
 Open access Proceedings Article DOI:10.1145/2544137.2544160

Hybrid Hexagonal/Classical Tiling for GPUs — Source link

Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan ...+1 more authors

Institutions: École Normale Supérieure, Nvidia, Ohio State University

Published on: 15 Feb 2014 - Symposium on Code Generation and Optimization

Topics: Stencil and Cache

Related papers:

 The pochoir stencil compiler

 A practical automatic polyhedral parallelizer and locality optimizer

 Tiling stencil computations to maximize parallelism

Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines

PATUS: A Code Generation and Autotuning Framework for Parallel Iterative Stencil Computations on Modern
Microarchitectures

Share this paper:

View more about this paper here: https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-
5334vpk1cs

https://typeset.io/
https://www.doi.org/10.1145/2544137.2544160
https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs
https://typeset.io/authors/tobias-grosser-2k2pftd849
https://typeset.io/authors/albert-cohen-pdekw55f8t
https://typeset.io/authors/justin-holewinski-2lxoacbyuy
https://typeset.io/authors/p-sadayappan-1cai9xnxe5
https://typeset.io/institutions/ecole-normale-superieure-2rhqzl2i
https://typeset.io/institutions/nvidia-2fw9o0ey
https://typeset.io/institutions/ohio-state-university-2ty9afap
https://typeset.io/conferences/symposium-on-code-generation-and-optimization-1w7un51t
https://typeset.io/topics/stencil-2p0b0638
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/papers/the-pochoir-stencil-compiler-4h5eejant0
https://typeset.io/papers/a-practical-automatic-polyhedral-parallelizer-and-locality-53usozajbf
https://typeset.io/papers/tiling-stencil-computations-to-maximize-parallelism-32vp6dqr60
https://typeset.io/papers/halide-a-language-and-compiler-for-optimizing-parallelism-rkfmda68v5
https://typeset.io/papers/patus-a-code-generation-and-autotuning-framework-for-53epsdo0qw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs
https://twitter.com/intent/tweet?text=Hybrid%20Hexagonal/Classical%20Tiling%20for%20GPUs&url=https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs
https://typeset.io/papers/hybrid-hexagonal-classical-tiling-for-gpus-5334vpk1cs

Hybrid Hexagonal/Classical Tiling for GPUs

Tobias Grosser
INRIA and École Normale

Supérieure
tobias.grosser@inria.fr

Albert Cohen
INRIA and École Normale

Supérieure
albert.cohen@inria.fr

Justin Holewinski
NVIDIA Corporation

jholewinski@nvidia.com

P. Sadayappan
Ohio State University

sadayappan.1@osu.edu

Sven Verdoolaege
INRIA, École Normale

Supérieure and KU Leuven
sven.verdoolaege@inria.fr

ABSTRACT

Time-tiling is necessary for the efficient execution of itera-
tive stencil computations. Classical hyper-rectangular tiles
cannot be used due to the combination of backward and
forward dependences along space dimensions. Existing tech-
niques trade temporal data reuse for inefficiencies in other
areas, such as load imbalance, redundant computations, or
increased control flow overhead, therefore making it chal-
lenging for use with GPUs.

We propose a time-tiling method for iterative stencil com-
putations on GPUs. Our method does not involve redundant
computations. It favors coalesced global-memory accesses,
data reuse in local/shared-memory or cache, avoidance of
thread divergence, and concurrency, combining hexagonal
tile shapes along the time and one spatial dimension with
classical tiling along the other spatial dimensions. Hexago-
nal tiles expose multi-level parallelism as well as data reuse.
Experimental results demonstrate significant performance
improvements over existing stencil compilers.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processor—Compil-
ers, Optimization

General Terms

Algorithms, Performance

Keywords

Polyhedral compilation, GPGPU, CUDA, code generation,
loop transformations, time tiling, stencil

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CGO ’14, February 15 – 19, 2014, Orlando, FL, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2670-4/14/02...$15.00.
http://dx.doi.org/10.1145/2544137.2544160

1. INTRODUCTION
Tiling is one of the most important loop transforma-

tions, allowing to exploit parallelism while enhancing data
locality. Its importance grows with the widening gap
between the combined computational throughput of chip
multi-processors and the aggregate bandwidth to off-chip
memory: grouping operations into tiles that exhibit tempo-
ral reuse is an essential technique to reduce off-chip memory
transfer. There has been a long history of efforts to develop
tiling algorithms for compilers [12, 26, 3]. Several publicly
available research compilers implement advanced forms of
tiling for affine loop nests [23, 1, 3, 14, 16], and some of them
[23, 1] also perform automatic parallelization of sequential
code to parallel code on GPUs.

Despite significant compiler advances in tiling, it still is
a challenging problem to perform effective tiling of stencil
computations for GPUs. Stencil computations involve the
repeated updating of values associated with points on a
multi-dimensional grid, using only the values at a set of
neighboring points. Stencils represent an important com-
putational pattern used in scientific applications in many
domains including computational electromagnetism [18], so-
lution of PDEs using finite difference or finite volume dis-
cretization [17], and image processing. While stencil com-
putations expose significant amounts of parallelism across
spatial dimensions, these dimensions are generally much
larger than on-chip memories. Time-tiling “blocks” the com-
putations over multiple time steps, making the intra-tile
spatial domains small enough to fit into caches. But simple
rectangular tiling is not acceptable when the dependence
components along spatial dimensions have negative compo-
nents. For stencils, the most common solution is to resort
to parallel wavefronts, effectively skewing spatial dimensions
w.r.t. time, so that all dependence components become pos-
itive. Unfortunately this inhibits inter-tile parallelism [13].
Other approaches such as split tiling [7, 13], overlapped
tiling [11, 13], and diamond tiling [2] have been proposed
to address the loss of concurrency when time-tiling stencil
computations. However, as explained in the next section, all
of the previously proposed approaches have some limitations
and drawbacks in the context of GPU computing.

The paper makes the following contributions:
• A novel hybrid hexagonal/classical tiling approach

that enables reuse along the time dimension while
ensuring adequate thread-level parallelism and fully
avoiding thread divergence.

• Unlike other specialized stencil compilers, our method
builds on a general-purpose polyhedral optimizer
(PPCG), complementing it with domain-specific tiling
and code generation strategies for stencil computations
on GPUs.

• Experimental results provided on a number of sten-
cil benchmarks demonstrating consistent superiority
over existing general-purpose (Par4All, PPCG) and
domain-specific stencil compilers (Overtile, Patus) for
GPUs.

The paper is organized as follows. Sec. 2 provides a
high-level overview of our approach. Sec. 3 presents the
computation of a hybrid hexagonal/classical tiled schedule
and proves its correctness. Sec. 4 explains the integration
of our work with the CUDA code generator of PPCG and
how we use and modify it to translate the tiled schedule
into efficient GPU code. Sec. 5 discusses related work on
tiling and optimization of stencils on GPUs. Sec. 6 presents
experimental results, and we conclude in Sec. 7.

2. OVERVIEW OF APPROACH
An effective tiling scheme for GPUs must address a num-

ber of constraints. Unrolled inner loops must be carefully
specialized to avoid divergent control flow among threads,
minimize cumbersome address computations, effectively ex-
ploit register reuse, access shared memory instead of global
memory as often as possible while avoiding bank conflicts,
and achieve coalesced transfers for essential global memory
accesses.

Figure 1 shows a 2D Jacobi stencil in source form, and
Figure 2 shows the core of the PTX code, as generated by our
tool and extracted from the CUDA compiler. This highly
tuned block is free of control flow, performs only 3 shared
memory loads and 1 store for 5 compute instructions, no
global memory access, and 2 out of the 5 values in flight are
being reused in registers across sequential time steps.

for (t=0; t < T; t++)
for (i=1; i < N-1; i++)
#pragma ivdep
for (j=1; j < N-1; j++)
A[(t+1)%2][i][j] = 0.2f * (A[t%2][i][j] +

A[t%2][i+1][j] + A[t%2][i-1][j] +
A[t%2][i][j+1] + A[t%2][i][j -1]);

Figure 1: Jacobi 2D stencil

ld.shared.f32 %f361 , [%rd10 +8200];
add.f32 %f362 , %f353 , %f361;
add.f32 %f363 , %f362 , %f345;
ld.shared.f32 %f364 , [%rd10 +7656];
add.f32 %f365 , %f363 , %f364;
ld.shared.f32 %f366 , [%rd10 +7648];
add.f32 %f367 , %f365 , %f366;
mul.f32 %f368 , %f367 , 0f3E4CCCCD;
st.shared.f32 [%rd10 +1624] , %f368;

Figure 2: Generated PTX (CUDA bytecode)

Generating such optimized core loops and thread code is a
significant challenge, especially for higher-dimensional sten-
cils. We address this challenge by developing a sophisticated
tiling scheme, paired with an advanced code generation
strategy.

We choose a hybrid tiling scheme that combines hexagonal
tiling on the outer dimension with classical tiling on all
remaining ones. Like most tiling schemes, our approach en-
ables reuse along the time dimension while ensuring balanced
parallelism, but hybrid tiling also addresses issues that make
other approaches difficult to use on GPUs. In contrast to
overlapped tiling [11], we perform no redundant computa-
tions and more importantly we avoid reserving shared mem-
ory space for data used only in redundant computations.
This is important to ensure a high compute-to-memory ratio
for each tile. Our hexagonal tiling approach is closely related
to diamond tiling [2], but has two important differences.
First, diamond tiles always have a narrow peak, whereas the
peak of hexagonal tiles is adjustable in width. For stencil
codes, adjusting the width translates into an adjustable set of
iterations available for fine-grained parallelism. The second
difference is that for diamond tiling, even though all tiles
may have identical shapes, the actual number of integer
points may vary between different tiles (see [9] for details).
This difference may induce control flow divergence, when
the diamond peaks sometimes fall on an integer point and
sometimes do not. Our hexagonal tiling ensures an identical
number of computations within each full tile.
Since hexagonal tiling along all spatial dimensions is not

required to achieve an adequate degree of coarse-grained par-
allelism across thread blocks, we combine hexagonal tiling
on an outer spatial dimension with classical tiling along the
other dimensions, thereby bounding the data footprint of
tiles to enable all temporary values to be kept in shared
memory. Also due to the use of classical tiling we can ensure
that the width along the classical tiled dimension remains
constant. By setting the tile width to a multiple of the warp
size we can always ensure full warp execution, stride one
accesses and avoidance of bank conflicts. Also, as tiles are
now always offset by a multiple of the warp size, we can
position them to always ensure cache-line aligned loads.

With our advanced code generation strategy we also ex-
ploit the fact that along the classical tiled dimension, tiles
are executed in sequence. This enables them to be executed
in the same kernel thread and thereby exploit reuse between
successive tiles. This is by itself already beneficial, but the
real benefit is that the set of values that need to be loaded
per tile is now a multiple of the tile width, which when
chosen to be a multiple of the warp size will ensure that we
always load full cache lines. Finally, we want no conditional
execution and no thread divergence in the core computation.
To ensure this we parameterize our code generation to create
specialized code for full and for boundary tiles separately
and we extensively unroll the innermost loops.

The stencil-specific tiling scheme is incorporated into a
general-purpose polyhedral compiler framework currently
translating C input to CUDA or OpenCL output. Our
tiling scheme is largely independent of the input and output
language such that applying it to a low-level compiler IR is
possible e.g., by using the polyhedral optimizer Polly [8]
which transforms the LLVM intermediate representation.
Similarly, the integration in a DSL compiler e.g., halide [15]
is possible. We claim that expressing domain specific op-
timization on a high-level representation, portable between
compilers, is essential to address the upcoming compilation
challenges posed by the increased need for optimized com-
pilation of domain specific languages, the wide variety of
specialized hardware and the need to generate optimized

code for a wide variety of programming languages (including
legacy code). Even though our compiler makes it easy to
optimize existing stencil codes written in C, we see the more
important contribution in it paving the way for a smoother
integration of general purpose and domain specific optimiza-
tions. We believe that a close integration of domain and
target specific optimizations in general purpose compilers
will become unavoidable due to the increasing diversity in
hardware and software. Such a close integration is not only
desirable for mixed codes, but it also allows different code
generation schemes to benefit from common infrastructure
and optimizations. We have already seen such benefits while
developing this optimizer and we expect them to become
even more relevant down the road.

3. THE HYBRID SCHEDULE
To calculate a hybrid hexagonal/classical schedule that

can be mapped nicely to the CUDA execution model we take
several steps. First, the input program is analyzed statically
and translated into a polyhedral representation. This rep-
resentation is then canonicalized for stencil computations.
Next, from this abstract information we derive a hexagonal
schedule as well as a set of classically tiled schedules. Finally,
the individual schedules are then combined into a hybrid
hexagonal/classical execution schedule that materializes the
ordering of iterations in a hybrid hexagonal/classical tiling.
In addition, we explain how the calculated description of our
tile shapes can be used to select good tile sizes.

3.1 Polyhedral model
In the polyhedral model [6], control and data flow are

abstracted using sets and relations defined by affine con-
straints. The main constituents of a polyhedral represen-
tation are the iteration domain, the access relations, the
dependence relation and the schedule. The iteration domain
contains all the statement instances, where a statement in-
stance L[t, i, j] is represented by the name of the statement
L and the values of the surrounding loop iterators t, i, j (see
Figure 1). The access relations map the statement instances
to the array elements read or written by the instance. The
schedule defines the relative execution order of the statement
instances by mapping them to a single schedule space where
the execution order is determined by the lexicographical or-
der in the schedule space. The dependence relation consists
of those pairs of statement instances such that the second
statement instance depends on the first statement instance.
This dependence relation can be computed from the iter-
ation domain, the access relation and a description of the
original execution order [5]. A dependence distance vector
is the difference in the schedule space between a statement
instance and a statement instance on which it depends.

3.2 Preprocessing
As a first step, we extract a polyhedral description from

our input C program using pet [24], compute dependences
using isl [22] and transform the polyhedral description into
some canonical form that later simplifies the construction of
the schedule. The C input can contain modulos, non-unit
stride loops and piecewise affine expressions, the latter are
useful for example to model boundary conditions. There is
also no limit on the number of arrays in the kernel. Focus-
ing on the algorithmic domain of stencil computations, we
assume that the input program consists of an outer loop

containing k ≥ 1 perfect nests of loops such that none
of the loops in these nests carry any dependences. That
is, all dependences are either carried by the outer loop or
connect instances from different loop nests. If these con-
ditions are met, then we construct a schedule of the form
Li[t, s0, . . . , sn] → [k · t + i, s0, . . . , sn], where i satisfying
0 ≤ i < k reflects the order in which the loop nests ap-
pear inside the outer loop. If the loop nests have different
nesting depths, then they are currently manually aligned.
In the constructed schedule, all dependences are carried by
the outer dimension k · t + i, meaning that the remaining
dimensions si are fully parallel.

More generally, we could use a general purpose optimizer
such as Pluto [3] to construct such an initial schedule (i.e.,
one with a single outer sequential dimension followed by only
parallel dimension). This would allow us to consider more
general inputs, but is left for future work.

The hybrid tiling of Section 3.6 is applied on top of the
initial schedule. This tiling consists of a hexagonal tiling
along the time and the first space dimension as well as
classical tilings along the inner dimensions. We first describe
the hexagonal and the classical tiling individually and then
show how they are combined into a hybrid tiling.

3.3 Hexagonal tiling
We build hexagonal tiles starting from a two dimensional

schedule space P = [t, s0] and a set of dependences D ⊆ P ×
P . We first describe the restrictions on the input problem,
then we construct the hexagonal tile shape and derive from it
a hybrid tiling schedule. Finally, we show that the algorithm
computes a correct tiled iteration space and that it allows
parallel execution of the inner tile dimension.

3.3.1 Constraints on input

We require that the lexicographic order of the iterations
in P is a valid schedule and that all dependences in D are
such that t, the outer dimension of the index space, carries
all dependences. As a result, the inner dimension s0 is fully
parallel. Finally, we assume that the dependence distances
in the s0-direction are bounded by a fixed constant times
the dependence distance in the t-direction, both from above
and below. Essentially, this assumption corresponds to the
fact that we are dealing with a stencil computation.

3.3.2 Hexagonal tile shapes

To derive the tile shape of our hexagonal tiling we cal-
culate two valid tiling hyperplanes from our dependences
and use those hyperplanes to construct a tile shape for a
given height h and width w0. We illustrate the process on a
slightly contrived example that computes

A[t][i] = f(A[t-2][i-2], A[t-1][i+2]);

∆ t

∆δ0 δ1

Figure 3: Opposite dependence cone

h

1

w0

⌊

δ0h
⌋

1w0

⌊

δ1h
⌋

1 w0

t

s0

Figure 4: A hexagonal tile

We derive the tiling hyperplanes from the given depen-
dences. We first compute the set of dependence distance
vectors. In the example, we have { (1,−2); (2, 2) }, meaning
that the statement instances that directly depend on a given
statement instance are executed in the original schedule at
an offset (∆ t,∆ s0) = (1,−2) or (2, 2). Conversely, the op-
posites of these distance vectors are the offsets of statement
instances on which the current statement instance directly
depends. The cone generated by these opposite distance
vectors is an over-approximation of the set of offsets of
statement instances on which the current statement instance
depends directly or indirectly. This cone (for the example)
is shown as the red area in Figure 3. As we required
the input to have strictly positive dependence distances in
the first dimension, the cone lies entirely in the negative
∆ t half-space. Furthermore, because of our requirement
of bounded distances in the s0-direction, we can compute
constants δ0 and δ1 such that ∆ s0 ≤ δ0∆ t (or, equivalently,
−∆ s0 ≥ δ0(−∆ t)) and ∆ s0 ≥ −δ1∆ t. These constants
can be computed through the solution of an LP-problem.
Figure 3 shows the points (−1,−δ0) and (−1, δ1) in blue
and the cone generated by these two points in red.

The basic idea is now that a tile will compute one or
more s0-instances at a given time step t together with all
the instances on which it depends, except those that have
already been computed by previous tiles. We therefore
take w0 + 1 instances at a given time step and construct a
truncated cone that contains all the instances on which these
selected instances depend by taking the union of the opposite
dependence cones (the red cone from Figure 3) shifted to
each of these instances. Figure 4 shows three such truncated
cones in red, bounded by dashed lines. The blue tile shape
is the result of subtracting these three truncated cones from
the truncated cone bounded by solid lines. The offsets of the
truncated cone have been carefully selected such that the en-
tire space can be tiled using a single shape. In particular, the
truncated cone on the left has offset (−h−1,−w0−1−

⌊

δ0h
⌋

),

the cone on the right has offset (−h−1, w0+1+
⌊

δ1h
⌋

) and

the cone on the bottom has offset (−2h− 2,
⌊

δ1h
⌋

−
⌊

δ0h
⌋

).
The tiling is shown in dotted lines. In the figure, w0 = 3
and h = 2. If there are multiple statements in the kernel,
then choosing h such that h+1 is a multiple of the number
of statements ensures that each tile starts with the same
statement. To ensure that the result of the subtraction is a
convex shape, the width w0 has to be large enough. This is

illustrated by the large brown dependence vector in Figure 4.
If w0 were equal to 1, then the result of the subtraction
would contain an extra component to the right of the right
truncated cone. Such extra components can be avoided by
imposing

w0 ≥ max
(

δ0 +
{

δ0h
}

, δ1 +
{

δ1h
})

− 1, (1)

with {x} the fractional part of x, i.e., {x} = x − ⌊x⌋. In
the example, we have w0 ≥ 1. The correctness of (1) will be
shown in Section 3.3.3.

3.3.3 Scheduling hexagonal tiles

t

s0

Figure 5: Hexagonal tiling pattern

The schedule of our hexagonal tiling maps the two iter-
ation space dimensions [t, s0] into a three dimensional tile
space [T, p, S0]. The schedule alternates between two phases,
0 and 1. In particular, within each time tile T , the schedule
first executes the blue tiles of Figure 5 (phase 0) and then
the green tiles (phase 1). The tiles that belong to the same
time tile and the same phase are indexed by S0 and can be
executed in parallel. In Figure 5 such tiles form a horizontal
wavefront of identically colored tiles. For phase 0, we have

T = ⌊(t+ h+ 1)/(2h+ 2)⌋ (2)

S0 =

⌊

s0 +
⌊

δ1h
⌋

+ w0 + 1 + T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

2w0 + 2 + ⌊δ0h⌋+ ⌊δ1h⌋

⌋

(3)

while for phase 1, we have

T = ⌊t/(2h+ 2)⌋ (4)

S0 =

⌊

s0 + T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

2w0 + 2 + ⌊δ0h⌋+ ⌊δ1h⌋

⌋

. (5)

The difference in the numerators of the expressions for T
ensures that the blue tiles belong to the same T -tile as the
green tiles that have the same and greater t coordinates.
Within this T -tile, the blue tiles are then executed before
the green tiles. The other offsets are required to make all
the tiles line up.

The (T, S0)-coordinates refer to the boxes in Figure 5, the
solid boxes for phase 0 and the dotted boxes for phase 1.
To ensure that each (t, s0) is only executed once, we only
execute parts of these overlapping boxes. In particular, we
execute the blue tile in each solid box and the green tile in
each dotted box. To describe the hexagons, we use local
coordinates (a, b) within each box. For example, for the

green tiles, we have

a = t mod (2h+ 2)

b = s0 + T
(⌊

δ1h
⌋

−
⌊

δ0h
⌋)

mod
(

2w0 + 2 +
⌊

δ0h
⌋

+
⌊

δ1h
⌋)

.

Using these local coordinates, the constraint of the top of
the hexagons can be derived directly from the constraints of
the opposite dependence cone. In particular, we have

δ0a− b ≤ (2h+ 1)δ0 −
⌊

δ0h
⌋

(6)

a ≤ 2h+ 1 (7)

δ1a+ b ≤ (2h+ 1)δ1 +
⌊

δ0h
⌋

+ w0. (8)

The remaining constraints are obtained from subtracting the
earlier truncated cones. Let (a′, b′) be the local coordinates
in the box at offset (−h − 1,−w0 − 1 −

⌊

δ0h
⌋

), i.e., a′ =

a + h + 1 and b′ = b + w0 + 1 +
⌊

δ0h
⌋

. When subtracting
the truncated cone associated to this box, we need to add
the negation of the constraint

δ1a′ + b′ ≤ (2h+ 1)δ1 +
⌊

δ0h
⌋

+ w0, (9)

i.e., δ1a+ b ≤ hδ1−1. Let d1 be the denominator of δ1. The
negation of this constraint can then be written as

δ1a+ b ≥ hδ1 −
d1 − 1

d1
. (10)

In principle, we now also need to consider other pieces of
the difference that satisfy (9), but that do not satisfy one of
the other two constraints. Because of the vertical position of
truncated cone we are subtracting it is impossible for there
to be any integer points that lie in the original truncated
cone, satisfy (9) and do not satisfy a′ ≤ 2h + 1. To verify
that there can be no points in the current truncated cone
that do not satisfy the constraint

δ0a′ − b′ ≤ (2h+ 1)δ0 −
⌊

δ0h
⌋

, (11)

we again rewrite the constraint in terms of the current local
coordinates and obtain

δ0a− b ≤ (2h+ 1)δ0 −
⌊

δ0h
⌋

+ w0 + 1 +
⌊

δ0h
⌋

− δ0(h+ 1).

Due to our choice of w0 in (1), we have w0 − δ0 −
{

δ0h
}

+
1 ≥ 0, meaning that (11) is implied by the corresponding
constraint on the original truncated cone.

The truncated cone at offset (−h − 1, w0 + 1 +
⌊

δ1h
⌋

)
similarly yields the constraint

δ0a− b ≥ δ0h−
⌊

δ0h
⌋

− w0 −
⌊

δ1h
⌋

−
d0 − 1

d0
, (12)

with d0 the denominator of δ0. Finally, the box at offset
(−2h− 2,

⌊

δ1h
⌋

−
⌊

δ0h
⌋

) yields the constraint

a ≥ 0. (13)

3.4 The classical tile schedule
In the remaining spatial dimensions, we apply a more tra-

ditional form of tiling. This means that we lose parallelism
along these dimensions, but it allows to reduce the working
set within each tile. Each spatial dimension si with i ∈ [1, n]
is stripmined separately. Just like hexagonal tiling (see Fig-
ure 3), one computes the projection of the dependence cone
onto the time dimension and the given spatial dimension
si. Yet in this case, we only need to consider dependences
on statement instances with higher values for the spatial

dimension. This means that we only need to compute δ1i
and that therefore the dependence distance in the spatial
dimension only needs to be bounded in terms of the dis-
tance in the time dimension from below. The resulting tile
shape is a parallelogram with sides that are parallel to the
corresponding side of the opposite dependence cone. Since
this tiling needs to be combined with the hexagonal tiling,
the height of these tiles is equal to 2h + 2. The width can
be independently chosen as wi. In sum, the corresponding
tile dimension is given by

Si =
⌊

(si + δ1i u)/wi

⌋

, (14)

where u is a normalized version of t that ensures that the
starting positions of the tiles in the spatial direction are the
same for all time tiles and for both phases. That is, we set

u = (t+ h+ 1) mod (2h+ 2) for phase 0 and (15)

u = t mod (2h+ 2) for phase 1. (16)

The above normalization is beneficial in two ways. First,
the generated code is simpler because the offset is a constant
instead of an expression that needs to be (re)calculated at
each time tile step. Secondly, constant offsets make it easier
to align the load instructions that fetch data from global to
local memory. This is because the location and alignment
of the load instructions directly depends on the position of
the individual tiles.

3.5 Intra-tile schedules
We also specify non-trivial intra-tile schedules t′, s′0, . . . , s

′
n.

It is desirable to minimize the intra-tile coordinates of the
schedule, ideally starting from zero, to ensure an efficient
thread to iteration mapping. To achieve this, we derive the
intra-tile schedules from the tile schedule by replacing the
outermost integer division by the corresponding remainder.
For the classically tiled dimension this yields

s′i = (si + δ1i u) mod wi, (17)

3.6 Hybrid tiling
The final hybrid tiling is a combination of the hexagonal

tiling of Section 3.3 and the classical tiling of Section 3.4 as
well as the intra-tile schedules of Section 3.5. This tiling is
of the form

[t, s0, . . . , sn] → [T, p, S0, . . . , Sn, t
′, s′0, . . . , s

′
n],

with tile dimensions defined by (2), p = 0, (3) (for S0), (14)
(for Si with i ≥ 1) and (15) for phase 0 and by (4), p = 1,
(5), (14) and (16) for phase 1. Each phase is only applied
to the subset of the domain that satisfies the conditions (6),
(8), (10) and (12) in the local coordinates of the rectangular
tile defined by (T, p, S0). The constraints (7) and (13) are
automatically satisfied for all points in the rectangular tile.
As an example, Figure 6 shows the phase-0 part of a hybrid
tiling where are δs are equal to 1.

The schedule is parameterized with the values h, w0, . . . ,
wn. The parameter h allows to adjust the distance between
two subsequent tiles on the time dimension, and the different
values wi define the distance between subsequent tiles along
the space dimensions si. For dimensions si with i ≥ 1 the
parameter wi gives the exact width along this dimension,
whereas for the dimension s0 the value of parameter w0 only
gives the minimal width. The maximal tile width along this
dimension may increase depending on the current time step.

[t, s0, s1, . . . , sn] → [T, 0, S0, S1, . . . Sn, t
′, s′0, s

′
1, . . . , s

′
n] :

∃a, b : a = (t+ h+ 1) mod (2h+ 2) ∧

b = (s0 + h+ 1 + w0) mod (2h+ 2 + 2w0) ∧

a− b ≤ h+ 1 ∧ a+ b ≤ 3h+ 1 + w0 ∧

a+ b ≥ h ∧ a− b ≥ −w0 − h ∧

T = ⌊(t+ h+ 1)/(2h+ 2)⌋ ∧

S0 = ⌊(s0 + h+ 1 + w0)/(2h+ 2 + 2w0)⌋ ∧
(

∧

k:1≤k≤n

Sk = ⌊(sk + ((t+ h+ 1) mod (2h+ 2)))/wk⌋

)

∧

t′ = (t+ h+ 1) mod (2h+ 2) ∧

s′0 = (s0 + h+ 1 + w0) mod (2h+ 2 + 2w0) ∧
(

∧

k:1≤k≤n

s′
k
= (sk + ((t+ h+ 1) mod (2h+ 2))) mod wk

)

Figure 6: n-dimensional tile schedule (±1 distances)

It should be noted that there is no need to map the spatial
dimensions in the order to s0, . . . , sn in which the spatial
loops are nested in the input code. Instead, any spatial
dimension can be chosen as the one that is hexagonally
tiled. However, to ensure our assumptions about aligned
and coalesced memory accesses hold, it is necessary that the
innermost dimension is the dimension that yields stride one
access. This is a property that inputs normally already have
and that we currently rely on.

3.7 Tile size selection
In order to determine appropriate values for the tile size

parameters h and wi, we use a simple model based on the
load-to-compute ratio. In particular, we take a generic tile
(not at the border) and compute the number of iterations
in the tile and the number of loads performed by the tile.
Since the set of iterations and the set of loads can be de-
scribed using quasi-affine constraints, these numbers can be
computed exactly as a function of the tile size parameters.
For the experiments in this work, we use manually derived
functions, but tools to count points in integer polyhedra [25]
can automate this. For a 3D stencil with δ0 = δ1 = 1, the
number of iterations in a tile is 2(1+2h+h2+w0(h+1))w1w2,
while the number of loads depends on the type of stencil and
on various optimization choices described in Section 4. We
then evaluate these formulas for all values of the tile size
parameters that yield a memory tile size within a specified
bound and select those parameters that yield the smallest
load-to-compute ratio.

4. CUDA CODE GENERATION
To generate GPU code, we use the generic CUDA code

generator of PPCG. The use of a generic infrastructure
opens the opportunity to later integrate our stencil specific
optimizer closely with a more generic GPU code generator.
Even today it allows us to take advantage of the CUDA
specific optimizations in PPCG. On top of the existing op-
timizations, we added additional optimizations that highly
increase the performance of our generated CUDA code (see
Section 6.2). These additional optimizations have been se-
lected to make the execution of our hybrid-hexagonal sched-
ule highly efficient, but we aimed to developed them in a

way that enables the generic part of PPCG or other domain
specific optimizations to benefit from them.

4.1 Generating CUDA code
Our tool uses the previously generated hybrid schedule

to create CUDA code by mapping the schedule’s output
dimensions [T, p, S0, S1, . . . , t, s0, s1] to nested loops in the
generated code. The T dimension is mapped to the host
code, where it takes the form of a for loop repeatedly
iterating over two CUDA kernels — one kernel for p = 0 and
the other one for p = 1. For each kernel call, the dimension
S0 is mapped to a one dimensional grid of thread blocks
that are executed in parallel. In case dimension S0 has more
elements than there are thread blocks supported by CUDA,
the individual thread blocks execute multiple elements of S0.
The remaining dimensions [S1, . . . , Sn, t, s0, . . . , sn] are

code generated within each kernel. The dimensions
[S1, . . . , Sn, t] are code generated as sequential loops. As
the dimensions [s0, . . . , sn] are fully parallel they can be
mapped to different CUDA thread dimensions. In case
there are more parallel dimensions than there are CUDA
thread dimensions, the outer dimensions will be enumerated
sequentially. To ensure all iterations of a dimension are
executed even though there may be more iterations than
threads in a thread block, additional iterations are assigned
to threads in a cyclic way: iteration i is mapped to thread
i mod Ti with Ti being the number of threads used for
dimension i. The sequential execution of subsequent time
steps is ensured by generating a synchronization call at the
end of each iteration of the sequential loops.

4.2 Shared memory
For hybrid-hexagonal tiled code the use of explicitly man-

aged shared memory can be more efficient than a hardware
managed cache. PPCG provides the following cache man-
agement strategy. Instead of performing all computations
on global memory, PPCG allocates shared memory of the
size of the smallest rectangular box that is large enough to
accommodate the data accessed within a single tile. Now
instead of just performing the computation of each tile,
PPCG generates code that loads all data from global to
shared memory, executes the computation on shared mem-
ory, and finally writes the modified elements back to global
memory. To avoid thread divergence in the load phase,
PPCG can over approximate the shape of the values to load
with the rectangular box used to define the shared memory
allocation.

4.2.1 Interleaving computations and copy-out

When developing our hybrid-hexagonal tiling we have seen
that the separate copy-out phase makes the shared memory
usage inefficient due to a possibly complex to describe set
of values that needs to be copied out, but also due to the
absence of overlap between the compute and the copy phase.
We consequently extended the generic code generator to
optionally write out values right at the time at which they
are calculated. The unnecessary stores that may possibly be
introduced are not overly costly, as for stencils the number
of stores is low compared to the number of reads. Also,
because our hybrid schedule ensures no thread divergence
in the compute phase, executing the copy out next to the
computation avoids all thread divergence.

4.2.2 Inter-tile reuse

Reducing the number of loads by taking advantage of
reuse between subsequently executed tiles is another highly
beneficial optimization It is possible due to the sequential
execution of tiles enforced by the classical schedule at the
inner dimension. Specifically, values that have already been
loaded by the preceding tile, either because they are used
there or because of the over approximation, do not need to
be loaded from global memory. Instead, they can directly
be moved from the shared memory location assigned in the
preceding tile to the shared memory location where the
current tile would store the element.

Another option would be to enforce a static mapping,
where a single global location is always mapped to the same
shared memory location. While this would eliminate the
internal shared memory copy, accesses to statically mapped
shared memory may induce more complex access patterns.

4.2.3 Aligned loads

It is important to ensure that loads from global memory
are aligned to cache line boundaries. The location of the
data that is loaded from global memory directly depends
on the position of the tiles in space, specifically, the offsets
of the tiles along the different space dimensions. When
calculating the schedule we ensured that all these offsets
are independent of the time dimension T . Assuming the
size of the innermost data space dimension is a multiple
of the minimal alignment, we select a tile width along the
innermost dimension that is also a multiple of the minimal
alignment. This ensures that as soon as the first load from
an array is perfectly aligned, the subsequent loads are also
perfectly aligned. We allow the tiles in the schedule to
be translated by manually specifying the translation offset.
By specifying the right offset it is possible to fully align
the initial (and therefore all) global memory loads from a
specific array. In case of multiple arrays, it may not always
be possible to align the loads from all arrays.

4.3 Stencil specific code generation heuristics
During the final translation from the polyhedral program

representation back to an abstract syntax tree (AST), do-
main specific knowledge can be used to adapt the code
generation heuristics. The same schedule can be written
out as an AST in many different ways, resulting in code
that is functionality equivalent but that may have different
performance behavior. The isl AST generator offers a
flexible mechanism for allowing the user to choose between
different ways of generating code across different parts of the
schedule. We exploit this flexibility to implement specialized
code generation heuristics for hybrid tiling.

4.3.1 Specialized code for the core computation

To generate optimal code for the core part of the com-
putation we parameterize the code generation strategy such
that specialized code is generated for full tiles and generic
code for the remaining partial tiles.

When generating our schedule we have been especially
careful to ensure that the number of integer points contained
in a tile is the same for all tiles in the program and that the
offsets used to derive the iterations that belong to a tile
are constant within a single phase of our tiling scheme. We
also made sure that within a core tile, there is no need for
conditional execution that would cause thread divergence.

To ensure that the simplicity of the core tiles is maintained
and not lost by the need to handle rarely executed boundary
cases we pass a description of the full tiles to isl’s AST
generator, instructing it to generate code for these full tiles
and the remaining partial tiles separately.

4.3.2 Unrolling for hybrid tiled stencils

Unrolling is often beneficial, but it is especially profitable
in conjunction with our hybrid approach. As stated in the
previous section, we construct a hybrid schedule such that
the core computation is free of any thread divergence. In
fact it does not require conditional control flow. However,
due to the limited amount of shared memory and the large
number of parallel threads, the number of iterations that
need to be executed within a single thread is relatively low.
Hence, we can unroll the point loops within the tile to
create straightline code. This also contributes to exposing
instruction level parallelism. Furthermore, depending on the
tiling parameters chosen, we unroll neighboring points next
to each other such that they can use a single load to get
values that are within the neighborhood of both points.

Note that unrolling is not performed at the AST level, but
on the constraint representation of the kernel. Constraint-
based unrolling ensures that all conditions can be specialized
or eliminated in the unrolled code, simplifying them accord-
ing to the context in which an instruction is unrolled [20].

5. RELATED WORK
There has been much recent progress in automatic gen-

eration of high-performance code for stencil computations.
Holewinski’s Overtile [11] and Grosser’s split tiling [7] com-
pilers represent the state-of-the-art for the automatic gener-
ation of efficient GPU code relying on overlapped and split
tiling, respectively. Patus is a domain-specific framework for
stencils, driving multiple compilation strategies with auto-
tuning, and targeting both CPUs and GPUs [4].

The PPCG [23] system is a state-of-the-art parallelizer
for CPUs and GPUs, performing classical (time) tiling with
parallel boundaries; PPCG relies on affine transformations
to extract parallelism and improve locality, using a variant
of the Pluto algorithm [3]. Reservoir Labs’ R-Stream is
also a reference polyhedral compiler targeting GPUs [14,
21]. Par4All [1] is an open source parallelizing compiler
developed by Silkan targeting multiple architectures. The
compiler is not based on the polyhedral model, but uses ab-
stract interpretation for array regions, performing powerful
inter-procedural analysis on the input code.

CPU-only frameworks are also available. Pochoir [19] is a
domain-specific framework embedded into C++. Henretty
et al. also proposed a DSL-based approach [10] for generat-
ing high-performance code for multi-core vector-SIMD archi-
tectures, using hybrid prismatic tile shapes. Our approach
differs in the specific GPU constraints considered, including
multi-level concurrency, local/shared memory and register
transfers, and specialized code generation for full and partial
tiles. Also, as a domain specific optimization embedded in a
general purpose polyhedral compiler, our approach seems to
be more general. The diamond tiling algorithm by Bandishti
et al. [2] is closely related to our approach. In contrast
to our approach, it combines tiling with transformations
such as loop fusion and shifting, which is important when
combining multiple stencils or non-stencil computations. We
address the more constrained problem of generating code for

GPUs, and we overcome performance caveats of diamond
tiling through our hybrid hexagonal/classical scheme with
unique benefits on higher dimensional stencils.

The reader may ask, if a diamond tiling scheme could
yield code of similar quality to the code we produce with
our hybrid hexagonal/classical scheme. To our knowledge,
no implementation of diamond tiling for GPUs is available.
Consequently a direct performance comparison is not pos-
sible. However, as mentioned in Section 2, there are var-
ious qualitative advantages to our tiling scheme that are
essential for high-performance GPU code. In contrast to
diamond tiling, the adjustable size of the tile’s peak ensures
enough thread-level parallelism at all times; the identical
integer point placement prevents thread divergence and the
independence of time-tile height and tile-width allows more
flexible tile-size choices, which consequently means better
usage of available shared memory resources. We do not
see how high-performance GPU code with all these features
can be constructed using diamond-tiling. Further, we are
not aware of any previously proposed tiling scheme that
addresses such a comprehensive set of GPU performance
issues.

6. EXPERIMENTAL RESULTS
To assess the effectiveness of our approach, in Section 6.1

we compare hybrid hexagonal tiling with state-of-the-art
tools, and in Section 6.2 we analyze the impact of the various
optimization strategies on performance.

6.1 Comparison with state-of-the-art tools
We evaluate our approach by comparing hybrid hexagonal

tiling against Patus-0.1.3 [4], Overtile [11], Par4All-1.4.1 [1]
as well as the current development version of the unmodified
PPCG compiler [23]. We were not able to obtain a license
for comparative evaluation with R-Stream [14].

Loads FLOPs/Stencil Data-size Steps
laplacian 2D 5 6 30722 512
heat 2D 9 9 30722 512
gradient 2D 5 15 30722 512
fdtd 2D 3 3 30722 512

3 3 30722 512
5 5 30722 512

laplacian 3D 7 8 3843 128
heat 3D 27 27 3843 128
gradient 3D 7 20 3843 128

Table 3: Characteristics of Stencils

For benchmarks we use a Laplace kernel with two space
dimensions, a 2D heat and a 2D gradient stencil as well as a
two-dimensional, multi-stencil fdtd kernel. We also evaluate
Laplace, heat and gradient kernels each having three space
dimensions. Table 3 provides detailed characteristics of
the stencils used. We did not evaluate our approach on
one dimensional examples, because the hybrid method boils
down to existing hexagonal or split tiling in this case [7].
All calculations were performed as single precision floating
point computations and all timings include the data trans-
fer overhead to and from the GPU. The experiments were
conducted on NVIDIA GPUs: the NVS 5200M for mobile
devices and a more powerful GeForce GTX 470.

For each tool, we sought to tune for the optimal tile sizes
for the implemented tiling scheme and a specific benchmark.

For PPCG, we used empirically optimized tile sizes used by
the developers of the tool [23]. For Patus and overtile we
used the provided autotuner. The Patus autotuner was run
until completion, while we explored 800 tile sizes for each
benchmark with overtile. For hybrid tiling we selected tile
sizes aiming for a low load-to-compute ratio. Par4All was
run with its dynamic tile sizing heuristic, using the options
-cuda -com-optimization to enable GPU code generation.
The flags defined in [23] were used for PPCG, and the
hybrid tiling approach was combined with the optimizations
discussed in Section 6.2. All other tools where used in the
default configuration.

Tables 1 and 2 show the results for the GTX 470 and
NVS 5200, respectively. As a baseline, the general purpose
compiler PPCG is able to create code for all benchmarks,
but does not reach optimal speed. We do not include
performance numbers for Patus, because due to its exper-
imental CUDA support, only laplacian and heat 3D code
could be generated. However, it should be noted that Patus
reaches 3.5 GStencils/second for laplacian 3D on the GTX
470 and 0.50 GSTencils/second on the NVS5200, a 75%
(56%) of speedup over PPCG. Except for some slowness
on the heat-2D kernel, Par4All produces reasonably well
performing code with good performance on the gradient 2D
and 3D kernels. Par4All uses an internal heuristic to derive
tile sizes. Overtile shows consistently good performance,
attaining speedups over PPCG code of up to 96% for 2D
kernels, very high speedups of up to 818% for fdtd 2D and
up to 106% on 3D kernels. These results demonstrate the
performance a stencil DSL compiler combined with auto-
tuning can reach. Looking at the auto-tuned tile sizes we
see that Overtile is not able to effectively exploit time tiling
for 3D kernels. Instead, it falls back to a space-tiled version.
This is also in line with Patus, Par4All and PPCG, which
do not support time-tiling in general.

The last row presents results from our hexagonal-hybrid
tiling compiler. For all 2D kernels, on both the GTX470
and the NVS 5200, we observe better performance than all
previous techniques. Compared to base PPCG, we observe
speedups ranging from 71% and 211%, with an exceptional
920% speedup for fdtd-2d. The consistently superior perfor-
mance for 2D and 3D kernels across the board demonstrates
the effectiveness of our approach. The 2D and 3D heat ker-
nels showcase our hybrid-hexagonal tiling with performance
results that are in three cases more than two times faster
than the second best implementation.

One of the main reasons for the good performance is
that we have been able to effectively exploit time-tiling for
all benchmarks. Each 2D kernel executes eight time steps
per tile and each 3D kernel executes four time steps per
tile. Exploiting time tiling has only become beneficial due
to the careful management of shared memory, as well as
the reduction of overhead due to full-partial tile separation,
code specialization and unrolling. Combined together, this
enabled excellent performance.

6.2 Hybrid tiling and shared memory
Even though hybrid tiling can be beneficial by itself, its

full benefits only manifest when combined with explicitly
managed shared memory. In this section, we analyze how
shared memory usage as well as different shared memory op-
timizations impact the performance of a hybrid tiled kernel.
As explicit cache management has proven to be especially

laplacian 2D heat 2D gradient 2D ftdt 2D laplacian 3D heat 3D gradient 3D
PPCG 5.4 5.1 3.9 0.76 2.0 1.8 2.1
Par4All 7.0 +30% 5.4 +2% 5.5 +41% invalid CUDA 2.0 ±0% 1.9 +6% 3.1 + 48%
Overtile 10.6 +96% 6.9 +35% 6.7 +72% 5.3 +597% 3.1 +55% 2.6 +44% 3.6 +71%
hybrid 15.0 +177% 15.0 +194% 7.3 +87% 7.3 +860% 4.3 +115% 3.9 +116% 3.6 +71%

Table 1: Performance on NVIDIA GTX 470: GStencils/second & Speedup

laplacian 2D heat 2D gradient 2D fdtd 2D laplacian 3D heat 3D gradient 3D
PPCG 1.0 0.97 0.61 0.098 0.32 0.29 0.32
Par4All 1.1 +10% 0.79 -18% 0.9 +55% invalid CUDA 0.34 +6% 0.35 +20% 0.69 +116%
Overtile 2.1 +90% 1.5 +54% 1.1 +80% 0.9 +818% 0.66 +106% 0.37 +30% 0.61 +90%
hybrid 3.2 +211% 2.9 +198% 1.4 +130% 1.0 +920% 0.91 +184% 0.73 +150% 0.73 +128%

Table 2: Performance on NVS 5200: GStencils/second & Speedup

challenging for 3D kernels, we choose to analyze the three
dimensional heat kernel.

NVS 5200 GTX 470
(a) no shared memory 8 39
(b) shared memory 8 ±0% 44 +12%
(c) (b) + interleave copy-out 11 +37% 65 +47%
(d) (c) + align loads 12 +9% 70 +7%
(e) (d) + value reuse (static) 11 -8% 73 +5%
(f) (d) + value reuse (dynamic) 19 +58% 105 +50%

Table 4: Optimization steps: GFLOPS & Speedup

Table 4 gives an overview of the different configurations we
analyzed and their performance on an NVS 5200 as well as a
GTX 470 GPU. All configurations where run with 1x10x32
threads and hybrid tiles of size h = 2, w0 = 7, w1 = 10, w2 =
32. As described in Section 3.7, tile sizes have been selected
to minimize the load-to-compute ratio and to ensure that
the inner dimension is a multiple of the warp size.

Configuration (a) only uses global memory, but no shared
memory. (b) uses shared memory. For each tile we first copy
all required values into shared memory, we then perform the
computation within shared memory and finally we copy the
results back to global memory. (c) eliminates the explicit
copy out phase. Instead, results are copied out as soon as
they have been calculated. In (d) we adjust the position of
the tiles in the data space such that all loads from global
memory are aligned. Finally, (e) and (f) show two different
approaches that both enable the reuse of values used and
loaded in one tile and used in a subsequently executed tile.
In (e) we eliminate the need to reload values by statically
assigning each global value to a shared memory location. In
(f) we allow a single global value to be dynamically placed
for different tiles at different shared memory locations. To
still enable reuse we add an explicit copy phase scheduled
between two subsequent tiles. This phase moves values from
their old shared memory location to the location where the
next tile expects them to be.

To understand the performance results shown in Table 4
we analyze the different configurations together with rele-
vant performance counters. The results are shown in Ta-
ble 5, in units of 109. The first one, configuration (a) gives
a solid performance baseline. Introducing explicit shared
memory in (b) does not change performance on the NVS
5200 and gives a 12% performance increase on the GTX470.
The small performance difference is not surprising. Even
though the number of global load instructions is reduced by
a factor of 20, the actual reads from DRAM are mostly un-

affected. This shows that our shared memory management
is as effective in avoiding DRAM loads as the automatic
caches are. Looking at the L2 transactions we see large
benefits due to our explicit shared memory management.
Unfortunately, the almost unchanged performance suggests
that other effects such as a reduced global load efficiency and
the explicit cache management overhead itself hide the ben-
efits. One cache management problem is the missing overlap
of computation and data-transfers. (c) shows that that
by overlapping copy-out and the actual computation, we
can increase performance by 37-47% without changing the
amount of data transferred. Another inefficiency we see is
the global load efficiency of only 30%. (d) partially addresses
this by ensuring that all loads from global memory are fully
aligned. However, only after removing partial global loads
in (e) and (f) we are able to fully achieve 100% global load
efficiency. Interestingly, at this point our kernel has been
moved from being bound by global loads to being bound by
shared memory loads. (f) has as efficient global loads as
(e), but due to the way memory is accessed, it is very likely
to cause bank conflicts in shared memory. This is reflected
by the number of shared memory load transactions, which
is twice that of all other kernels. The overhead caused by
these bank conflicts unfortunately hides the gains from the
reduction in global loads. On the other hand, (f) shows that
we are able to create a highly performing kernel that achieves
100% global load efficiency, 100% shared load efficiency and
that significantly reduces the requests that reach the L2
cache and global memory.

The overall speedup of 250% for this kernel was only
possible due to the combination of hybrid-hexagonal tiling
with careful shared memory management. Our optimization
reaches a point where the kernel is mostly bound by shared
memory. Further reducing the number of shared memory
loads through register tiling would be an interesting angle
to increase performance even further.

7. CONCLUSION
We presented hexagonal tiling and its combination with

classical tiling, a hybrid algorithm for the automatic paral-
lelization of iterative stencil computations on GPUs. Hexag-
onal tile shapes simultaneously enable parallel tile execu-
tion and reuse along the time dimension. The hybrid ex-
tension offers unprecedented performance on higher dimen-
sional stencils, thanks to coalesced global-memory accesses,
data reuse in shared-memory/cache and registers, avoiding
thread divergence and maximizing the exploitation of con-
currency at all levels. Experimental results demonstrate

gld
ins

t 3
2b
it

dra
m

rea
d tra

nsa
cti
on
s

l2
rea

d tra
nsa

cti
on
s

sha
red

loa
ds

pe
r r
equ

est

gld
effi

cie
nc
y

(a) 171.0 1.7 12.0 n/a 54%
(b) 8.7 1.8 1.4 1.0 30%
(c) 8.7 1.8 1.4 1.0 30%
(d) 8.8 1.0 0.95 1.0 56%
(e) 7.6 0.97 0.49 1.8 100.00%
(f) 7.6 0.95 0.48 1.0 100.00%

Table 5: Performance counters (units of 109 events)

significant performance improvements over existing stencil
compilers. We are combining this domain-specific approach
with loop transformations for general, non-stencil codes, in-
tegrating the technique into a polyhedral research compiler.

Acknowledgments. This work is partly funded by a Google
European Fellowship in Efficient Computing, by the Eu-
ropean FP7 project CARP id. 287767, by the COPCAMS
ARTEMIS project, and award 0926688 from the U.S. NSF.

8. REFERENCES
[1] M. Amini, B. Creusillet, S. Even, R. Keryell,

O. Goubier, S. Guelton, J. O. McMahon, F.-X.
Pasquier, G. Péan, P. Villalon, et al. Par4All: From
convex array regions to heterogeneous computing. In
IMPACT, 2012.

[2] V. Bandishti, I. Pananilath, and U. Bondhugula.
Tiling stencil computations to maximize parallelism.
In Supercomputing, page 40. IEEE Computer Society
Press, 2012.

[3] U. Bondhugula, J. Ramanujam, and et al. PLuTo: A
practical and fully automatic polyhedral program
optimization system. In PLDI, 2008.

[4] M. Christen, O. Schenk, and H. Burkhart. Patus: A
code generation and autotuning framework for parallel
iterative stencil computations on modern
microarchitectures. In IPDPS, 2011.

[5] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–53, 1991.

[6] P. Feautrier. The Data Parallel Programming Model,
volume 1132 of LNCS, chapter Automatic
Parallelization in the Polytope Model, pages 79–100.
Springer, 1996.

[7] T. Grosser, A. Cohen, P. H. Kelly, J. Ramanujam,
P. Sadayappan, and S. Verdoolaege. Split tiling for
GPUs: automatic parallelization using trapezoidal
tiles. In GPGPU-6, pages 24–31. ACM, 2013.

[8] T. Grosser, A. Grösslinger, and C. Lengauer. Polly –
performing polyhedral optimizations on a low-level
intermediate representation. Parallel Processing
Letters, 22(04):1250010, 2012.

[9] T. Grosser, S. Verdoolaege, A. Cohen, and
P. Sadayappan. The relation between diamond tiling
and hexagonal tiling. In 1st Int. Workshop on
High-Performance Stencil Computations (HiStencils
2014), Vienna, Austria, Jan. 2014.

[10] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet,
J. Ramanujam, and P. Sadayappan. A stencil compiler
for short-vector simd architectures. In ICS. ACM,
2013.

[11] J. Holewinski, L.-N. Pouchet, and P. Sadayappan.
High-performance code generation for stencil
computations on GPU architectures. In ICS, 2012.

[12] F. Irigoin and R. Triolet. Supernode partitioning. In
POPL, pages 319–328, San Diego, CA, Jan. 1988.

[13] S. Krishnamoorthy, M. Baskaran, U. Bondhugula,
J. Ramanujam, A. Rountev, and P. Sadayappan.
Effective automatic parallelization of stencil
computations. In PLDI, pages 235–244, 2007.

[14] A. Leung, N. Vasilache, B. Meister, M. Baskaran,
D. Wohlford, C. Bastoul, and R. Lethin. A mapping
path for multi-GPGPU accelerated computers from a
portable high level programming abstraction. In
GPGPU-3, 2010.

[15] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe. Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, Seattle, WA, June 2013.

[16] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet,
J. Ramanujam, A. Rountev, and P. Sadayappan. Code
generation for parallel execution of a class of irregular
loops on distributed memory systems. In
Supercomputing, pages 1–11, 2012.

[17] G. Smith. Numerical Solution of Partial Differential
Equations: Finite Difference Methods. Oxford
University Press, 2004.

[18] A. Taflove. Computational electrodynamics: The
Finite-difference time-domain method. Artech House,
1995.

[19] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K.
Luk, and C. E. Leiserson. The Pochoir stencil
compiler. In SPAA, pages 117–128. ACM, 2011.

[20] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral
code generation in the real world. In Proceedings of
the International Conf. on Compiler Construction
(ETAPS CC), Vienna, Austria, Mar. 2006. Springer.

[21] N. Vasilache, B. Meister, M. Baskaran, and R. Lethin.
Joint scheduling and layout optimization to enable
multi-level vectorization. In IMPACT, Paris, France,
Jan. 2012.

[22] S. Verdoolaege. isl: An integer set library for the
polyhedral model. In Mathematical Software–ICMS
2010, pages 299–302. Springer, 2010.

[23] S. Verdoolaege, J. Carlos Juega, A. Cohen,
J. Ignacio Gómez, C. Tenllado, and F. Catthoor.
Polyhedral parallel code generation for CUDA. ACM
TACO, 9(4):54, 2013.

[24] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In IMPACT, 2012.

[25] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric
polytopes using Barvinok’s rational functions.
Algorithmica, 48(1):37–66, June 2007.

[26] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison Wesley, 1996.

