.732 43.902

MFO 87.100 30.901 48.629 30.901 54.753 43.991

GWO 84.100 31.989 47.979 31.989 54.933 43.962

SSA 82.991 31.969 48.820 31.969 55.939 43.599

SCA 84.012 31.359 48.990 31.359 55.960 42.951

HHO 85.101 32.298 48.980 32.298 55.599 44.992

CS 82.191 31.849 47.359 31.540 53.859 40.932

HHO–CS 86.021 31.391 49.377 31.391 56.990 44.993

CHHO–CS-Piece 87.709 31.102 49.291 31.102 55.852 44.711

D8

PSO 82.120 31.979 48.472 31.979 55.339 43.920

MFO 87.070 30.192 48.732 30.192 54.852 43.909

GWO 84.010 31.289 47.772 31.289 54.931 43.269

SSA 82.930 31.990 48.830 31.990 55.901 43.893

SCA 84.011 31.952 48.929 31.952 55.968 42.952

HHO 85.011 32.297 48.987 32.297 55.799 44.399

CS 82.090 31.537 47.452 31.537 53.955 40.956

HHO–CS 86.020 31.991 49.971 31.991 56.599 44.930

CHHO–CS-Piece 87.507 31.010 49.091 31.010 55.950 44.410

D9

PSO 87.190 31.909 48.970 31.909 55.910 43.919

MFO 87.020 30.902 48.970 30.902 54.920 43.991

GWO 90.502 31.990 47.979 31.990 54.933 43.962

SSA 82.991 31.969 48.820 31.969 55.939 43.492

SCA 84.012 31.359 48.990 31.359 55.960 42.951

HHO 85.101 32.298 48.980 32.298 55.599 44.992

CS 82.191 31.849 47.359 31.540 53.859 40.932

HHO–CS 86.021 31.391 49.377 31.391 56.990 44.993

CHHO–CS-Piece 87.709 31.102 49.291 31.102 55.852 44.711

D10

PSO 82.120 31.979 48.472 31.979 55.339 43.920

MFO 87.070 30.192 48.732 30.192 54.852 43.909

GWO 84.010 31.289 47.772 31.289 54.931 43.269

SSA 82.930 31.990 48.830 31.990 55.901 43.893

SCA 84.011 31.952 48.929 31.952 55.968 42.952

HHO 85.011 32.297 48.987 32.297 55.799 44.399

CS 82.090 31.537 47.452 31.537 53.955 40.956

HHO–CS 86.020 31.991 49.971 31.991 56.599 44.930

CHHO–CS-Piece 87.507 31.010 49.091 31.010 55.950 44.410
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In worthwhile, the convergence curve is presented because it is a graphical form to study the relationship 
between the number of iterations and the �tness function. It declares the best-performed algorithm by compari-
son between various approaches and when increasing the number of iterations, it represents a direct correlation. 
�e convergence curves plotted in Fig. 5a–j revealed that the proposed CHHO–CS-Piece method achieved bet-
ter results compared with the competitor algorithms. Also, in the same context, the convergence curves plotted 
in Fig. 6a–j revealed that the proposed CHHO–CS-Piece method achieved better results compared with the 
competitor algorithms.

To sum up, the experiments were conducted on MOA and QSAR biodegradation datasets and the obtained 
results are interesting and due to the lack of space, we have added the results of the best map only. For exam-
ple, in the �rst MOA dataset with the SVM classi�cation technique in di�erent stop conditions 100, and 1,000 
iterations as shown in Fig. 7a–d, respectively. Moreover, on the MAO dataset, with 100 and 1,000 iterations, it 
is interesting that CHHO–CS-Piece with SVM is better than the other competitor algorithms. Meanwhile, for 
the second QSAR biodegradation dataset, the optimal solutions with SVM are computed with 100, and 1,000 
iterations as stop condition, it is interesting that the version CHHO–CS-Piece with SVM provides the optimal 
solutions in comparison with the other metaheuristic algorithms.

Figure 4.  Mapping from a molecular to a space of features.
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conclusion
metaheuristic algorithms and machine learning techniques are important tools that can solve complex tasks in 
the �eld of cheminformatics. �e capabilities of MAs and ML to optimize and classify information are useful in 
drug design. However, these techniques should be highly accurate to obtain optimal compounds. In this paper, 
a hybrid metaheuristic method termed CHHO–CS which combined the Harris hawks optimizer (HHO) with 
operators of the cuckoo search (CS) and chaotic maps (C) in order to enhance the performance of the original 
HHO. Moreover, the proposed CHHO–CS method was combined with the support vector machine (SVM) as 
machine learning classi�ers for conducting the chemical descriptor selection and chemical compound activities. 

Table 8.  Values of the statistical measures obtained by the competitor algorithms using the SVM classi�er 
with 100 iterations.

Dataset Methods Mean Std Best Worst

MAO

PSO 8.07E+01 7.30E−01 87.987 86.472

MFO 8.83E+01 7.36E−01 85.285 84.981

GWO 8.20E+01 7.40E−01 85.003 84.999

SSA 8.40E+01 7.32E−01 87.501 87.430

SCA 8.60E+01 7.33E−01 86.002 85.699

HHO 9.50E−01 7.45E−02 94.247 93.011

CS 8.50E−01 2.60E−01 84.232 83.178

HHO–CS 9.60E−01 7.32E−02 95.320 94.334

CHHO–CS-Piece 9.76E−01 7.15E−02 96.180 95.702

QSAR

PSO 8.70E+01 7.30E−01 79.987 79.472

MFO 8.30E+01 7.10E−01 80.285 80.981

GWO 8.40E+01 7.04E−01 80.503 80.399

SSA 8.60E+01 7.35E−01 79.501 78.430

SCA 8.50E+01 7.06E−01 80.002 79.999

HHO 8.19E−01 6.69E−03 80.990 81.017

CS 8.17E−01 6.71E−04 78.902 79.011

HHO–CS 8.28E−01 6.66E−04 81.970 82.011

CHHO–CS-Piece 8.33E−01 6.68E−04 82.521 82.711

Table 9.  Values of the statistical measures obtained by the competitor algorithms using the SVM classi�er 
with 1,000 iterations.

Dataset Methods Mean Std Best Worst

MAO

PSO 8.15E+01 7.22E+00 87.981 86.981

MFO 8.12E+01 0.00E+00 87.176 86.176

GWO 9.25E+01 7.20E−01 90.705 89.705

SSA 9.12E+01 7.17E−01 92.647 91.235

SCA 9.12E+01 7.17E−02 92.647 91.176

HHO 9.55E−01 7.48E−02 95.259 94.061

CS 8.55E−01 2.90E−01 84.300 83.523

HHO–CS 9.60E−01 7.40E−02 95.530 95.440

CHHO–CS-Piece 9.85E−01 7.23E−02 96.190 95.950

QSAR

PSO 8.47E+01 7.30E−01 79.887 79.472

MFO 8.33E+01 7.16E−01 80.985 80.681

GWO 8.40E+01 7.94E−01 80.603 80.499

SSA 7.40E+01 7.05E−01 78.801 78.630

SCA 8.42E+01 7.16E−01 80.002 79.999

HHO 8.39E−01 1.41E−03 80.971 81.210

CS 8.28E−01 2.42E−02 79.800 79.901

HHO–CS 8.40E−01 1.40E−03 82.301 82.511

CHHO–CS-Piece 8.42E−01 1.39E−03 84.012 84.001
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�e main tasks of the proposed method are to select the most important features and classify the information in 
the cheminformatics datasets (e.g., MAO and QSAR biodegradation). �e experimental results con�rm that the 
use of chaotic maps enhances the optimization process of the hybrid proposal. It is important to mention that not 
all the chaotic maps are completely useful, and it is necessary to decide when to use one or another. As expected, 
this is dependent on the dataset and the objective function. Comparisons of the proposed CHHO–CS method 
with the standard algorithms revealed that the CHHO–CS yields superior results with respect to cheminformat-
ics using di�erent stop criteria. In the future, the proposed CHHO–CS method can be used as a multi-objective 
global optimization or feature selection paradigm for high-dimensional problems containing many instances to 
increase the classi�cation rate and decrease the selection ratio of attributes.

Table 10.  Classi�cation values obtained by the competitor algorithms using the SVM classi�er with 100 
iterations.

Dataset Methods Accuracy Sensitivity Speci�city Recall Precision F-measure

MAO

PSO 87.987 33 33.890 49.950 56.740 42.901

MFO 85.285 33.930 50.150 33.930 56.9507 43.201

GWO 85.003 34.100 50.200 34.100 57.150 43.901

SSA 87.501 34.250 50.250 34.250 57.400 44.101

SCA 86.002 34.400 50.700 34.400 57.530 44.501

HHO 94.247 49.930 64.160 49.930 66.536 55.130

CS 84.232 33.650 49.920 33.650 56.540 42.851

HHO–CS 95.320 50.120 67.816 50.120 68.392 59.646

CHHO–CS-Piece 96.180 53.941 71.660 53.941 73.625 62.540

QSAR

PSO 79.987 49.610 66.950 49.610 68.190 58.950

MFO 80.285 49.750 66.980 49.750 68.250 59.100

GWO 80.503 49.800 67.130 49.800 68.300 59.150

SSA 79.501 49.600 67.300 49.600 68.200 59.300

SCA 80.002 49.750 67.350 49.750 68.150 59.450

HHO 81.070 49.720 67.710 49.720 66.536 58.950

CS 79.001 49.510 66.920 49.510 68.592 58.851

HHO–CS 82.170 49.820 67.816 49.820 68.690 58.640

CHHO–CS-Piece 82.720 49.540 67.460 49.540 68.590 62.540

Table 11.  Classi�cation values obtained by the competitor algorithms using the SVM classi�er with 1,000 
iterations.

Dataset Methods Accuracy Sensitivity Speci�city Recall Precision F-measure

MAO

PSO 87.981 40.540 50.120 40.540 56.740 45.360

MFO 87.176 40.750 50.520 40.750 56.950 45.470

GWO 90.705 41.150 50.720 41.150 57.150 45.800

SSA 92.647 41.350 50.830 41.350 57.400 45.900

SCA 92.647 41.450 50.850 41.450 57.530 46.100

HHO 95.259 51.331 66.043 51.331 69.024 58.172

CS 84.300 40.342 50.021 40.342 60.990 45.062

HHO–CS 95.530 53.444 69.830 53.444 71.930 62.846

CHHO–CS-Piece 96.190 55.485 73.843 55.485 75.727 66.182

QSAR

PSO 79.887 40.540 50.100 40.540 61.190 45.160

MFO 80.985 40.650 50.150 40.650 61.200 45.190

GWO 80.603 40.710 50.250 40.710 61.150 45.490

SSA 78.801 40.820 50.300 40.820 61.090 45.510

SCA 80.002 40.930 50.530 40.930 61.100 45.550

HHO 81.201 51.940 69.043 51.940 70.920 64.950

CS 79.901 45.940 55.021 45.940 69.990 65.162

HHO–CS 82.501 52.420 69.130 52.420 71.130 65.150

CHHO–CS-Piece 84.001 52.540 69.340 52.540 71.870 65.880
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Figure 5.  Convergence curves for the best CHHO–CS-based chaotic map and the competitor algorithms using 
SVM on ten UCI datasets with 100 iterations.
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Figure 6.  Convergence curves for the best CHHO–CS-based chaotic map and the competitor algorithms using 
SVM on ten UCI datasets with 1,000 iterations.
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