
Proceedings of the 1996 Winter Simulation Conference

ed. J. M. Cbarnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

HYBRID HIGH-LEVEL NETS

Ralf Wieting

Oldenburger Forschungs- und Entwicklungsinstitut fiir

Informatik-Werkzeuge- und Systeme (OFFIS)
Escherweg 2, D-26121 Oldenburg, GERMANY

ABSTRACT

This paper presents a new methodology for modeling

and simulation of hybrid systems which is called Hy

brid High-level Nets (HYNETs). The new methodol

ogy integrates three established modeling approaches

into one language. High-level Petri Nets represent the

basic discrete framework, differential algebraic equa

tions (DAEs) are used to describe continuous systems

behavior and object-oriented concepts improve the

expressiveness and compactness of models. The pa

per explains basic ideas of the language and illustrates

its usefulness with a small example.

1 INTRODUCTION

Modeling and simulation of hybrid systems, i. e. sys

tems consisting of a mixture of discrete and contin

uous components, is a research area that becomes

more and more interesting. This is due to the fact

that most systems of real world applications are not

purely discrete nor purely continuous and often both

parts influence each other.

Consider for instance the small example in Fig

ure 1: A level of liquid in a tank changes continu

ously dependent on the output of a pump and the

opening degree of a valve. Two level indicators re

port to a control unit when a certain level is reached.

The control unit reacts on these discrete events by

sending instructions for regulating the pump and the

valve in such a way that the tank level always stays

in between level 51 and level 82 .

Modeling methodologies which are able to describe

these kinds of systems in a convenient way and which

allow an efficient analyzation or simulation of models

to get information about the systems' behavior are

very useful in a wide range of application areas; ex

amples are manufacturing systems, production lines,

chemical plants, mechatronic systems, process control

and ecological systems.

848

-4- - - - - - - - - - - - - - - - - - - --,
8 1 ---------~ IControl I

,"-
"", ,

" I
,.' 1

8 2,' ~

t><J" '-4-----------.!

Valve
//1\\

Figure 1: Example of a Hybrid System

This is the reason why many hybrid modeling

methodologies have been and will be proposed. Most

of the known approaches base upon continuous simu

lation languages which are extended by components

allowing the specification of discrete actions as well.

Cellier (1979) was one of the first who introduced

a sound methodology for specifying and simulating

hybrid systems. By his approach a systems descrip

tion is divided into a continuous and a discrete part

and the interaction is governed by an interface. Simi

lar interface methods followed (cf. Gallii and Varaiya

1989). The main disadvantage of these approaches is

the fact that all continuous systems behavior has to

be specified completely by one single system of differ

ential equations. A more recent methodology tries to

overcome this shortcoming by using object-oriented

concepts (Elmqvist et al. 1993).

In this paper I present a hybrid modeling method

ology which, in contrast to the approaches mentioned

above, is based upon a discrete language, namely

high-level Petri nets. Before I explain the basic ideas

of this approach in Section 3 and the evolution of hy

brid models in Section 4, I give a brief overview of

the different classes of Petri nets in the next section.

In Section 5 I illustrate the capabilities of the new

language. Finally, in Section 6 I summarize the main

results and give some ideas on future objectives.

H,ybrid High-Level Nets 849

}

Double Tank :: v(){

return(A * 1);
}

Double Tank :: p(){

return(d * 1);

2 PETRI NETS

Petri nets were originally introduced by C. A. Petri

(1962). Since then a lot of variants and extensions of

Petri nets have been proposed and investigated. See

Murata (1989) for a comprehensive introduction.

Due to their good properties in theoretical analy

sis, practical modeling, and graphical visualization

of concurrent discrete systems, they are in use in a

wide range of application areas. Especially high-level

Petri nets (Jensen and Rozenberg 1991), which lead

to more succinct and manageable models, have shown

good suitability.

Nevertheless, Petri nets are basically discrete mod

els. They are not inherently qualified for model

ing continuous systems. In order to overcome this

drawback but still preserve the good properties of

Petri nets several continuous extensions have been

proposed. David and AlIa (1992) and Trivedi and

Kulkarni (1993) independently introduced two for

mal hybrid modeling approaches on the basis of

Place/Transition Petri nets. In both cases basic ex

tensions relate to a new kind of real valued tokens

which reside on continuous places. These tokens can

be modified continuously by other net elements.

Both approaches have already shown good results

for investigating small hybrid systems (cf. Petterson

and Lennartson 1995). Thus, in order to improve the

expressiveness and compactness of hybrid models it

is obvious to integrate similar extensions into high

level Petri nets. First ideas from this conclusion have

been presented in Wieting and Sonnenschein (1995).

A more detailed description of the new approach is

presented in Section 3.

A slightly different approach which is also based

on a class of high-level Petri nets is presented in

(Brielmann 1995). In this approach extended Predi

cate/Transition Nets serve as a basis and first order

differential equations are used to describe continuous

systems behavior. But in contrast to my proposal the

differential equations are transformed into according

difference equations before they are modeled with el

ements of the discrete Predicate/Transition Nets.

3 HYBRID HIGH-LEVEL NETS

In this section I will introduce the new modeling

methodology of Hybrid High-level Nets (HYNETs).

The basic framework of HyNETS is represented

by a special class of high-level Petri nets called

Timed Hierarchical Object-Related Nets (THORNs)

(cf. Schof, Sonnenschein, and Wieting 1995). These

nets already offer several reasonable features for mod

eling complex discrete systems. Two different timing

concepts (delay times and firing durations) related

to transitions allow the description of many differ

ent temporal processes and dependencies. Due to an

appropriate hierarchy concept even large models can

be structured into clear peaces. Finally, an object

oriented programming language, namely C++, is used

to define complex objects and to inscribe transitions

with activation conditions and firing actions, etc. In

this way even complex discrete systems can be de

scribed in a compact and clear way.

In the following sections I explain how the con

cepts of THORNs can be enhanced to describe the

behavior of continuous systems as well. Since most

continuous systems can be described by differential

algebraic equations (DAEs), it should be possible to

specify ordinary first order differential equations in

explicit form (x' == f(x, y, t)) and algebraic equa

tions (x == f (y, t)) within the new language. Since

C++ does not provide constructs for the specification

of DAEs, this objective has to be achieved by the

introduction of an enhanced inscription language.

3.1 Inscription Language

As pointed out above, the originally used inscription

language of THORNs had to be enhanced to be able to

specify DAEs. For this purpose a new Hybrid object

oriented Language called HoLA was developed

(Majchszak 1996). The roots of HoLA are basically

C++. Thus, the syntax is very similar and the basic

object-oriented concepts like inheritance, polymor

phism and dynamic binding are still present.

In order to distinguish continuously changing state

variables from other variables in a HyNET model,

HoLA offers the new elementary class Real next to

standard classes like Int, Double, etc. Only objects

or object attributes of type Real can be changed in

a continuous way. Hence, only variables of this type

may appear on the left hand side of a DAE.

Let us consider the example of Figure 1 again to

illustrate, how a user can define a complex object

type. Assuming the relevant attributes of the tank

are its area A and the levelland density d of the

liquid filled into it, a HoLA definition of the tank

may look as follows:

class Tank {

Float A;

Double d;

Real 1;

Double v();

Double p();

};

The definition shows a complex object type with

the attributes mentioned above and two methods v()

850

and p() where v() calculates the liquid volume and

p() calculates the pressure on the bottom of the tank.

Since the attribute l is of type Real, it can be mod

ified by differential equations (see Section 5 for more

details) .

3.2 HyNET Structure

Following the customary notation for defining Petri

Nets, I define the structure of a HyNET as a triple

(P, T, A) satisfying the requirements below:

1. P is a final set of places.

2. T is a final set of transitions partitioned into two

disjoint sets of discrete transitions TD and contin

uous transitions Tc.

3. T n P == 0 and T U P i- 0.

4. A is a final set of arcs partitioned into two disjoint

sets of discrete directed arcs AD and continuous

undirected arcs Ac ~ (P x Tc). Furthermore, dis

crete arcs are partitioned into three disjoint sub

sets of standard arcs As ~ (P X TD) U (TD X P),

enabling arcs AE ~ (P x T) and inhibitor arcs

AI ~ (P x T).

The semantics of these net elements is described in

Section 4. The graphical representation is shown in

Figure 2. As usual, places are represented by circles

and transitions by rectangles. In order to distinguish

continuous transitions from discrete ones, continuous

transitions have two border lines.

pO As •

D
A E ~

TD

AI •
Tc D A c

Figure 2: Graphical Representation

Figure 3 shows the allowed connections between

places and transitions according to the definition

above.

o

llTieting

3.3 HyNET Inscriptions

The following inscriptions can be assigned to the net

elements of a HyNET.

Places are labeled by a place type and a place ca

pacity. The type of a place defines the kind of ob

jects which may reside on a place. This type is ei

ther an elementary HoLA-class (Bool, Char, String,

Int, Long, Float, Double, Real or Token) or a user

defined complex HoLA-class e. g. Tank. In the case

that a place type is defined by a complex class, ob

jects of derived classes are allowed to reside on that

place, too.

The place capacity specifies the maximum num

ber of objects held by a place at each moment. It is

defined by a positive integer or Omega where Omega

represents infinite capacity.

.ATcs have an arc weight and a variable name. The

arc weight of a standard arc and an enabling arc is a

positive integer which defines how many object have

to reside on the incident place to enable the incident

transition. The weight of inhibitor and continuous

arcs is one per default.

The variable name of an arc is used to reference

objects of a place from a transition. Together with

the weight of an arc a set of variables is defined. For

example, if an arc is labeled with the weight 2 and

the variable name x, two variables x.at(l) and x.a.t(2)

are defined. If the arc weight is one the variable is

defined directly by the variable name. Variables may

be used by the inscriptions of a transition (see below).

Inhibitor arcs don't need a variable name.

Transitions have the most comprehensive inscrip

tions:

• The firing capacity of a transition is a natural pos

itive number or Omega. It specifies how often a

transition can fire in parallel with itself. Since a

continuous transition modifies all objects on sur

rounding places at each time, it has an infinite fir

ing capacity per default.

• Every transition can be labeled with an activation

condition. This condition is used to make further

requirements to objects enabling that transition. It

has to be specified as a boolean HoLA expression

without side effects over variables of incoming arcs.

In order to avoid name clashes of variable names

two arcs incident to a transition must not have the

same name.

Figure 3: Possible Connections between Places and

Discrete (a) and Continuous (b) Transitions

(a) (b)

• Another important inscription of a transition is the

firing action. In case of a discrete transition the

action is specified in form of a sequence of HoLA

statements and in case of a continuous transition it

is defined by a system of algebraic and first order

4.1 Discrete Transitions

Since the definition of H Y ~ E T S bases upon the defin

ition of THORNs, the activation and firing of discrete

transitions is quite similar to that of THORN tran

sitions (cf. Schof, Sonnenschein, and Wieting 1995).

Thus, I only summarize some essentials for firing dis

crete transitions and illustrate the firing with a small

example.

Figure 4 shows a small net with a discrete transi

tion and four places. The inscription of the transition

is given on the right side of the figure. Place pI has

the type I nt, an infinite capacity and a marking con

sisting of three objects (identifiers and time-stamps

are not shown).

Hybrid High-Level Nets

differential equations respecting HoLA syntax. In

both cases variables of incoming and outgoing arcs

can be used, but it has to be assured that only

variables of type Real appear on the left hand side

of equations.

• Finally, discrete transitions have two more inscrip

tions defining their behavior in time: a delay time

and a firing time. Both inscriptions are specified

as HoLA expressions without side effects over vari

ables of incoming arcs. The results obtained by an

evaluation of these expressions have to be of type

Double.

Now, the structure of a HyNET and all possible

inscriptions are introduced. In the following I will

describe the semantics of the different net elements

and their interactions. o
p2

[Float,lO]

851

FC: 1

AC: x.at(1) <= 4 && z > 2

FA: y = x.at(1)*x.at(2)/z;

DT: 2

FT: z

4 EVOLUTION OF HYNETS p3
[Token, 1]

1
4

p4
[Int,8]

Evolution of a HyNET means changing the state of

a net. This is done by the firing of transitions or

more precisely by the firing of occurrence elen1ents.

Before I explain which conditions have to be fulfilled

to enable transitions and what happens if a transition

fires I have to describe the terms of a state and an

occurrence element.

An occurrence element is a transition combined

with a set of objects that is bound to variables of

the transition's ingoing arcs. It is denoted as follows:

[t : < VI = 01, ... , V n = On >] where t is a transition,

Vi are variables of ingoing arcs and Oi are objects from

preset places bound to the variables.

The state of a HyNET is given by the current time

of the state, the markings of places and information

about firing occurrence elements. The latter is dis

cussed in more detail in Section 4.4.

A marking of a place consists of the set of objects

residing on a place. All objects are distinguished by

an unambiguous identification number - that's the

reason why we can speak of sets of objects instead

of multi-sets of objects. Furthermore, objects are la

beled with a time-stamp indicating the time of their

instantiation. This time-stamp may be greater than

the current time of the state if the object will be pro

duced by a discrete transition in the future (see Sec

tion 4.1). In this case an object is called invisible.

With respect to these additional labels an object is

completely described by its value, its identifier and

its time-stamp. I omit identifier and time-stamp if

they are not necessary in some context.

Figure 4: Discrete Transition and some Places

An occurrence element of a discrete transition will

be delayed if the precondition of the transition is ful

filled. Therefore all places connected by inhibitor arcs

have to be empty, every variable of an ingoing arc has

to be bound by an object, and the activation condi

tion has to be fulfilled by the bound objects.

Considering the example above, we only have two

occurrence elements that fulfill the precondition: [t :

< Xl = 2, X2 = 5,;:; = 4>] and [t :< Xl = 2, X2 = 7,

;:; = 4>]. These elements will be delayed.

The delay time of an occurrence element is de

termined by the according expression of the transi

tion. If an occurrence element has been delayed for

the whole delay time without interruption it is called

completely delayed. Completely delayed occurrence

elements begin to fire as soon as they are enabled. A

discrete occurrence element is enabled if the precondi

tion is fulfilled, the transition has free firing capacity,

and places in the postset of the transition can receive

the amount of objects produced by the firing of the

transition.

Both occurrence elements of the example are com

pletely delayed after two time units, but only one of

them is enabled, because the transition t only has a

firing capacity of one. This situation is called a con

flict. Conflicts between discrete occurrence elements

are solved by a nondeterministic choice - for more

details about conflicts see Section 4.3. Let us assume

that in this case [t :< Xl = 2 i X2 = 5,;:; = 4 >] is

chosen.

852

At the beginning of a firing of an occurrence ele

ment all objects bound by variables of ingoing stan

dard arcs are consumed from the corresponding pre

set places. Objects bound via enabling arcs are not

consumed - these objects are only read by the tran

sition. The firing capacity is decremented, the firing

time is determined by the according expression, the

firing action is executed, and produced objects are

put on postset places. These objects get an unam

biguous identifier and a time-stamp calculated by the

current time plus the firing time.

In the example objects 2 and .5 are consumed from

place pI and a new object 2..5 is produced on place p2.

The time-stamp of this object is calculated according

to the current time. Notice: although this object is

invisible in the current state, it already uses capacity

of place p2.

At the end of a firing of an occurrence element

only the firing capacity of the transition has to be

incremented again. All produced objects get visible

automatically, because the time of state equals the

time-stamps of the objects now.

After four time units of firing, transition t of the

example could fire again if there would be enough

objects residing on place pI then.

4.2 Continuous Transitions

The idea of continuous transitions is to change values

of objects residing on places adjacent to the transi

tion continuously. Only objects or object attributes

of type Real can be modified. I explain the activation

condition and the firing rule of a continuous transi

tion on a small exalnple, too.

Figure .5 shows a small net consisting of a continu

ous transition and four places together with the net

inscriptions.

Wieting

In the example of Figure .5 the occurrence element

[t :< T = 2.0, y = 8.0, z == 2>] is enabled.

An enabled continuous occurrence element fires as

long as it is enabled. Firing of a continuous occur

rence element means continuously changing the val

ues of bound objects according to the equations of the

transitions firing action - algebraic equations assign

values to objects and differential equations change ob

ject values. The firing does not influence the object

identification numbers and time-stamps, since only

object values are changed and no new objects are cre

ated. There are only two reasons why a continuous

occurrence element becomes disabled:

(1) the activation condition is no longer fulfilled or

(2) a discrete transition consumes an object bound

by the occurrence element or produces an object

on a place connected via an inhibitor arc.

Considering the example above the continuous oc

currence element fires exactly for four time units.

Then, the object 8.0 bound to the variable y becomes

zero and the activation condition is no longer true.

The marking of place pI at this moment is 6.0.

4.3 Conflict Handling

Before I describe the firing rule of a Hy NET, I will ex

plain the handling and resolution of conflicts between

occurrence elements. I omit reflections on enabling

and inhibitor arcs because they are not relevant in

this context. There are five basic cases of conflicts:

0 .. x 9 y .. 0
Case 1: Two or more enabled discrete occurrence

elements want to consume the same object. This is

the classical conflict. It is solved by a nondeterminis

tic choice: only one transition can fire.

AC: y :> 0

FA: x' = 0.5 * z;
y' = -z;

Figure .5: Continuous Transition and some Places

A continuous occurrence element is enabled under

the same conditions as a discrete one. A precondition

is not necessary because continuous transitions are

not delayed. Thus, a continuous occurrence element

is enabled if all places connected via inhibitor arcs are

empty, every variable of an incident arc can be bound

by an object, and the activation condition is fulfilled

by the bound objects.

p3

[Token, 1]

p4

[Int,8]

Case 2: Two or more enabled continuous occur

rence elements want to change the same object or

object attribute, respectively. In this case we have

to distinguish three subcases depending on the firing

actions of the transitions:

(a) Both transitions want to assign different values

to the object by algebraic equations, e. g. x == 3

and y == sin t. This conflict is solved by a non

deterministic choice as in case 1.

(b) One transition wants to set the object value by

an algebraic equation, e. g. x = 3t, and the other

one wants to change the object value by a dif-

I{~'brid High-Level Nets

ferential equation, e. g. y' == 0.5 y. Here we give

higher priority to algebraic equations.

(c) Both transitions want to change the object value

by differential equations, e. g. x' == 3 and y' ==
sin t. In this case the object will be shared by

the transitions. The new object value is defined

by the sum of changes. The advantage of this

definition is shown with the example of Section 5.

Since subcases (a) and (b) lead to states which are

not well defined, a modeler should avoid such situa

tions.

D l - - - x - - - - - t 8 t - - - y ~ · D
Case 3: An enabled discrete occurrence element

wants to consume an object which is part of two or

more enabled continuous occurrence elements. Here

we give higher priority to the discrete occurrence el

ement, i. e. the discrete transition can fire with the

bound object and the according continuous occur

rence element becomes disabled.

Case 4: A discrete transition is enabled by more

than one occurrence element but it has not enough

firing capacity to fire all of them at the same tinle.

This internal conflict is solved in the same nondeter

ministic way as case 1.

Case 5: A continuous transition is enabled by more

than one occurrence element. Since continuous tran

sitions have infinite firing capacity no conflicts result

from lacking firing capacity. Here, a conflict can only

arise if two or more occurrence elements want to as

sign different values to the same object by an alge

braic equation, e. g. if the firing action is y == x such a

situation occurs. This kind of conflicts is solved as in

case 2 (a). Thus, in the example above, no assump

tions can be made on the value of the object bound

to y during the firing of the continuous transition (it

may be 2.1 or 3.5).

These five cases represent the basic kinds of con

flicts. More complex situations can be reduced to

basic conflicts. Then, they are solved according to

the specified rules.

The idea of sharing objects between continuous

occurrence elements and giving discrete transitions

higher priority over continuous ones was previously

proposed by Le Bail, Alla, and David (1991) for hy

brid Petri nets.

4.4 Firing Rule

As already mentioned at the beginning of this sec

tion, evolution of a HyNET means changing the state

over time. This is done by the firing of discrete and

continuous occurrence elements. The firing of a dis

crete occurrence element can be split into two dis

crete events, namely the beginning and the end of a

firing. At these times, the state is changed by some

discrete actions including the consumption and pro

duction of objects (cf. Section 4.1). Between such

discrete events the state is modified continuously by

enabled continuous occurrence elements (cf. Section

4.2). Within time periods where only continuous oc

currence elements fire, no objects are consumed or

produced, only object values are changed.

If we take the conflict handling of Section 4.3 into

account the evolution of a H"yNET can be formulated

by the following algorithm:

1. EXtcUte all actions belonging to discrete occur

rence elements at the current time. This is done

by interleaving actions which belong to enabled oc

currence elenlents that start firing and occurrence

elements that stop firing at this moment until no

such element exists. Notice that the execution of

these actions may enable or disable other (conflict

ing) occurrence elements and that tinle does not

proceed in this step.

2. Determine all enabled continuous occurrence ele

ments and change the values of bound objects ac

cording to equations specified by the firing actions

until

• a discrete occurrence element becomes enabled

or finishes its firing or
• a continuous occurrence element becomes en

abled or disabled.

3. Continue with 1.

This algorithm implements a firing rule that al

ways fires a maximum conflict free set of occurrence

elements.

If in step two no continuous occurrence element

is enabled no object values will be changed. Time

elapses without any actions until one of the listed

events occur. If none of these events will occur and

no continuous occurrence element is enabled the al

gorithm does not proceed. The net is dead.

4.5 Evolution Graph

The evolution of a Petri net is usually represented by

a reachability graph or coverability graph respectively

(cf. Murata 1989). The nodes of these graphs repre

sent nlarkings and the edges relate to fired transitions

responsible for the change of a marking.

854 ""icting

Figure 6: HvNET of the Example of Figure 1

u

ValveFlowOut

x

v

~
x ~ Below 52

X ~. ~---U-~I

U
,.l > 52

[Token, 1]

t4

x

x ,1 > 0
v 0 v

~~ \ 7) 111~------C)--------i(~ : 4 '~============:::J
* x, p () ; [Va 1ve, 1]

x

Uti! ization

Ix l' = u II~Pum_p_--o-u -----4

·:T\.··x.A;

[Real, 1]

(Tank 1]

l/alve currently holds a closed valve with a maximum

throughput of 2.4.

In the depicted situation only the discrete transi

tion StartPump is enabled. Because it has a zero

valued delay and firing time - like all other dis

crete transitions in this model - it fires immedi

ately. Thereby the opening degree of the valve is set

to 50% and an object 0.8 is produced on the place

[T t'ilizat'ion.

This place describes the power utilization of the

pump. If it is marked, the continuous transition

Pump can fire. Thus, in this state the tank level

.r.l is changed continuously according to the differen

tial equation x.l' == u * m/x.A specified by the firing

action of Pump (m describes the maximum output of

the pump).

At the same time, the liquid level of the tank rises,

the other continuous transition FlowOut is enabled.

Then it fires continuously according to the equation

x.l' == -v.t()*x.p() where x.p() specifies the pressure

on the valve (cf. Section 3.1).

In this situation both continuous transitions change

the liquid level of the tank concurrently. The level

only rises if the output of the pump is larger than the

throughput of the valve - let us assume this case.

The next event occurs when the level reaches the

value 82. The discrete sensor transition t4 removes

the token from the place Below 82. This has no fur

ther effects. Only when the level reaches 81 and the

sensor transition tl fires, the pump will be stopped

and the valve will be opened to 100% by the firing of

transition StopPump.

The following evolution of the net is straight for-

5 EXAMPLE

In this section I illustrate SOllle features of HvNETS

with a small example. Figure 6 shows the HvNET

ll10del of the tank system introduced in Section 1.

The elements on the left side describe the continuous

behavior of the tank while the elements on the right

model the discrete control unit.

The type of the place Tank on the left hand side of

the figure is defined by the HoLA class presented in

Section 3.1. Currently it holds a tank object with an

area A of 8.0. The tank can be filled with liquid of

density d == 0.9. The current liquid level of the tank

is I == 0.0. The measures for these values have to be

set properly according to physical laws.

In a similar way a complex object type Valve can

be defined. A valve object has an attribute 1 for its

maximum throughput, a real valued attribute 0 for its

opening degree (0 ~ 0 ~ 1) and a method t() which

calculates the actual throughput (I * 0). The place

A similar terlll, called evolution graph, ,vas intro

duced by Le Bail, AlIa, and David (1991) for hybrid

Petri nets. Here, the nodes of a graph not only repre

sent the marking of a net but also an invariant speed

vector for continuous transitions and a vector of re

served marks. The edges between these nodes are

labeled with transitions as for ordinary Petri nets.

The ideas of Le Bail et al. can be applied to an

evolution graph for H V ~ E T s . With respect to the

algorithm of Section 4.4 a HvNET evolution graph

can be constructed as follows.

Every node of the graph represents a HvNET-state

which is completely defined by

• the current time of state,

• the markings of all places including visible and in

visible objects,

• a set of firing discrete occurrence elements together

with the time specifying the end of their firing, and

• a set of firing continuous transitions.

As long as the firing rule algorithm stays in step

two, a state (or a node of the evolution graph) is valid:

time elapses and object values are changed continu

ously by the firing continuous transitions. A state

changes to another state

• if the set of firing discrete occurrence elenlents

changes, i. e. if a discrete occurrence element fin

ishes firing or a new one starts firing, cr

• if the set of firing continuous occurrence elenlents

changes, i. e. if a continuous occurrence element

becomes enabled or disabled.

The event responsible for a change of state can be

used as a label of an edge in the evolution graph.

H,ybrid High-Level Nets 85.5

ward. The sensor transitions t1 to t4 report values of

the liquid level of the tank to the control transitions

StopPump or StartPump and these transitions reg

ulate the flow into and out of the tank. They do this

in such a way, that, after an initialization phase, the

liquid level always stays between sl and s2.

6 CONCLUSION

In this paper, I have presented a new modeling

methodology in which three established modeling ap

proaches are combined.

• High-level Petri Nets represent the basic frame

work. They have a formal basis with a well-defined

semantics and they provide an attractive graphical

visualization of system models.

• Object-oriented concepts extend the expressive

power of the methodology and lead to more suc

cinct and manageable models.

• Differential algebraic equations allow the specifi

cation of continuous system behavior. Therefore

many different continuous processes can be de

scribed conveniently.

Together, these concepts form a comprehensive and

comfortable modeling approach capable of modeling

complex hybrid systems in a wide range of application

areas.

In the future, I want to show the suitability of

HyNETS by several larger case studies. Another im

portant objective is the development of efficient sim

ulation strategies which allow an extensive investiga

tion of HyNETS models by computer tools.

REFERENCES

Brielmann, M. 1995. Modelling Differential Equa

tions by Basic Information Technology Means.

Cadlab Rep. 7/9.5, Cadlab, Paderborn, Germany.

Cellier, F. E. 1979. Combined Continuous/Discrete

System Simulation by Use of Digital Computers:

Techniques and Tools. Dissertation, Swiss Federal

Institute of Technology Zurich, Switzerland.

David, R., and H. Alla. 1992. Petri Nets f1 Grafcet

- Tools for modelling discrete event systems. New

York: Prentice Hall.

Elmqvist, H., F. E. Cellier, and M. Otter. 1993.

Object-Oriented Modeling of Hybrid Systems. In

Proceedings of the European Simulation Symposium

- ESS '93,31-41. Delft, The Netherlands.

Gollii, A., and P. Varaiya. 1989. Hybrid Dynamical

Systems. In Proceedings of the 28th Conference on

Decision and Control, 2708-2712. Tampa, Florida.

Jensen, K., and G. Rozenberg. 1991. High-level Petri

Nets - Theory and Application. Berlin: Springer

Verlag.

Le Bail, B., H. Alla, and R. David. 1991. Hybrid

Petri Nets. In Proceedings of the European Control

Conference, 1472-1477. Grenoble, France.

Majchszak, R. 1996. Eine objektorientierte Beschrif

tungssprache hoherer Petrinetze fur hybride Mod

elle. Master's thesis, Fachbereich lnformatik, Uni

versitat Oldenburg, Oldenburg, Germany.

Murata, T. 1989. Petri Nets: Properties, Analysis

and Application. In Proceedings of the IEEE 77

(4): 541-.580.

Petri, C. A. 1962. Kommunikation mit Auto-

maten. Schriften des 11M Nr. 2, Institut fur In

strumentelle Mathematik, Bonn, Germany. Also,

English translation: 1966. Communication with

Automata. Technical Report RADC-TR-65-377,

Vol. 1, Supp!. 1, Griffiss Air Force Base, New York.

Pettersson, S., and B. Lennartson. 1995. Hybrid

Modelling focused on Hybrid Petri Nets. In Pro

ceedings of the 2nd European Workshop on Real

time and Hybrid Systems. Grenoble, France.

Schof, S., M. Sonnenschein, and R. Wieting. 1995.

Efficient Simulation of THOR Nets. In Proceedings

of the 16th International Conference on Applica

tion and Theory of Petri Nets, ed. G. De Michelis

and M. Diaz, volume 935 of Lecture Notes in Com

puter Science, 412-431. Turin, Italy.

Trivedi, K. S., and V. G. Kulkarni. 1993. FSPNs:

Fluid Stochastic Petri Nets. In Proceedings of the

14th International Conference on Application and

Theory of Petri Nets, ed. M. Ajmone Marsan, vol

ume 691 of Lecture Notes in Computer Science, 24-

31. Chicago, Illinois.

Wieting, R., and M. Sonnenschein. 19905. Extend

ing High-level Petri Nets for Modeling Hybrid Sys

tems. In Proceedings of the IMAGS Symposium on

Systems Analysis and Simulation, ed. A. Sydow,

259-262. Berlin, Germany.

AUTHOR BIOGRAPHY

RALF WIETING is a research assistant in the De

partment of Systems Modeling at the Oldenburger

Forschungs- und Entwicklungsinstitut fur Informatik

Werkzeuge- und Systeme (OFFIS). He received a

diploma degree in computer science from the Uni

versity of Oldenburg in 1992. His research interests

include modeling and simulation of hybrid systems

using high-level Petri Nets.

