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It is well-known that the ground state of homogeneous superconducting systems with spin-orbit
coupling (SOC) in the presence of the Zeeman field is the so-called helical state, which is character-
ized by the phase modulation of the order parameter, but zero supercurrent density. In this work
we investigate the realization of the helical state in a hybrid system with spatially separated super-
conductivity and exchange field by considering superconductor/ferromagnet (S/F) bilayer on top
of a 3D topological insulator. This system is characterized by strong spin-momentum locking and,
consequently, provides the most favorable conditions for the helical state generation. The analysis
is based on the microscopic theory in terms of the quasiclassical Green’s functions. We demonstrate
that in the bilayer the helical state survives if the exchange field has non-zero component perpen-
dicular to the S/F interface even in spite of the fact that the superconducting order parameter and
the exchange field are spatially separated. At the same time, in this spatially inhomogeneous sit-
uation the helical state is accompanied by the spontaneous currents distributed over the bilayer in
such a way that the net current vanishes. Further, we show that this hybrid helical state gives rise
to nonreciprocity in the system. We demonstrate the realization of the nonreciprocity in the form
of the superconducting diode effect and investigate its dependence on the parameters of bilayer.

I. INTRODUCTION

The helical state was originally predicted for two-
dimensional systems with spin-orbit coupling (SOC) un-
der the applied parallel magnetic field1–6. Its physical
origin can be explained as follows. The SOC produces
the spin-momentum locking term ∝ n · (σ × p) in the
hamiltonian, where n is the unit vector perpendicular to
the plane of the system, p is the electron momentum and
σ is its spin. The applied field makes spin-down state en-
ergetically more favorable. Due to the spin-momentum
locking it results in the fact that one of the mutually op-
posite momentum directions along the axis perpendicular
to the Zeeman field is more favorable. That should lead
to the appearance of the spontaneous current. However,
the superconductor develops a phase gradient, which ex-
actly compensates the spontaneous current. The result-
ing phase-inhomogeneous zero-current state is the true
ground state of the system. This helical state is a kind
of inverse magnetoelectric effect specific for supercon-
ductors. This state looks similar to another well-known
inhomogeneous superconducting state, FFLO state7–10.
However, the crucial difference between them is that in
the helical state the direction of the phase modulation is
strictly determined by the direction of the applied field,
while in the FFLO state the direction of the modula-
tion is mainly determined by the crystal structure. The
same physics can be also expected if the Zeeman field is
provided not by the applied magnetic field, but by the
intrinsic exchange field. In this case the helical state
provides a direct coupling between the condensate phase
and the magnetization, which opens great perspectives

for superconducting spintronics.

The situation when the exchange field, superconduc-
tivity and strong SOC coexist intrinsically is rare and
largely unexplored from the point of view of magneto-
electrics. At the same time the interplay of supercon-
ductivity and magnetism is actively studied in supercon-
ductor/ferromagnet (S/F) hybrids11–14, where the order
parameter and the exchange field are spatially separated.
In the presence of spin-momentum locking a plethora of
extremely interesting magnetoelectric effects in the form
of spontaneous currents have been reported in the lit-
erature for such a situation15–21. Josephson junctions
deserve special mention, where the magnetoelectric ef-
fect manifests itself in the form of the anomalous ground
state phase shift22–36.

Here we consider finite-width S/F bilayer on top of a
three-dimensional topological insulator (3D TI). 3D TI is
chosen because its conductive surface state exhibits full
spin-momentum locking: an electron spin always makes
a right angle with its momentum37–40. It has been al-
ready predicted that for this system presence of the he-
lical magnetization in the F layer leads to the nonmono-
tonic dependence of the critical temperature on the F
layer width41. Here we consider another important man-
ifestation of the interplay between the spin-momentum
locking and the magnetization in this system. It is found
that although the exchange field and superconducting
order parameter are spatially separated, the latter de-
velops a spontaneous phase gradient, that is the finite-
momentum helical state is realized. At the same time it
is accompanied by the spontaneous currents, inhomoge-
neously distributed over the bilayer in such a way that
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the net current vanishes. Such a hybrid state only takes
place when the exchange field has a component perpen-
dicular to the S/F interface. Otherwise, the bilayer is in
the conventional homogeneous state.
Further we demonstrate that this hybrid state is intrin-

sically nonreciprocal, that is the bilayer possesses differ-
ent critical currents in opposite directions. In the litera-
ture this phenomenon is also referred to as the “supercon-
ducting diode effect (SDE)”. A superconductor exhibit-
ing such a polarity-dependent critical current is of inter-
est both from fundamental and applied points of view.
It can offer a perfect dissipationless transmission along
one direction while manifesting a large resistance along
the opposite. It represents the superconducting limit of
the magnetochiral anisotropy (MCA)42–53. The effects
are being actively studied during the last few years. The
superconducting diode effect has been predicted for ho-
mogeneous materials with SOC and finite-momentum he-
lical ground state54–59, S/F bilayers with interface spin-
orbit coupling60 and for Josephson junctions29,61–67. It
has been also observed in superconducting films, layered
systems without a centre of inversion68–72 and Josephson
junctions73–80. Here we investigate it in the topological
insulator based systems. Our consideration is based on
the microscopic quasiclassical theory of superconductiv-
ity in terms of the Usadel equations.
The paper is organized as follows. In Sec. II we formu-

late basic theory in the framework of the quasiclassical
Usadel formalism. In Sec. III the hybrid helical state is
investigated and in Sec. IV we show the presence of the
current nonreciprocity and present the results of the SDE
calculation in the system. Finally, we summarize the key
points of the research in Sec. V.

II. MODEL

In the present work we consider an S/F bilayer on top
of a 3D TI surface. It is sketched in Fig. 1 (a). The F
layer is assumed to be a ferromagnetic insulator and it
induces an exchange field in the conductive surface states
of the 3D TI underneath via the proximity effect. Exper-
imental realization of such a proximity-induced exchange
field has been reported81–84. Similarly, the superconduc-
tor provides proximity-induced superconductivity in the
conductive surface states of the 3D TI underneath85. The
resulting hamiltonian of the 3D TI conductive surface
layer takes the form:

H =

∫

d2r

{

Ψ†(r)
[

−iα(∇r × ẑ)σ − µ+ V (r)−

hσ
]

Ψ(r) + ∆(r)Ψ†
↑(r)Ψ

†
↓(r) + ∆∗(r)Ψ↓(r)Ψ↑(r)

}

, (1)

where Ψ†(r) = (Ψ†
↑(r),Ψ

†
↓(r)) is the creation operator

of an electron at the 3D TI surface, ẑ is the unit vector
normal to the surface of TI, α is the Fermi velocity of elec-
trons at the 3D TI surface and µ is the chemical potential.

σ = (σx, σy, σz) is a vector of Pauli matrices in spin space
and h = (hx, hy, 0) is an in-plane exchange field, which is
assumed to be nonzero only at x < 0. The superconduct-
ing order parameter ∆ is nonzero only at x > 0. There-
fore, effectively the TI surface states are divided into two
parts: one of them at x < 0 possesses h 6= 0 and can be
called ”ferromagnetic”, while the other part correspond-
ing to x > 0 with ∆ 6= 0 can be called ”superconducting”.
Below we will use subscripts f and s to denote quanti-
ties, related to the appropriate parts of the TI surface.
The potential term V (r) includes the nonmagnetic im-
purity scattering potential Vimp =

∑

ri

Viδ(r − ri), which

is of a Gaussian form 〈V (r)V (r′)〉 = (1/πντ)δ(r − r′)
with ν = µ/(2πα2), and also possible interface potential
Vint(r) = V δ(x).
We consider the situation when µ is large. In this

case the Fermi surface is represented by a single helical
band, where the electrons manifest the property of the
full spin-momentum locking, see Fig. 1(a). Due to the
large value of µ the quasiclassical approximation is the
well-suited framework to describe the system. Here we
assume the diffusive limit, i. e. when the elastic scat-
tering length is much smaller than the superconducting
coherence length (l ≪ ξs). In this situation the system
should be described by the diffusion-type Usadel equa-
tions for the quasiclassical Green’s function, which have
been derived in Refs. 86 and 87. We begin by consider-
ing the linearized with respect to the anomalous Green’s
function Usadel equations in Matsubara representation.
The linearization works well near the critical tempera-
ture of the bilayer, when the superconducting order pa-
rameter is small. Therefore, this framework is enough
to calculate the critical temperature and to investigate
the superconducting state near the critical temperature.
Further we turn to the nonlinear Usadel equations in or-
der to calculate the supercurrent and to study the SDE.
In principle, the anomalous Green’s function is a 2 × 2
matrix in spin space. However, its spin structure is de-
termined by the projection onto the conduction band of
the TI surface states and, therefore, one can write:

f̂s,f(nF , r, ε) = fs,f (r, ε)
(1 + n⊥σ)

2
, (2)

where f̂s(f) is the anomalous Green’s function in the su-
perconducting (ferromagnetic) part of the 3D TI layer.
nF = pF /pF = (nF,x, nF,y, 0) is a unit vector di-
rected along the quasiparticle trajectory and n⊥ =
(nF,y,−nF,x, 0) is a unit vector perpendicular to the
quasiparticle trajectory and directed along the quasipar-
ticle spin, which is locked to the quasiparticle momen-
tum. fs,f is the spinless amplitude of the Green’s func-
tion, which describes mixed singlet-triplet correlations in
the system and in the diffusive limit is isotropic in the
momentum space.
Our first goal is to calculate the critical temperature

Tc of the structure. We assume that the superconducting
layer is ultra-thin along the z-direction. In the framework
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FIG. 1. (a) Schematic geometry of the S/F bilayer on top of the 3D TI. Left bottom corner: Fermi-surface of the TI surface
states. The quasiparticle spin S is locked at the right angle to its momentum p. (b)-(c) Illustration of the superconducting
diode effect. Applying external supercurrent along the interface in one direction keeps the non-zero critical temperature (b),
while reversing the current may completely destroy the superconducting state (c).

of our model it is considered as two-dimentional and is
described by Hamiltonian (1). Strictly speaking, the S
film as a whole is not described by Hamiltonian (1), but,
nevertheless, it has a strong spin-orbit coupling induced
by proximity to the 3D TI. It results in qualitatively the
same structure of the Green’s function, but requires much
more sophisticated modelling. In order to focus on the
main physical properties of the mixed helical state and
the nonreciprocity, we work in the framework of the min-
imal model. In the superconducting part of the TI con-
ductive surface (S) (0 < x < ds) the linearized Usadel
equation for the spinless amplitude fs reads86,88–90

ξ2sπTcs
(

∂2x + ∂2y
)

fs − |ωn|fs +∆(r) = 0. (3)

Units with ~ = kB = 1 are used. In the ferromagnetic
part of the TI conductive surface layer (F) the Usadel
equation takes the form86,

(

∂x −
2i

α
hy

)2

ff +

(

∂y +
2i

α
hx

)2

ff =
|ωn|

ξ2fπTcs
ff . (4)

In Eqs. (3) and (4) ξs(f) =
√

Ds(f)/2πTcs, where Ds(f)

is the diffusion constant in S(F) region, which, in prin-
ciple, can be different due to the coverage of the TI by
different materials in those parts, and Tcs is the critical
temperature of the bulk superconductor. In order to ac-
count for the helical state we consider the pair potential
to be of the form,

∆(x, y) = ∆(x)eiqy . (5)

Then the anomalous Green’s function in the S part of
the TI have to manifest the same dependence on y-
coordinate:

fs(x, y) = fs(x)e
iqy . (6)

The Usadel equation in the S part then becomes one-
dimensional and takes the form:

ξ2sπTcs
(

∂2x − q2
)

fs − |ωn|fs +∆ = 0. (7)

In the ferromagnetic region of the TI we assume only the
nonzero hx component of the field and utilize the same
ansatz as in the S part, i. e. ff(x, y) = ff(x)e

iqy as it is
dictated by the boundary conditions,

∂2xff =

[

|ωn|

ξ2fπTcs
+

(

q +
2hx
α

)2
]

ff . (8)

Inclusion of the magnetization component hy produces
no quantitative effect neither on the supercurrent in y
direction of the bilayer nor on the critical temperature
in the S part. It only enters the solution ff as a phase
factor exp (2ihyx/α)

41,86. Thus we do not take it into
consideration in our model and define hx = h.
The self-consistency equation in the S part of the sys-

tem can be written as

∆ ln
Tcs
T

= πT
∑

ωn

(

∆

|ωn|
− fs

)

. (9)

We also need to supplement the equations above with
proper boundary conditions86,91 at x = 0. Due to the
fact that the spin structure of the Green’s functions at
the both sides of the interface is the same, the boundary
conditions can be written in terms of the spinless Green’s
functions and take the form

γBξf
∂ff(0)

∂x
= fs(0)− ff(0), (10)

γξf
∂ff(0)

∂x
= ξs

∂fs(0)

∂x
. (11)

The parameter γB = Rbσf/ξf is the transparency pa-
rameter which is the ratio of resistance per unit area
of the effective S/F interface at x = 0 to the resistiv-
ity of the ferromagnetic part of the TI surface and de-
scribes the effect of the interface barrier91–93. In Eq.(11)
the dimensionless parameter γ = ξsσf/ξfσs determines
the strength of suppression of superconductivity in the
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S near the S/F interface compared to the bulk (inverse
proximity effect). No suppression occurs for γ = 0, while
strong suppression takes place for γ ≫ 1. Here σs(f) is
the normal-state conductivity of the S(F) parts of the TI
surface. These boundary conditions should also be sup-
plemented with vacuum conditions at the edges (x = −df
and x = +ds),

∂fs(ds)

∂x
= 0,

∂ff(−df )

∂x
= 0. (12)

The solution of Eq. (8) can be found in the form

ff = C(ωn) coshkq (x+ df ) , (13)

where

kq =

√

|ωn|

ξ2fπTcs
+

(

q +
2h

α

)2

. (14)

Here C(ωn) is to be found from the boundary conditions.
Eq. (13) automatically satisfies the vacuum boundary
condition (12) at x = −df . Using boundary conditions
(10)-(11) we can write the problem in a closed form with
respect to the Green function fs. At x = 0 the boundary
conditions can be written as:

ξs
∂fs(0)

∂x
=

γ

γB +AqT (ωn)
fs(0), (15)

where,

AqT (ωn) =
1

kqξf
coth kqdf .

Then, we rewrite the Usadel equation in the S part of
the TI surface in terms of f+

s and f−
s , where we define

even and odd parts of the anomalous Green’s function
f± = f(ωn)±f(−ωn). According to the Usadel equation
(3), there is a symmetry relation f(−ωn) = f∗(ωn) which
implies that f+ is a real while f− is a purely imaginary
function. In general the boundary condition (15) can
be complex. But in the considered system AqT is real.
Hence the condition (15) coincides with its real-valued
form,

ξs
∂f+

s (0)

∂x
=W q(ωn)f

+
s (0), (16)

where we used the notation,

W q(ωn) =
γ

γB +AqT (ωn)
. (17)

In the same way we rewrite the self-consistency equation
for ∆ in terms of symmetric function f+

s considering only
positive Matsubara frequencies,

∆ ln
Tcs
T

= πT
∑

ωn>0

(

2∆

ωn
− f+

s

)

, (18)

as well as the Usadel equation in the superconducting
part,

ξ2s

(

∂2f+
s

∂x2
− κ2qsf

+
s

)

+
2∆

πTcs
= 0. (19)

In the framework of the so-called single-mode approxi-
mation the solution in S is introduced in the form94,

f+
s (x, ωn) = f(ωn) cos

(

Ω
x− ds
ξs

)

, (20)

∆(x) = δ cos

(

Ω
x− ds
ξs

)

. (21)

The solution presented above automatically satisfies
boundary condition (16) at x = ds. Substituting ex-
pressions (20) and (21) into the Usadel equation for f+

s

(19) yields

f(ωn) =
2δ

ωn +Ω2πTcs + q2ξ2sπTcs
. (22)

In the following section we calculate the critical temper-
ature Tc using the equations above. Exact results for the
anomalous Green’s function and the critical temperature
can be obtained in the framework of the more sophisti-
cated multi-mode approach. However, for the case under
consideration the multi-mode approach gives only quan-
titative corrections to the results, as it is shown in the
Appendix.

III. HYBRID SUPERCONDUCTING HELICAL

STATE

To calculate the critical temperature we use Eqs. (16)-
(19), together with the vacuum boundary conditions (12)
for the anomalous Green’s function f+

s . Further we as-
sume ξs = ξf = ξ in our calculations for clarity and sim-
plicity of the results. Using the single-mode approxima-
tion (20)-(21) it is possible to rewrite the self-consistency
equation in the following form,

ln
Tcs
Tc

= ψ

(

1

2
+

Ω2 + q2ξ2

2

Tcs
Tc

)

− ψ

(

1

2

)

. (23)

Boundary condition (16) at x = 0 yields the following
equation for Ω,

Ω tan

(

Ω
ds
ξ

)

=W q(ωn). (24)

The finite momentum of the pair amplitude q = qs, which
is chosen by the system, is determined by the condition,

qs = q (max [Tc(q)]) , (25)

which means that the state with qs is the most ener-
getically favorable. We can expect that in the absence
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FIG. 2. Tc(q) dependencies for ξh/α = 0.95, df = 1.0ξ,
ds = 1.2ξ. The parameters of the S/F interface: γ = 0.2,
γB = 0.1.

of magnetization h the equilibrium value of qs is zero.
At nonzero h the equilibrium pair momentum qs is fi-
nite. The dependence of the critical temperature on the
pair momentum q is demonstrated in Fig. 2 for two op-
posite values of the magnetization strength h. Accord-
ing to Eq.(25) the most favorable superconducting state
corresponds to qsξ ≈ ±0.05 for ξh/α = ∓0.95. This
observation indicates that conventional superconducting
state undergoes a qualitative change. The superconduct-
ing gap ∆ is now modulated with a phase factor exp(iqsy)
generating corresponding phase gradient along the S/F
interface. In fact, as we will show below the supercur-
rent caused by qs exactly compensates the supercurrent
flowing on the TI surface in the opposite direction.

The dependence of qs on h is demonstrated in Fig. 3.
We plot the curves for different values of the interface
transparencies γB. From the figure we can see that for
the transparent interface (γB = 0) the pair momentum
qs is the most pronounced. Physically it just reflects the
necessity of the proximity to the ferromagnetic layer to
produce the hybrid helical state. Abrupt drop to zero of
the parameter qs reflects the transition from supercon-
ducting to normal state.

Under the assumption ds ≪ ξs the solution in the sys-
tem can be analyzed analytically. In this case we can
assume the gap ∆(x) to be spatially constant ∆ = const.
Then the solution in the superconducting region takes

-1.70 -0.85 0.00 0.85 1.70
-0.10

-0.05

0.00

0.05

0.10

 B=0
 B=0.1
 B=0.2
 B=0.3

q s

h/

FIG. 3. The ground state pair momentum qs(h) for different
values of transparency parameter γB. The other parameters
are the same as in Fig. 2

the form

f+
s =

2∆

ωn + q2ξ2πTcs
+A(ωn) cosh (κqs [x− ds]) ,

(26)

A(ωn) = −
2∆

cosh (κqsds) [ωn + q2ξ2πTcs]

W q(ωn)

W q(ωn) +Aqs
,

Aqs = κqsξ tanhκqsds, κqs =

√

q2 +
|ωn|

ξ2πTcs
.

Here, to find the coefficient A(ωn) the boundary con-
dition (16) has been utilized. On the other hand, the
solution in TI layer is,

ff =
fs(0)

γB +AqT

cosh(kq[x+ df ])

kqξ sinh(kqdf )
. (27)

In the limit df ≪ ξ and γB = 0 we can derive analytical
result for the critical temperature at the interface. From
the analytical solution in the S part of the TI layer we
find,

f+
s (0) =

2∆

ωn + (qξ)2πTcs

Aqs

Aqs +W q(ωn)
. (28)

Substitution of this expression into the self-consistency
equation yields,

ln
Tcs
Tc

=
ds

γdf + ds
ψ

(

1

2
+
γdf (qξ +H)2 + q2dsξ

2(γdf + ds)Tc/Tcsξ

)

−

−ψ

(

1

2

)

,

(29)

where H = 2ξh/α. It is worth considering Eq. (29) in
the limiting case of small q. Expanding the equation up
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to the second order in q we obtain,

ln
Tcs
Tc

=

(

ds
γdf + ds

− 1

)

ψ

(

1

2

)

+

+
π2
(

γ(dsdf/ξ
2) (qξ +H)2 + (qds)

2
)

4Tc (γdf + ds)
2 . (30)

From this expression we can easily derive important an-
alytical result for the finite momentum qs of the pair
potential ∆. Utilizing the condition for finding extrema
of Tc(q) we get,

qs = −
γHdf
ds + γdf

. (31)

Under the assumption of small γ, we can approximate the
hybrid helical state momentum as qs ∝ −γHdf/ds. We
clearly see that qs depends on the dimensionless product
Hdf/ds. As we will show below the superconducting
diode effect is also controlled by the same parameter.
In contrast to the well-known helical state in homo-

geneous systems in the presence of the SOC and Zee-
man field, where the finite-momentum equilibrium state
corresponds to zero supercurrent density, here the finite-
momentum Cooper pairs coexist with nonzero supercur-
rent density in the ground state of the system. Below we
calculate the spatial distribution of the supercurrent for
a given q.
In order to calculate the supercurrent we consider the

nonlinear Usadel equation, which is of the form86,90

D∇̂
(

ĝ∇̂ĝ
)

=
[

ωnτz + i∆̂, ĝ
]

. (32)

Here D is the diffusion constant, τz is the Pauli
matrix in the particle-hole space, ∇̂X = ∇X +
i (hxêy − hy êx) [τz, ĝ] /α. The gap matrix ∆̂ is defined

as ∆̂ = Û iτx∆(x)Û †, where ∆(x) is a real function and

transformation matrix Û = exp (iqyτz/2) . The finite
center of mass momentum q takes into account the helical
state. The Green’s function matrix is also transformed as
ĝ = Û ĝqÛ

†. To facilitate the solution procedures of the
nonlinear Usadel equations we employ θ parametrization
of the Green’s functions88,

ĝq =

(

cos θ sin θ
sin θ − cos θ

)

. (33)

Substituting the above matrix into the Usadel equation
(32), we obtain in the S part of the TI surface x > 0:

ξ2sπTcs

[

∂2xθs −
q2

2
sin 2θs

]

= (34)

= ωn sin θs −∆(x) cos θs,

and in the F part x < 0:

ξ2fπTcs

[

∂2xθf −
q2m
2

sin 2θf

]

= ωn sin θf , (35)

where qm = q+2h/α and θs(f) means the value of θ is the
S(F) of the TI surface, respectively. The self-consistency
equation for the pair potential reads,

∆(x) ln
Tcs
T

= πT
∑

ωn>0

(

∆(x)

ωn
− 2 sin θs

)

. (36)

To complete the problem formulation we supplement the
above equations with the following boundary conditions
at x = 0

γB
∂θf
∂x

∣

∣

∣

x=0
= sin (θs − θf ) , (37)

γB
γ

∂θs
∂x

∣

∣

∣

x=0
= sin (θs − θf ) , (38)

and at free edges

∂θf
∂x

∣

∣

∣

x=−df

= 0,
∂θs
∂x

∣

∣

∣

x=ds

= 0. (39)

In order to calculate the superconducting current we uti-
lize the expression for the supercurrent density

Js(f) =
−iπσs(f)

4e
T
∑

ωn

Tr
[

τz ĝs(f)∇̂ĝs(f)

]

. (40)

Performing the unitary transformation U , the current
density transforms as follows:

jsy(x) = −
πσsq

2e
T
∑

ωn

sin2 θs, (41)

jfy (x) = −
πσn
2e

[

q +
2h

α

]

T
∑

ωn

sin2 θf . (42)

The total supercurrent flowing via the system along the
y-direction can be calculated by integrated the current
density of the total width of the S/F bilayer df + ds:

I =

∫ 0

−df

jfy (x)dx +

∫ ds

0

jsy(x)dx. (43)

In Fig. 4 the total supercurrent I as a function of the
parameter q is shown. We plot the curves for two oppo-
site values of the magnetization strength h. Based on the
general considerations the function I(q) has a trivial an-
tisymmetric form with respect to q = 0 in the absence of
the exchange field (h = 0). When h is nonzero the super-
current loses its purely antisymmetric form, so that the
current is finite at q = 0. It can be shown that Eq. (25)
is equivalent to the condition

I(qs) = 0. (44)

It means that the ground state of the bilayer in the ab-
sence of the applied external supercurrent corresponds
to the zero total current along the y-direction. At the
same time the local supercurrent density is not zero. The
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FIG. 4. The normalized supercurrent as a function of q cal-
culated at temperature T = 0.1Tcs df = 1.0ξ and ds = 1.2ξ.
The parameters of the S/TI interface: γ = 0.5, γB = 0.5.

spatial distribution of the supercurrent at q = qs (corre-
sponding to the zero current point of the red curve in
Fig. 5 (a)) is demonstrated in Fig. 5(b) together with the
spatial profile of the real part of the superconducting or-
der parameter. It is seen that in the S/F hybrid with
spatially separated superconductivity and Zeeman field
the zero-current helical state is transformed to the kind
of a mixed state. It is characterized by the simultaneous
presence of the finite pair momentum and the local super-
currents, which are spatially distributed over the bilayer
in such a way to produce zero total current. We call this
state hybrid helical state. The above analysis suggests
that the bilayer is infinite along the y-direction. There-
fore we neglect the edge effects. In real setups having a
finite length along the S/F interface the currents should
make a U turn at the edges.

IV. CRITICAL CURRENT NONRECIPROCITY

Now we investigate the properties of the hybrid he-
lical state under the applied supercurrent. The maxi-
mal supercurrent which is sustained by the system can
be extracted from Fig. 4. Comparing the maximum ab-
solute values of the positive and negative supercurrents
Ic+ and Ic− , we can recognize that they are distinct
in case h 6= 0. This is the critical current nonreciproc-
ity ∆Ic = Ic+ − Ic−, which leads to the supercurrent
diode effect (SDE). It is only an apparent degeneracy
of q with respect to the supercurrent I in Fig. 4. The
system will choose lower value of |q| since the critical
temperature drops as |q| is increased (see Fig. 2). This
situation reminds the well-known problem of critical cur-
rent in a superconducting wire, when the relation be-
tween current and superfluid velocity is double-valued,
but only the state with smallest superfluid velocity is
realized95. We estimate the magnitude of ∆Ic for the

b

dc

a

b

d

c

FIG. 5. (a) The normalized supercurrent as a function of
q and supercurrent density (b-d) calculated at temperature
T = 0.1Tcs, df = 1.5ξ, ds = 1.5ξ. The parameters of the
S/TI interface: γ = 0.5, γB = 0.5.

parameters indicated in Fig. 4 and taking the resistances
ρs = 0.5ρn = 10 · 10−6Ohm · cm, the critical temper-
ature Tcs = 7K, the coherence length ξ = 10nm, and
T = 0.1Tcs. For these parameters ∆Ic ≈ 1.5µA.
The physics behind the current nonreciprocity can be

understood in the following simplified way. In the pres-
ence of the exchange field the spin-down states are more
energetically favorable. Via the spin-momentum locking
it leads to the imbalance between electrons with opposite
momenta, what manifests itself as a spontaneous current
along the S/F interface. As we have shown, the super-
conductor produces the counter-propagating current to
compensate the current in F. Via this fundamental mech-
anism of magnetoelectric nature the exchange field of the
ferromagnet influences the phase of the superconducting
condensate in the superconducting part of the structure.
Now it is natural that if we adjust the phase gradient
q along the y-direction via an external source (by ap-
plying a supercurrent), it will exert an inverse effect on
the effective exchange field. It is clearly seen from the
structure of the anomalous Green’s function in the F part
(Eq. (13)), where the phase gradient q enters in combina-

tion with the exchange field in kq =
√

ωn + (q + 2h/α)2.
If q and h have opposite signs, the spin-polarized elec-
trons, generated by the applied current on the surface
of TI, effectively compensate the suppression of super-
conducting state by lowering the effective exchange field.
Consequently in this case we expect larger possible values
of the critical current. However if q and h have the same
sign, the generated in TI spin-polarized current flows in
the same direction as the equilibrium current, enhanc-
ing the effective exchange field (q + 2h/α), which leads
to stronger suppression of the superconductivity at the
interface. Hence we observe smaller values of the criti-
cal supercurrent. More conveniently the critical current



8

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0,0

1,5

3,0

4,5

6,0

7,5

9,0
10

2
I

h/

 =0.5
 =0.2

FIG. 6. δI as a function of magnetization h calculated for
two different γ at T = 0.1Tcs, df = 1.0ξ and ds = 1.2ξ. The
interface parameter γB = 0.5

nonreciprocity or the magnitude of the SDE is defined in
the dimensionless form as,

δI =
Ic+ − Ic−
Ic+ + Ic−

. (45)

It is more instructive to discuss SDE by illustrating δI
dependencies versus various system parameters, includ-
ing parameters of the proximity effect. In Fig. 6 we plot
δI as a function of magnetization h for two different γ.
We see that the dependence of δI on h is nonmonotonic.
Such a characteristic behavior is easily explained. At zero
exchange field h there is no SDE since the system is not
in the helical ground state, but in the conventional su-
perconducting state with a homogeneous phase. As the
exchange field increases the SDE also rises but eventually
starts to drop due to suppression of the superconductiv-
ity by the field h.
There are possibilities to design the superconducting

diode not only by tuning the magnetization h, which can
be quite challenging in practice, but by adjusting other
parameters such as γB. In Fig. 7 δI(γB) dependencies
are shown. Here we observe a nonmonotonic dependence
of the SDE on the interface transparency γB. The decay
of the SDE at large γB is physically clear because in-
crease of the interface transparency reduces the mutual
proximity influence of the spatially separated exchange
field and superconductivity. On the contrary at relatively
small values of γB superconductivity can be substantially
suppressed (red dashed line) or even completely vanish
(black solid line).
We also illustrate the nonreciprocity of the current δI

as a function of the system temperature T (Fig. 8). It is
interesting that the dependence δI(T ) is nonmonotonic.
Similar type of behavior has been also found in the ballis-
tic Rashba superconductors58. The critical temperature

0 1 2 3 4 5 6 7
0,0

0,3

0,7

1,0

1,3

1,7

2,0

10
2

I

B

 h/  =0.3
 h/  =0.1

FIG. 7. δI as a function of transparency parameter γB cal-
culated at two different h for df = 1.0ξ and ds = 1.2ξ. The
temperature is taken as T = 0.4Tcs and γ = 0.5

indicated in the plot is in the correspondence with Tc
calculated by the multimode approach.

In the framework of the linear Usadel equations under
the assumption ds ≪ ξs, we can easily find the total
supercurrent integrating contributions from the S part
and F part of the junction. Substituting the solutions
Eqs. (26)-(27) into the current formula and performing
integration, one obtains the averaged supercurrent in the
Cooper limit (∆ = const),

I =
π∆2σsTξ

3

2e

∑

ωn

If (qξ +H) + Isqξ

(ωn/πTcs + (qξ)2)2
, (46)

Is = ds − 2P
Aqs

k2qs
+ P 2

(

ds

2 cosh2 kqsds
+
Aqs

2k2qs

)

,

If = γ

(

1− P

γB +AqT

)2
(

df

2k2qξ
2 sinh2 kqdf

+
coth kqdf
2k3qξ

2

)

,

where P = W q(ωn)/(W
q(ωn) + Aqs). In the limit of

small TI layer widths df , perfect interface transparency
γB = 0 and strong proximity effect γ = 1, we can write
W q(ωn) ( Eq. (17)) in a more simplified way,

W q(ωn) ≈
1

AqT
≈
df
ξ

(

ωn

ξ2πTcs
+ (qξ +H)

2

)

. (47)

Assuming qξ ≪ 1 and keeping the terms up to the third
order we can derive analytical expression for the total
supercurrent summing both S and TI layer contributions.
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FIG. 8. δI as a function of temperature T calculated for
two different γ. The curves were calculated for df = 1.0ξ,
ds = 1.2ξ, γ = 0.5 and γB = 0.5. Here Tmm

c is the transi-
tion temperature obtained via the multimode approach (see
Appendix).

The supercurrent is then,

I = −
π∆2σT

2e

(

a0 + a1qξ + a2(qξ)
2 + a3(qξ)

3
)

, (48)

a0 =
dfd

2
s

ξ3

(

Hξ2

d2

∑ (πTcs)
2

ω2
n

−
2H3dfξ

d2

∑ (πTcs)
3

ω3
n

)

,

a1 =
d2s
dξ

∑ (πTcs)
2

ω2
n

−
2H2

d3ξ
(3d2fd

2
s + dfd

3
s)
∑ (πTcs)

3

ω3
n

,

a2 =
2H

d3ξ
(dfd

3
s − 3d2fd

2
s)
∑ (πTcs)

3

ω3
n

,

a3 = −
2d2s
d3ξ

(2d2f + dfds + d2s)
∑ (πTcs)

3

ω3
n

.

Here, we have denoted d = (ds + df ). In Fig. 9 we
demonstrate the analytical calculations in the Cooper
limit. The solid line corresponds to Eq. (46), which is
valid for arbitrary TI layer width df , interface parame-
ters γ and γB. The red dashed line represents Eq. (48).
From the figure we can say that Eq. (48) is in a relatively
good agreement with the more general formula at small
values of q. However, it fails at larger values of q. In or-
der to describe larger q successfully, one must take into
account the terms of the next orders.

From Eq.(48) one can derive analytically Ic+ and Ic−
by applying the extremum condition to I(q),

dI

dq
= a1 + 2a2(qξ) + 3a3(qξ)

2 = 0. (49)

-0,70 -0,35 0,00 0,35 0,70
-2,0

-1,0

0,0

1,0

2,0

T/Tcs=0.6  Eq.(46)
 Eq.(48)

I/I
m

q

B=0

FIG. 9. Analytical results for I(q) calculated according to
Eq. (46) - black solid line and Eq. (48) - red dashed line.
Here Im corresponds to the maximum value of the current
calculated from Eq. (46). The parameters of the S/TI inter-
face: γ = 1 and γB = 0. The rest of the parameters are:
ds = 0.5ξ, df = 0.5ξ and ξh/α = 0.1

Solution of Eq. (49) yields,

Ic± = a0 −
1

3
q2±

(

a2 ∓ 2
√

a22 + a1|a3|

)

. (50)

The complete expression for the SDE δI is rather cum-
bersome to display here. Instead we can find relatively
simple result in the limit of Hdf/ξ ≪ 1. In this case we
obtain that

δI ≈
1

2

√

7ζ(2)ζ(3)

(T/Tcs)
5/2

Hdf
ds

≈ 1.86
1

(T/Tcs)
5/2

Hdf
ds

. (51)

This result demonstrates that the SDE is controlled by
the product (Hdf/ds). Moreover it can be noticed that
Eq. (51) reveals the temperature dependence, showing
characteristic scaling behavior of the SDE as a function
of temperature. Please note that Eq. (51) is not valid
at T → 0, where our linearized Usadel theory does not
work.

V. DISCUSSION AND CONCLUSION

We have examined the characteristic features of the su-
perconducting helical state in the S/F/TI hybrid struc-
ture with an in-plane exchange field perpendicular to the
interface. It has been found that the ground state of
the system is characterized by the superconducting or-
der parameter modulated with finite momentum qs. At
the same time due to the spatial separation of the super-
conductivity and ferromagnetism in the hybrid structure
this state is accompanied by the non-zero current distri-
bution. The currents flow along the S/F interface and



10

are distributed over the whole structure. The current
distribution corresponds to zero net value of the current
along the S/F interface. We have found that this hybrid
helical state is responsible for substantial nonreciproc-
ity of the critical current in the system due to strong
spin-orbit coupling on the surface of TI. Direct manifes-
tation of the nonreciprocity is the superconducting diode
effect. Finally, we have derived important analytical re-
sults, revealing controlling parameters and temperature
dependence of the SDE.
The nonlinear self-consistent Usadel equations em-

ployed in this study is a relatively simple but powerful
method for treating such systems. Since we have consid-
ered the diffusive limit in our model, as a further step it
is important to analyze the problem in the ballistic limit
and make corresponding comparisons between the two
models.
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Appendix: Multimode approach

Here we present the multimode method to solve the
critical temperature problem94,96. The single-mode ap-
proach takes into account only one real root provided by
Eq. (23). In order to introduce exact solving method for
the problem under consideration one also takes imagi-
nary roots Ωm (m > 0) into account apart from the real
root. In general the number of roots is infinite.
In the framework of the multimode method the solu-

tion of Eqs. (18)-(19) is found in the form,

F+
s (x, ωn) =f0(ωn) cos

(

Ω0
x− ds
ξs

)

+

∞
∑

m=1

fm(ωn)
cosh

(

Ωm
x−ds

ξs

)

cosh
(

Ωm
ds

ξs

) , (A.1)

∆(x) =δ0 cos

(

Ω0
x− ds
ξs

)

+

∞
∑

m=1

δm
cosh

(

Ωm
x−ds

ξs

)

cosh
(

Ωm
ds

ξs

) . (A.2)

The solution presented by the multimode approach auto-
matically satisfies boundary condition at x = ds. After

the substitutions into the Usadel equation in the S part
(19) f(ωn) can be expressed as,

f0(ωn) =
2δ0

ωn +Ω2
0πTcs + q2ξ2sπTcs

fm(ωn) =
2δm

ωn − Ω2
mπTcs + q2ξ2sπTcs

, m = 1, 2, ...

(A.3)

Then the self-consistency equation (18) takes form

ln
Tcs
Tc

= ψ

(

1

2
+

Ω2
0 + q2ξ2s

2

Tcs
Tc

)

− ψ

(

1

2

)

,

ln
Tcs
Tc

= ψ

(

1

2
−

Ω2
m − q2ξ2s

2

Tcs
Tc

)

−ψ

(

1

2

)

, m = 1, 2, ...

(A.4)
According to properties of digamma function and
Eqs. (A.4) it follows that the parameters Ω belong to
the following intervals:

0 < Ω2
0 <

1

2γE
,

Tc
Tcs

(2m− 1) < Ω2
m <

Tc
Tcs

(2m+ 1) , m = 1, 2, ...,

(A.5)
where γE ≈ 1.78 is Euler’s constant . Boundary condi-
tion (16) at x = 0 provides the equation for the ampli-
tudes δ

δ0
W q(ωn) cos

(

Ω0
ds

ξs

)

− Ω0 sin
(

Ω0
ds

ξs

)

ωn +Ω2
0πTcs + q2ξ2sπTcs

+

∞
∑

m=1

δm
W q(ωn) + Ωm tanh

(

Ωm
ds

ξs

)

ωn − Ω2
mπTcs + q2ξ2sπTcs

= 0. (A.6)

The critical temperature Tc is calculated by Eqs.(A.4)
and Eq.(A.6). In order to solve the problem numerically
one takes finite number of roots Ω with m = 0, 1, 2...,M ,
also taking into account Matsubara frequencies ωn up to
the Nth frequency: n = 0, 1, 2..., N . Hence the matrix
equation has the following form: Knmδm = 0 with matrix
K

Kn0 =
W q(ωn) cos

(

Ω0
ds

ξs

)

− Ω0 sin
(

Ω0
ds

ξs

)

ωn/πTcs +Ω2
0 + q2ξ2sπTcs

,

Knm =
W q(ωn) + Ωm tanh

(

Ωm
ds

ξs

)

ωn/πTcs − Ω2
m + q2ξ2sπTcs

, (A.7)

n = 0, 1, ..., N, m = 1, 2, ...,M.
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FIG. 10. Tc(q) curves calculated with single (solid lines) and multimode approaches (dashed lines) at different interface
parameters γ and γB . The multimode curves are calculated at N = 100.

We takeM = N , then the condition that equation (A.6)
has nontrivial solution takes the form

detK = 0. (A.8)

Now we compare the results obtained by single-mode and
multimode approaches by calculating Tc(q) dependencies.

From Fig. 10 we can see that the two methods produce
quantitative differences at relatively large γ and small γB.
Nevertheless, the results are not affected qualitatively.
As we increase the interface resistance γB or reduce γ
the quantitative discrepancy vanishes.
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