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Hybrid micro-architected materials with unique combinations of high stiffness, high
damping, and low density are presented. We demonstrate a scalable manufacturing pro-
cess to fabricate hollow microlattices with a sandwich wall architecture comprising an
elastomeric core and metallic skins. In this configuration, the metallic skins provide stiff-
ness and strength, whereas the elastomeric core provides constrained-layer damping.
This damping mechanism is effective under any strain amplitude, and at any relative den-
sity, in stark contrast with the structural damping mechanism exhibited by ultralight
metallic or ceramic architected materials, which requires large strain and densities lower
than a fraction of a percent. We present an analytical model for stiffness and
constrained-layer damping of hybrid hollow microlattices, and verify it with finite ele-
ments simulations and experimental measurements. Subsequently, this model is adopted
in optimal design studies to identify hybrid microlattice geometries which provide ideal
combinations of high stiffness and damping and low density. Finally, a previously derived
analytical model for structural damping of ultralight metallic microlattices is extended to
hybrid lattices and used to show that ultralight hybrid designs are more efficient than
purely metallic ones. [DOI: 10.1115/1.4038672]
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1 Introduction

Cellular materials provide a unique platform for multifunc-
tional applications and have been widely investigated over the
past two decades. Cellular materials are well known for their
low densities, unique mechanical, electrical, thermal, acoustic,
and bio-compatibility properties [1–5] and have been used in
lightweight structures, impact protection [6–8], active cooling
[9,10], sound absorption [11], and medical implants [12–14].
The effective properties of periodic cellular materials are
uniquely determined by the physical properties of their constit-
uent phase(s) and their topological arrangement in the unit
cell. Careful design of the unit cell architecture, generally per-
formed by geometric or topology optimization techniques, can
result in architected materials with mechanical and functional
properties vastly superior to those of stochastic materials (e.g.,
foams). Notable examples include architected materials opti-
mized for specific stiffness and strength [15,16], active cooling
performance [17], sound absorption [18], and impact protection
[19].

Stochastic cellular materials have been used for vibration isola-
tion and damping for a long time [1,20,21]. More recent studies
have shown that the damping performance of cellular materials can
be enhanced by careful design of the periodic unit cell architecture,
e.g., by incorporating intrinsically dissipative elements (e.g., elasto-
mers) [22] or negative stiffness subcomponents [23,24]. These
complex architected materials designs, though, remain difficult to
fabricate with scalable approaches.

Recent progress in additive manufacturing has enabled scalable
fabrication of novel hollow microlattices with wall thicknesses as
small as a few hundred nanometers, and overall dimensions at the

tens of centimeters scale, resulting in dimensional control over
seven orders of magnitude in length scale [25]. Sacrificial dense
polymeric lattices are fabricated by a self-propagating polymer
waveguide polymerization process [26,27], and subsequently
coated with the structural material of choice, before polymer
removal [25,28]. The mechanical properties of these single layer
hollow lattices have been experimentally investigated [29–31],
and models have been developed for their stiffness [32] and
strength [33]. A unique feature of ultralight metallic hollow
microlattices is their ability to fully recover their shape after expe-
riencing compressive strains in excess of 50%. This is enabled by
their very small wall thickness to bar diameter ratios, which allow
local elastic buckling of the bars, and subsequent rotation about
the pinched location without the accumulation of plastic strain
[30]. During a loading-unloading cycle, a considerable fraction of
the elastic energy is dissipated, resulting in very high damping
capacity. The authors have extensively investigated this unique
energy dissipation mechanism [29]. Through a combination of
experiments and modeling efforts, the contributions to the damp-
ing capacity of the lattice from six different physical mechanisms
were isolated and quantified, as a function of the strain amplitude
under cyclic loading. Under small strain amplitudes (less than a
few percent), the damping capacity (of the order of 0.25) is attrib-
uted to microfriction at sharp wall crack edges and intrinsic mate-
rial damping (responsible for about 50% of the total damping
capacity), fracture and plastic deformation of the walls (�30%),
and viscous dissipation from the air inside and around the hollow
bars (�20%). Conversely, under large strain amplitudes (of the
order of 50%), the largest contribution comes from elastic local
buckling of the bars and macroscopic friction emerging from bar-
to-bar contact (a structural damping mechanism, accounting for
�60% of the total damping capacity), followed by fracture and
plasticity (�19%), microfriction and intrinsic damping (�17%),
and a small amount of viscous damping (4%). The conclusion is
that the largest gain from an optimal design perspective is in max-
imizing the elastic buckling contribution for large strain
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applications and maximizing the intrinsic damping for small strain
applications.

Previous work focused on the former strategy [29]. A simple
analytical tool was developed to capture this energy loss and veri-
fied experimentally. Finally, an optimal design tool was imple-
mented based on the analytical model to identify the lattice
geometries that maximize specific stiffness and damping effi-
ciency, specifically for the material group E1=3 tan d=q, with E the
Young’s modulus, q the mass density and tan d the damping coef-
ficient of the material. One important conclusion is that these
materials exhibit very high values of this figure of merit, but only
when manufactured at very low relative density (�q < 0:1%). As
the density is increased beyond this level, the wall thickness
becomes too high to enable large scale rotation of bars after local
buckling without introducing any permanent plastic deformation.
As the total amount of energy loss is as important from an applica-
tion standpoint as the damping coefficient, the efficiency of these
materials as stiff dampers is limited. In order to design higher den-
sity lattices with exceptional combinations of specific stiffness
and damping, we propose to fabricate lattices with sandwich
walls, whereby two metallic layers enclose a lossy polymeric film
(Fig. 1). When the hybrid lattice is compressed, the lossy layer
deforms (primarily in shear), dissipating energy. This approach is
akin to classic constrained-layer damping, widely exploited in flat
aircraft structure design [34,35]. Importantly, this mechanism has
the potential to dramatically increase the intrinsic contribution to
the damping capacity of microlattices, which, as discussed earlier,
is the key mechanism under small strains. Moreover, the thicken-
ing of the wall resulting from the addition of the polymer results
in higher buckling strength, and hence, higher values of structural
damping, which as discussed before is the most influential

mechanism under large strains. This intrinsic damping mechanism
can emerge as the exclusive damping mechanism in lattices of
high relative density or it can appear in tandem with the structural
damping mechanism (albeit, exclusively in ultralight lattices, and
only at relatively large strain amplitudes).

While wall hybridization has the potential to substantially
increase intrinsic material damping and structural damping in
microlattices, no detrimental effect is expected on the other damp-
ing mechanisms. While the toughness of the hybrid wall is expected
to be higher than for the metallic wall, fewer through-cracks will be
present, so the total amount of energy dissipated in fracturing of the
walls during cycling loading—albeit likely impossible to predict
analytically—is probably quite similar in metallic and hybrid latti-
ces. Elastomeric substrates are known to stabilize the plastic defor-
mation of metallic films, hence the plastic work contribution will
likely increase. The smaller population of through-cracks in hybrid
lattices could result in a potential decrease of microfriction, but this
will be likely offset by an increase in viscous damping—due to the
higher confinement of the air inside the hollow bars. Finally, mac-
roscale friction, i.e., bar-to-bar friction during large deformations,
is not expected to change, as the specific surface area of the lattice
is nearly identical.

This work focuses on fabricating, characterizing, modeling, and
optimizing hybrid hollow microlattices, with the overarching goal
of designing lattices with unique combinations of high stiffness,
high damping, and low density.

The paper is organized as follows: The manufacturing process
is explained in detail in Sec. 2. Section 3 presents an analytical
model for stiffness and constrained-layer damping mechanisms,
followed by numerical validation and experimental verification.
The structural damping mechanism is studied numerically in Sec.

Fig. 1 Schematic of the unit cell of a hybrid (metal/polymer/metal) lattice

Fig. 2 (a) Schematic of the proposed fabrication process for hybrid hollow microlattice materials, (b) octahedral unit cell
topology and defining dimensional parameters, and (c) a sample of a tetrahedral hybrid hollow microlattice
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4 and a suitable analytical model is presented. Finally, the models
presented in Secs. 3 and 4 are used for optimal design studies in
Sec. 5. Conclusions are reported in Sec. 6.

2 Fabrication Process and Geometric
Characterization

Hybrid hollow microlattice materials are fabricated with a mul-
tistep additive manufacturing process (Fig. 2(a)): (i) fabrication of
a sacrificial polymeric template by a self-propagating photopoly-
mer waveguide process [25,27,36]; (ii) coating of the template
with a metallic film by a suitable deposition process (e.g., electro-
less and/or electroplating); (iii) coating of the resulting metal layer
with a film of polymer by suitable deposition process; (iv) coating
of the resulting polymeric layer with another metallic film; and
(v) removal of the sacrificial polymeric template by chemical
etching.

In the first step, the polymeric templates are fabricated by
exposing a thiolene liquid photomonomer to collimated ultraviolet
(UV) light impinging via a patterned mask from different direc-
tions. When the UV light reaches the thiolene liquid through the
holes in the mask, waveguides are formed and a periodic array of
tubes emerges; when multiple beams approaching from different
directions intersect, nodes are formed. A wide range of architec-
tures, such as tetrahedral [27] or octahedral [26], can be manufac-
tured by changing the mask pattern and the incident angle of the
UV light rays. The polymeric lattices are then used as a template
for depositing the first (internal) metallic film. Although different
metals can be deposited with suitable deposition techniques (e.g.,
nickel, copper, and gold) [28], all samples in this work used a
combination of electroless and electrodeposited Nickel. The for-
mer is used to start the growth process on a nonconductive sub-
strate and is limited to a thickness of a few micrometers (�3min
deposition time); electrodeposited nickel is then applied to reach
the desired metallic film thickness. The polymeric layer is then
deposited on top of the metallic lattice by dip coating in a solution
of thermoplastic polyurethane (TPU) in tetrahydrofuran, followed
by drying. Alternatively, very uniform coatings of poly (p-xylylene)
polymers (Parylene

VR
) can be deposited by chemical vapor deposi-

tion. A variety of polymers can be deposited on the metallic latti-
ces; for this study, TPU is chosen. Subsequently, another metallic
layer is deposited on top of the polymeric layer. Finally, the top and
bottom edges of the samples are sanded to expose the underlying
base polymer at each external node; the sacrificial polymeric tem-
plate is etched out by using a base solution (3M NaOH at 60 deg)
(the solution must be chosen in a way to remove only the base inner
polymeric template and not the polymer in the constrained-layer),
resulting in hybrid hollow tube microlattices.

This process was used to generate hollow lattices with the octa-
hedral topology shown in Fig. 2(b), which is built of bars with

length ‘, diameter D, inner layer metal wall thickness tim, polymer
wall thickness tp, outer layer metal wall thickness tom, and truss
angle h.

Figure 2(c) shows a half-layer tetrahedral hybrid lattice. The
truss angle, length, and diameter of the lattice bars are measured
by a Dino digital microscope. This lattice contains bars with
a length ‘ ¼ 22:4mm, a diameter D ¼ 3:2mm, and a truss angle
h ¼ 47 deg (Fig. 3(a)). The wall thickness of the three different
layers was measured by scanning electron microscopy of one bar.
The bar was extracted from the lattice and fixed in epoxy resin. The
resin was sanded with sand paper at varying roughness down to
1 lm in order to achieve a uniform cross section. Electroplating
and electroless nickel plating result in conformal coatings with a
uniform thickness that can be controlled by the plating time. As a
result, the inner and outer nickel layers appear reasonably uniform,
with an average thickness of tim ¼ 19:5 lm and tom ¼ 15:1 lm. By
contrast, the dip coating process results in a very nonuniform TPU
layer thickness, varying between tp ¼ 1:5 lm and tp ¼ 31 lm
(Figs. 3(b) and 3(c)). As these measurements have been performed
on a single bar in the lattice, we expect the distribution in polymer
thickness across the entire sample to be even broader.

The mechanical properties of the TPU layers are measured by
dynamic mechanical analysis at a frequency of 1Hz. The
TPU layer has a density, q ¼ 1200 kg=m3, Young’s modulus,
E ¼ 1:4GPa, and a damping coefficient tan d ¼ 0:25. The proper-
ties of the nickel layer had been measured in the previous work:
density q ¼ 8900 kg=m3, Young’s modulus E ¼ 165:8GPa, yield
strength ry ¼ 607MPa, and negligible damping [30].

3 Stiffness and Constrained-Layer Damping Analysis

3.1 Analytical Modeling. A free body diagram of a bar
within the microlattice subjected to uniaxial compression is
depicted in Fig. 4. Under this loading condition, each bar experi-
ences a combination of axial compression, transverse shear, and
bending moment.

The stiffness of the unit cell can be extracted with the “principle
of virtual work.” The energy stored in each bar includes axial,
shear, and bending contributions. Each of these energy terms can
be readily expressed in analytical form by classic elastic beam
theory. By imposing that the energy stored in the unit cell is equal
to the external work U ¼ ð1=2ÞPd, with P being the external load
on the cell and d the cell displacement, the unit cell stiffness
(defined as k ¼ P=d) can be calculated and properly rescaled to
obtain the effective Young’s modulus of the lattice. To capture
the viscoelastic nature of the polymeric layer, its elastic moduli
are treated as complex numbers (viscoelastic correspondence prin-
ciple). As the viscoelastic properties of the polymer (stiffness and
damping) are generally a function of frequency, the properties of

Fig. 3 (a) Length and angle measurements of hybrid hollow microlattices via a Dino digital microscope; (b) and (c) variations
in polymer layer thickness of bar walls measured by scanning electron microscopy at two locations on a single cross section
of the same bar
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the hybrid lattice itself will be frequency dependent. The complex
modulus of the lattice can be written as

E�
lattice xð Þ ¼

3pD3ttE
�
voigt xð Þsin h

‘4 cos4h
1þ 3

2

D

‘

� �2

tan2h

 

þ3
E�
voigt xð Þ
G�

p xð Þ
tt

tp

D

‘

� �2

= 1þ tim þ tom
tp

Gm

G�
p xð Þ

 !
!�1

(1)

with all geometric parameters defined in Fig. 2(b). Note that in the
analytical model, the thickness of inner metal layer, outer metal
layer, and polymeric layer is assumed to be uniform throughout
the sample. Both the polymer and the metal are assumed isotropic,
whereby the shear modulus is related to Young’s modulus by
G ¼ ðE=2ð1þ �ÞÞ. For the polymer, we assume Poisson’s ratio
�p ¼ 0:5 (incompressibility limit), resulting in G�

p ¼ ðE�
p=3Þ; for

the metal, we assume �m ¼ 0:3. Note that Poisson’s ratio is
assumed to be frequency independent. Finally, E�

voigt represents
the effective longitudinal Young’s modulus of the hybrid wall,
i.e.,

E�
voigt ¼ Em

tim þ tom
tt

þ E�
p

tp

tt
(2)

where E�
p and Em are Young’s modulus of the polymer (a complex

number) and metal, respectively.
As the effective Young’s modulus of the lattice is a complex

number (E�
unit cell ¼ E0

unit cell þ iE00
unit cell), the intrinsic damping

coefficient can be extracted from the storage modulus (E0
unit cell)

and the loss modulus (E00
unit cell) as

tan d ¼ Im E�
unit cellð Þ

Re E�
unit cellð Þ ¼

E00
unit cell

E0
unit cell

(3)

The density of the lattice, obtained by simple geometric consid-
erations, can be expressed as

q ¼ 2p

sin h cos2h

D

‘
qm

tim þ tom
‘

þ qp
tp

‘

� �

(4)

where qm is the density of metal and qp is the density of the poly-
mer. Note that any mass accumulation at the nodes is neglected.

3.2 Model Validation by Finite Elements Analysis. Finite
elements (FE) analyses are performed using the commercial finite
element package ABAQUS to validate the accuracy of the analytical
model. The nickel layer (metal skins) is modeled as a linear elastic
material, and the TPU layer (polymeric core) is modeled as a
viscoelastic material. The material properties provided in Sec. 2
are used for all simulations. The steady-state-dynamics-direct
algorithm at frequency of 1Hz is used to capture the viscoelastic
behavior of the materials. Preliminary calculations confirmed that
this algorithm provides reliable estimates of the viscoelastic prop-
erties of simple composite materials (Voigt and Reuss
configurations).

Simulations are performed on two different configurations: (i)
individual hollow bars (Fig. 5(a)) and (ii) single unit cells
(Fig. 5(b)). The individual bars are loaded with an inclined force
to capture the combination of axial and shear load. To ensure that
a moment develops consistent with the free body diagram in
Fig. 4, the bottom edge is fixed, while the top edge is allowed to
move in all directions (albeit as a rigid body) but not allowed to
rotate (Fig. 5(a). The unit cell is loaded uniaxially in compression
and prevented from rotating at the sides. To represent an infinite
lattice that deforms uniformly (i.e., each unit cell has exactly the
same deformed shape), the following boundary conditions are
applied: the nodes on the –z face are constrained from moving in z

but allowed to move along x and y; the nodes on the þz face are
subjected to a downward displacement d; the nodes on the 6x
faces are all required to move by the same unspecified amount in
the x direction, and let free to move along y and z; the nodes on
the 6y faces are all required to move by the same unspecified
amount in the y direction, and let free to move along x and z;
finally, all rotations are prevented at all nodes on the 6x, 6y, and
6z faces. These conditions are imposed by constraining all the
nodes on each face with reference points along specific degrees-
of-freedom and applying boundary conditions to the reference
points (Fig. 5(b)).

Configuration (ii) includes a node at the center, and hence, a
comparison of (i) and (ii) allows quantification of nodal effects.
For each configurations, two samples are modeled: a slender sam-
ple, with an aspect ratio, ‘=D ¼ 8, tt=D ¼ 0:007 (Sample A) and a
stubby sample, with an aspect ratio, ‘=D ¼ 4, tt=D ¼ 0:1 (Sample
B). All dimensions are provided in Table 1. Sample A is modeled
with shell elements (with the three wall layers homogenized via
classic lamination theory), whereas sample B is modeled with
solid elements, with full meshing of the three wall layers. The
solid bar and unit cell contain 18 elements across the thickness
and sufficient number of elements (mostly with aspect ratio of
one) along the length.

Fig. 4 Schematic of the deformation of a lattice unit cell under
uniaxial external compression, combined with the free-body
diagram of a single bar in the unit cell. The bar undergoes a
combination of transverse shear load, axial load, and bending
moment.

Fig. 5 Load and boundary conditions on (a) single bar and (b)
single unit cell
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The complex Young’s modulus of the lattice is extracted from
the simulations (by using the real and the imaginary part of force in
E ¼ ðFL=AdÞ) and compared with the analytical prediction from
Eq. (1) and the results are presented in Table 1. Note that the simula-
tions are performed under a small strain of 1% to eliminate the effects
of large deformation and to accurately capture intrinsic damping.

For sample A (‘=D ¼ 8), the results indicate that the analytical
model can capture the behavior of a single bar accurately; how-
ever, it overestimates the unit cell stiffness. The same discrepancy
was also observed in single layer metallic lattices with the same
aspect ratios in previous studies [32]. We attribute this discrep-
ancy to the fact that simple beam model does not capture the
effects of the nodes.

For sample B (‘=D ¼ 4), the storage modulus captured by the
FE simulation for the single bar and single unit cell is very close;
however, the analytical model is underpredicting the modulus in
both simulations by �20%. We attribute this discrepancy to the
sample geometry: the wall thickness in sample B (tt=D ¼ 0:1) vio-
lates the thin-wall assumption in the analytical model. On the

other hand, the damping of the lattice captured by the FE simula-
tion on the unit cell mesh is �4� higher than that from the single
bar model. We attribute this difference to the nodal geometry: the
polymer accumulates large shear strain in the nodal region of this
stubby sample, which results in higher loss than predicted by sin-
gle bar simulations. Figure 6 depicts the maximum principal strain
in the polymeric layer of samples A and B from single bar and
unit cell simulations: the nodal strain is clearly higher in sample B
than in sample A.

Altogether, the results of the FE simulations confirm that the
analytical model predicts the single bar behavior accurately when
the total wall thickness is small relative to the diameter. Further-
more, when it comes to the unit cell level, although the analytical
model shows some discrepancies in predicting the storage modu-
lus, the trend of the discrepancies is the same as in single layer lat-
tices [32]. The model predicts the damping accurately when ‘=D
is large and the node is small relative to the whole unit cell (sam-
ple A) but is underpredicting when ‘=D is small and the node is
large relative to the whole unit cell (sample B). As our goal is to

Table 1 Summary of geometrical properties of the samples and Young’s modulus and damping coefficient captured from analyti-
cal model of single bar, and FE simulation of single bar and single unit cell for each sample

FE simulation of single bar FE simulation of unit cell Analytical model

Sample

Strut
length
(lm)

Strut
diameter
(lm)

Wall
thickness of
TPU (lm)

Wall
thickness of
nickel (lm)

Strut
angle
(deg)

E
(MPa)

tand
(� 10�4)

E
(MPa)

tand
(� 10�4)

E
(MPa)

tand
(� 10�4)

A 4000 500 2.5 0.5 60 11.4 8.60 5.17 6.71 11.56 8.55
B 1000 250 16.6 4.16 60 2580 8.53 2740 28.0 2060 6.70

Fig. 6 Maximum principal strain in the TPU layer under lattice compression: (a, b) single bar anal-
ysis and (c, d) unit cell analysis. Results are provided for sample A (a, c) and sample B (b, d).
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design lattices with highest damping coefficient based on the ana-
lytical model (Sec. 4), the implication is that the optimization
results will always be conservative.

3.3 Experimental Verification of Constrained-Layer
Damping. Resonance measurements at infinitesimal strains are
performed to capture the constrained-layer (intrinsic) damping in
two different configurations: (i) on a single bar loaded in cantile-
ver mode and (ii) on an individual unit cell. The single bar mea-
surement is used to investigate the accuracy of the analytical
model and the single unit cell measurement helps understanding
the effects of the nodes on constrained-layer damping. A half-
layer tetrahedral lattice was fabricated as described in Sec. 2. The
tetrahedral configuration was chosen for ease of fabrication. For
the sake of model validation, the analytical models in Sec. 3.1 are
appropriately modified to represent the tetrahedral configuration.
Clearly, the results of these comparisons can be applied to the octahe-
dral lattices as well, as both have the same dissipation mechanisms.
All experiments are carried out with a laser Doppler vibrometer
(PSV-500, Polytec GmbH, Irvine, CA) depicted in Fig. 7(a).

A single bar is extracted from the lattice and press-fitted to the
aluminum base to create a fixed boundary condition (cantilever
bar) as depicted in Fig. 7(b). The bar is assembled on top of a
shaker (Labworks Inc., Costa Mesa, CA, ET-132-2) by using
mounting wax (PCB, Piezotronics, Petro wax). The aluminum

base is oscillated via a shaker with a fast Fourier transform sinu-
soidal signal at very low amplitude (�0.01 lm), sweeping the fre-
quency within the range of 0–15 kHz. The velocity of the
aluminum base and hybrid bar is monitored with the Doppler
vibrometer in scanning mode (to identify the modal shapes).

The response of the base plate and the bar are depicted in
Figs. 8(a) and 8(b), respectively. An out-of-plane axial mode for
the aluminum base was detected at �13 kHz. To eliminate the
effects of base excitation, a transfer function H1 ¼ ðYðxÞ=XðxÞÞ
is used, with XðxÞ being the average deflection of the base and
YðxÞ the deflection of individual points on the bar with respect to
the XðxÞ excitation. The frequency response of every single point
on the bar is calculated by using the above transfer function and
the response of a single point is depicted in Fig. 8(c).

As Fig. 8(c) indicates, two modes are coupled at a frequency of
�12 kHz. The combined mode has the appearance of the first bend-
ing mode (inset in Fig. 8(c)). A Gaussian function is used to decou-
ple these modes from each other and the result is depicted in Fig. 9.

Two different methods can be used to capture the damping of
the structure from the resonance response: (i) the half bandwidth
method and (ii) the structural damping method. In the first
method, the loss factor g is extracted from the ratio of the reso-
nance peak width (measured at an amplitude of 1=

ffiffiffi

2
p

of the peak
amplitude) to the resonance frequency [37]. In the second method,
the equation of motion is written as

m€xðtÞ þ k�xðtÞ ¼ FðtÞ (5)

where m is the mass of the system, k� ¼ k0 þ ik is the stiffness of
the structure and the harmonic excitation which was applied to the
structure can be expressed as FðtÞ ¼ Akeixt. Equation (5) can be
reduced to

€xðtÞ þ x2
nð1þ i tan dÞxðtÞ ¼ x2

nAe
ixt (6)

where xn ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

is the natural frequency and tan d is the damp-
ing coefficient. The specific solution to Eq. (6) is

xðtÞ ¼ Re½AG�ðxÞeixt� ¼ A � jG�ðxÞj � cosðxt� /�Þ (7)

where

�

�

�

�

G� xð Þ
�

�

�

�

¼ 1

1� x=xnð Þ2
h i2

þ tan2d

� �1=2
(8)

To calculate the damping coefficients tan d and the correspond-
ing natural frequencies xn, Eq. (8) was fitted on the experimen-
tally measured frequency response curve.

For the sample in our test, both methods generate identical
results. Figure 10 shows the results of the curve fit method on two

Fig. 7 (a) Laser Doppler vibrometer (PSV-500), (b) single bar in
cantilever mode, and (c) single unit cell under uniaxial loading

Fig. 8 Frequency response of (a) aluminum base, (b) hybrid bar, and (c) hybrid bar with respect to aluminum base excitation
by applying H1 transfer function
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peaks in Fig. 9. Both peaks show a damping coefficient
g ¼ tan d ¼ 0:02.

Frequency extraction (a.k.a. linear perturbation analysis) is per-
formed on a single bar with the same dimensions as tested bar (see
Sec. 2 for dimensions) in finite elements simulations performed
with ABAQUS/STANDARD. The thickness of the polymer is swept
between tp ¼ 4:7� 30lm to capture the effects of the polymer
layer on the natural frequencies of the single bar. The four lowest
vibration modes and corresponding eigenfrequencies are obtained
via eigenvalue extraction. In the sample with tp ¼ 4:7 lm, the first
and the second modes are cross section pinching modes with identi-
cal frequencies of �10 kHz; the third mode and the fourth modes
are first in-plane and first out-of-plane bending modes, respectively,
with identical frequencies of �13kHz. By increasing the polymer
layer thickness, the first and the second modes are switching with
the third and the fourth modes, and the frequencies of the bending
modes are decreasing. Therefore, we conclude that the two bending
modes (in-plane and out-of-plane) captured in the FE simulations
are actually the two coupled modes in the experiment. The differ-
ence in the frequencies of these two modes is attributed to manufac-
turing defects (e.g., nonuniformity of the polymer layer).

We can predict the damping coefficient of the hybrid bar with
the model developed in Sec. 3.1. Note that the damping coefficient

of the hybrid bar is measured at �13 kHz (resonance peak), while
the damping coefficient of TPU is obtained via dynamic mechani-
cal analysis at 1Hz. Macaloney et al. [38] have reported the fre-
quency dependence of TPU (albeit at low temperature, �61C)
over a frequency range of 20 orders of magnitude. From 1Hz
to 10,000Hz, the damping coefficient of TPU reduces by
half. Hence, we use a value of tan d ¼ 0:1 for the polymer (�2�
lower than measured experimentally) to predict the damping
coefficient of the hybrid bar at high frequency. With these
material properties, the analytical model (modified for tetrahedral
lattices) predicts a damping coefficient that varies between
g ¼ 1:1� 10�4 and 0:0035 when the polymer layer thickness is
swept from tp ¼ 4:7 to 100lm. Hence, the model underpredicts
the damping coefficient by at least a factor of 4 (in the experiment,
g � 0:02). In the analytical model, the entire damping is due to
the viscoelastic nature of the polymeric layer. However, a previ-
ous study on damping of nickel hollow microlattice materials [29]
revealed that the nickel structure shows non-negligible intrinsic
damping as well. To isolate the effect of the metal layer, a single
layer nickel bar with the same length, diameter, and metallic wall
thickness as the hybrid bar is tested under the same conditions.
The extracted damping coefficient for the single layer nickel bar
is g ¼ 0:0155 for the first bending mode. The difference between
the damping of the hybrid bar and that of the nickel bar (which
can be attributed entirely to the effect of the polymer) is �0:0035,
which is within the range of analytical model prediction for poly-
mer thickness in the range tp ¼ 4:7� 100 lm.

A similar experiment is performed on a single half unit cell
(Fig. 7(c)). The sample is extracted from the hybrid microlattice
and bonded to two aluminum face sheets. The bottom face sheet is
a 5-cm-thick aluminum rod (chosen based on FE simulations to
avoid any eigenmodes below the resonance frequency of the lat-
tice) and the top face sheet is a 20mm� 20mm� 4mm plate,
which is �10x heavier than the lattice (Fig. 7(c)). The bottom
plate is excited via a shaker with frequencies within the range
0–10 kHz, while the top and bottom plates are scanned by laser
Doppler vibrometry. The curve fit method is used to extract a
damping coefficient g ¼ 0:018 (Fig. 11(a)).

The same procedure is repeated for a nickel half unit cell lattice
and the damping coefficient is extracted (Fig. 11(b)). The damping
coefficient of the nickel hollow microlattice is g ¼ 0:015. The dif-
ference between the intrinsic damping of the hybrid half unit cell
and that of the nickel half unit cell is �0.003, which is once again
within the range predicted by the analytical model.

Overall, these experiments reveal that adding a layer of TPU
within the metallic wall of a hollow microlattice increases its

Fig. 9 Decoupling of the first two resonant modes

Fig. 10 Damping coefficients extracted from the frequency response (measured by laser Doppler vibrometry) using the curve
fit method for a single hybrid bar: (a) first mode and (b) second mode
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damping coefficient by �20%. It is worth mentioning that for this
specific lattice, the damping coefficients of a single bar and half
unit cell are very close; however, our FE simulations suggest that
the damping coefficient can be further increased by stacking up
several unit cells due to nodal effects.

4 Structural Damping Analysis

The mechanical response of hollow metallic lattices under uni-
axial compression has been thoroughly investigated in previous
studies [25,28–31]. These lattices show vastly different behavior
depending on their relative density: (1) For relative densities
higher than a critical value (for Nickel lattices, �q � 0:1%), the
typical cellular metal behavior is observed, with a linear elastic
region followed by an extensive plastic deformation plateau,
resulting in no reversibility upon unloading. (2) Conversely, for
relative densities lower than this critical value (ultralight lattices),
a unique pseudo-super-elastic behavior is observed whereby full
recoverability is achieved upon very large straining (in excess of
50%). This recoverability is associated with a very large hystere-
sis cycle, resulting in very large damping. Salari-Sharif et al. [29]
thoroughly investigated this damping behavior and showed that
the largest amount of energy loss occurs via local elastic buckling
of the bars and the associated vibration and heat generation, a
unique form of structural damping.

The same qualitative behavior is expected for hybrid hollow
lattices. When designed below a critical density, ultralight hybrid
lattices can then exhibit two distinct damping mechanisms: the
constrained-layer damping investigated in Sec. 3 and the struc-
tural damping mechanism associated with local buckling of the
bars. Clearly, the latter only applies to loading conditions where
the lattice is subjected to large strain amplitudes (required to
induce buckling of a significant number of bars), whereas the for-
mer applies to deformations with infinitesimal strain amplitudes.
In this section, we extend a previously derived analytical model
for structural buckling to hybrid lattices.

This structural damping mechanism can be clearly elucidated
with a simple FE simulation of a single hollow hybrid bar (for the
purpose of this demonstration, we choose a diameter of 1mm, a
length of 4mm, a polymer wall thickness of 100 nm, and a nickel
wall thickness of 538 nm). A very similar simulation (albeit con-
ducted on a simple metallic hollow bar) was conducted in Ref.
[29]. The details of the simulation are repeated here for complete-
ness. The bar is loaded in cantilever mode (Fig. 12(a)), whereby

one edge is fixed, while the other edge is allowed to move in all
directions (albeit as a rigid body) but not allowed to rotate. More-
over, the cross section is kept circular during the entire simulation.
To address convergence issues, a dynamic simulation is performed
in ABAQUS/EXPLICIT under displacement control, with the application
and subsequent removal of an end displacement of 200 lm. In
order to ensure negligible inertia effects, a very small displacement
rate is chosen (0.2 m/s), and the kinetic energy is monitored to
guarantee that the kinetic energy be very small compared to the
elastic energy during the entire simulation. Additionally, a smooth
function for displacement, namely a polynomial function in which
the first and second derivatives are zero at the initial and final
amplitudes, was used to ramp up or down smoothly from one
amplitude value to another amplitude value and to prevent sudden
shocks at the beginning of the simulation. Both materials are mod-
eled as elastic perfectly plastic, with material properties as defined
in Sec. 3.2 and yield strength of 2.5GPa and 26MPa for nickel and
TPU, respectively. Since we are not interested in capturing viscous
damping in this simulation, no viscoelastic properties are intro-
duced. The model is meshed with a four-node reduced integration
shell element (S4R), with hourglass control and finite membrane
strain. During the simulation, the beam undergoes large post-buck-
ling deformation; hence, a self-contact (hard, frictionless) constraint
is enforced along the entire cylinder.

Figure 12(a) shows the von Mises stress contours on the metal-
lic layer in the deformed bar at the end of the loading cycle,
while Fig. 12(b) depicts the force–displacement response in the
entire cycle. The bar behaves linearly up to a displacement of
�25 lm, after which local buckling occurs near the clamped end,
resulting in an instantaneous and dramatic load drop. In the post-
buckling response, the bar exhibits nearly linear elastic behavior,
albeit with much reduced stiffness. Upon unloading, the bar ini-
tially follows the post-buckling loading curve past the buckling
point, after which it snaps back to the prebuckling curve. The
shaded area in Fig. 12(b) represents the dissipated energy during
the simulation, which in a practical scenario would be converted
to heat.

Of course, this energy dissipation mechanism can only occur if
the bars remain elastic upon local buckling and subsequent folding
about the creases. This constraint can be expressed in the form of
a maximum wall thickness to diameter ratio, as explained in detail
in Refs. [29] and [30]. For hybrid lattices, this constraint takes the
following form:

Fig. 11 Damping coefficient of (a) hybrid tetrahedral half unit cell and (b) a nickel tetrahedral half unit cell with the same
geometry, extracted from the frequency response (measured by laser Doppler vibrometry)
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tim þ tom
D

<
0:25

h� sin�1 1� emaxð Þsin hð Þ :
rm

Em

(9)

where rm is the yield strength on the metal layer and emax is the
maximum compressive strain from which the lattice is expected to
recover. The geometrical dimensions are defined in Fig. 2.

In a bulk lattice under compression, a large number of bars can
dissipate energy through this mechanism. The energy dissipated
by the entire lattice in a cycle is roughly given by the sum of these
contributions for all the bars that buckle. This energy dissipation
can be approximately modeled using classic local buckling theory.
In previous work, the same behavior had been observed for ultra-
light nickel hollow microlattice materials, with remarkable agree-
ment between the experimental data and a simple analytical
model [29]. This model can be easily extended to hybrid lattices
as discussed below.

Upon uniaxial compression of a lattice, each bar experiences a
combination of axial compression, bending moment, and trans-
verse shear, as indicated in Fig. 4. Neglecting the stresses induced
by the shear load relative to those induced by the axial and bend-
ing moment, and ignoring the load carrying capacity of the poly-
meric layer, the maximum normal compressive stress rmax

experienced by the metal layer in the bar wall can be expressed as

rmax ¼
P

4pD tim þ tom
� 	 sin hþ 2‘

D
cos h

� �

(10)

where P is the compressive load applied on a single unit cell (Fig.
4). The bar buckles when the maximum stress in the bar reaches
to the critical local buckling stress; buckling occurs near the bar
end, where the moment is maximum. The local buckling stress for
sandwich-wall hollow cylinders with small polymer wall thick-
ness to diameter ratio can be written as [39]

rlb ¼ 2Em
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� t2m
p

rg

R
(11)

where

rg

R
¼ tp þ tm

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

3

tm

tp þ tm

� �2
s

(12)

and Em and �m are, respectively, Young’s modulus and Poisson’s
ratio of the metal layer. (We assume that the inner and outer metal
skins have the same thickness, i.e., tim ¼ tom ¼ tm.) By equating
Eqs. (10) and (11), the buckling strength of a single hybrid hollow
bar loaded as described earlier (which is equal to one-quarter of
the strength of the unit cell) can be expressed as

Plb
bar ¼

Pcr

4
¼ 2pEmD

2tm
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

‘ cos h 1þ D

‘

tan h

2

� �

rg

R

� �

(13)

This model was verified by the FE simulation (Fig. 12(b)). The
FE simulation predicts a critical buckling load of 64.4mN versus
an analytically predicted value of 66.6mN.

The stiffness of a single bar within the unit cell (equal to one
half of the stiffness of the entire cell) can be computed analyti-
cally by equating the external work of deformation to the internal
strain energy induced by the moment, axial load, and shear load
(as explained in Sec. 3.1), leading to

Kbar ¼
K

2
¼

3pD3ttE
�
voigt

2‘3 cos2h
1þ 3

2

D

‘

� �2

tan2hþ 3
E�
voigt

Gp

tt

tp

D

‘

� �2

 

1þ tim þ tom
tp

Gm

Gp

 !!�1

(14)

Although in Sec. 3.1 the modulus of the polymer was treated as
a complex number to capture its viscoelastic nature, here we only
consider its magnitude.

The elastic energy dissipated in each bar upon local buckling
can be approximated by

DEbar ¼
Plb
bar
2

2Kbar

(15)

The bulk lattice contains nx, ny, and nz cells along the X, Y, and
Z directions, respectively. As each unit cell has 16 bars, the total
number of bars in the bulk lattice is given by Nb ¼ 16nxnynz. The
dimensions of the lattice can be derived from the geometry of the
bar and the number of unit cells in the lattice as L ¼ 2‘ cos hny,

Fig. 12 (a) The deformed shaped of hybrid hollow cantilever bar captured by FE simulations. The contours show the Mises
stress distribution in the metallic layer. (b) Force–displacement curve for a loading–unloading cycle, with the shaded area rep-
resenting the energy dissipated in one cycle.
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H ¼ 2‘ sin hnz, and W ¼ 2‘ cos hnx, where L, H, and W are,
respectively, the length, height, and width of the unit cells.
Finally, the dissipated energy in the structure can be modeled via
a simple energy balance as

DU ¼ NbfDEbar

WHL
¼ 2fDEbar

‘3 sin h cos2h
(16)

where f is the fraction of bars that need to buckle in order to
accommodate the global lattice strain. A simple estimate for f at a
maximum applied strain emax can be found by assuming layer-by-
layer deformation and complete folding of each bar onto itself
upon buckling

f ¼ emax

1� D= ‘ sin hð Þ (17)

5 Trends for Optimal Design

The mechanical models for constrained-layer damping and
structural damping described in Secs. 3.2 and 4, respectively, can
be adopted in optimization studies to identify the optimal response
and generate optimal design maps. Two optimization studies will
be discussed in this section: (1) Maximization of the damping fig-
ure of merit jE�j1=3 tan d=q, where damping is induced by the
viscoelastic nature of the polymer (modeled in Sec. 3.2). (This fig-
ure of merit expresses how fast a clamped plate subject to forced
vibrations reaches the rest state when the forcing term is
removed.) (2) Maximization of the energy dissipated in a com-
pression cycle (DU), where the dissipation originates from struc-
tural damping (modeled in Sec. 4).

5.1 Maximization of Intrinsic Damping Through Figure of
Merit jE�j1=3 tan d=q. The geometric parameters of the system
are expressed in nondimensional form as follows: the truss angle
(h), the bar aspect ratio (D=‘), the ratio of the metallic layer thick-
ness to the bar length (tm=‘), and the ratio of the polymeric layer
thickness to the bar length (tp=‘). The objective function is
jE�j1=3 tan d=q where jE�j, tan d, and q are given by Eqs. (1),
Eq.(3), and Eq. (4), respectively. The following constraints are
added to the optimization study to express the manufacturing and
beam theory limitations:

10�3 < D=‘ < 0:25

2 < L=D < 16

10�4 < tm=‘ < 0:3

10�4 < tp=‘ < 0:3

45� < h < 75�

(18)

where L ¼ 2‘ cos h is the cell size. To avoid converging to solu-
tions with excessive amount of polymer (that would not be manu-
facturable with the process described in Sec. 3), the additional
constraint tp=tm < 10 is included.

The constrained optimization problem is solved with the MAT-

LAB “fmincon” algorithm, for lattice densities ranging between 10
and 1000 kg/m3.

To elucidate the effects of the viscoelastic properties of the
polymeric layer (modulus and damping coefficient) on the lattice
performance, the optimization problem is solved with ten different
polymers, all with jE�j tan d ¼ 108. Young’s modulus is varied
from 100MPa to 50GPa and the damping coefficient from 0.002
to 1.

The performance of optimal hybrid lattices is presented as a
plot of the material index (jE�j1=3=q) versus the loss coefficient

(tan d) in Fig. 13(a); the optimal dimensions are shown in
Figs. 13(b)–13(d). Results for only four polymer choices are pre-
sented to avoid overcrowding the figures.

For all material combinations, the maximum value of the figure
of merit (indicated by the dashed selection line in Fig. 13(a)) is
achieved for the lightest designs. As the density is increased from
its lowest value, initially tp=‘ and tm=‘ remain constant, while the
truss angle h and D=‘ increase, resulting in a decrease in the figure
of merit. When the truss angle h and D=‘ reach their upper
bounds, tp=‘ and tm=‘ start increasing; in this phase, the figure of
merit is still decreasing, but at a slower rate. The constraint
tp=tm < 10 is active over the entire range of densities, and for all
material combinations. Notice that the optimal dimensions are
essentially identical for all choices of polymer, and very similar
values of the figure of merit are achieved with different polymers.
The effect of the polymeric layer material can be appreciated if
the three properties in the figure of merit are separated. Young’s
modulus versus density and Young’s modulus versus loss factor
for the same optimization results are depicted in Fig. 14.

Clearly, polymers with higher Young’s modulus lead to hybrid
lattices with higher Young’s modulus as well although the effect
is rather small. Interestingly, though, the effect of the polymer
loss factor is less obvious. For relatively small polymer loss factor
(tan d < 0:1), increasing the loss factor of the polymer results in a
lattice with higher loss factor; but at higher polymer loss factors
(tan d > 0:1), the effect is reversed. This reversal is due to the fact
that the polymeric layer must possess sufficient stiffness in order
to dissipate a meaningful amount of strain energy: very lossy
polymers are too compliant to dramatically affect the response of
the lattice. Hence, Fig. 14 can be used as a design selection map:
once the desired loss coefficient of the lattice is chosen, Fig. 14(b)
can be used to identify suitable polymers; subsequently, the den-
sity (and hence all the geometric parameters) can be chosen from
Fig. 14(a) to design a lattice with a desired Young’s modulus.

If the optimization study is performed without enforcing the
tp=tm < 10 constraint, the optimal lattices have higher damping
coefficient and lower Young’s modulus (due to the tendency
toward thicker polymer layer and thinner nickel layer); clearly,
those lattices are more challenging to manufacture.

The results indicate that the maximum achievable damping
coefficient for the lattice is equal to that of the polymeric layer (as
long as the tp=tm < 10 constraint is not included); however, the
stiffness of the lattice would always exceed the stiffness of the
polymeric layer.

In order to clearly quantify the mechanical advantages of
hybrid lattices over single material lattice, optimal nickel/TPU/
nickel lattices are compared to optimal single material lattices
made of either nickel or TPU (Fig. 15). The performance of
nickel/TPU Reuss and Voigt composites, bulk nickel and bulk
TPU are added for reference. The mechanical properties of nickel
and polymer layer were given in Sec. 2. The densities of all the
lattices are swept in the range 10–1000 kg/m3 and the densities of
both Voigt and Reuss composites are swept in the range
1200–8900 kg/m3. Results for hybrid lattices are presented for two
different tp=tm constraints (tp=tm < 10 and tp=tm < 25), in order to
better understand the effects of manufacturing constraints and the
advantages of allowing thicker polymeric layers. The specific
stiffness index (jE�j1=3=q) is cross plotted against the loss factor
in Fig. 15(a), allowing identification of materials with optimal
values of the damping figure of merit jE�j1=3 tan d=q. Clearly, the
single-material TPU lattice is superior on this metric, whereas the
single-material nickel lattice is the worst. Hybrid lattices have
intermediate performance and they are generally superior to fully
dense Reuss and Voigt composites. Allowing thicker polymeric
walls results in higher lattice loss factor, with a small penalty in
specific stiffness. To fully appreciate the benefits of hybrid latti-
ces, though, it is instructive to plot Young’s modulus against the
density (Fig. 15(b)). Clearly, all lattices can be much lighter than
the fully dense Voigt and Reuss composites, with hybrid lattices
almost approaching the stiffness of nickel lattices for densities
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Fig. 14 Young’s modulus versus (a) density and (b) loss factor for hybrid hollow microlattices with four different polymers

Fig. 13 (a) Map of achievable jE�j1/3 tan d/q of hybrid microlattices with four different polymers and ((b)–(e)) optimal lattice
dimensions, which are essentially identical for all polymers
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larger than �100 kg/m3. The conclusion is that hybrid hollow lat-
tices can be designed with stiffness comparable to that of metallic
hollow lattices, but with loss factors two orders of magnitude
higher.

5.2 Maximization of Structural Damping Through Dissipated
Energy Per Cycle, DU. In this section, we design lattices that
maximize energy dissipation emerging from the buckling-induced
structural damping discussed in detail in Sec. 4. As a reminder,
unlike the constrained-layer damping discussed in Sec. 3, this
damping mechanism is only observable in ultralight lattices (both
hybrid and single-material). This condition is imposed in the form
of a recoverability constraint (Eq. (9)), which effectively limits
the thickness to diameter ratio. The other dimensional constraints
are the same as those for the previous problem (Eq. (18)).

For ultralight metallic lattices, the recoverability constraint (Eq.
(9)) automatically guarantees that buckling precede yielding. The
same is not rigorously true for hybrid lattices. Hence, we also
request that

Plb
bar

P
y
bar

< 0:9 (19)

where Plb
bar is the critical local buckling load of a single bar

derived from Eq. (13) and P
y
bar is the yielding load of a single bar,

calculated as

P
y
bar ¼

pD2tmry

‘ cos h 1þ D

‘

tan h

2

� � (20)

The coefficient 0.9 is chosen to provide some level of
conservatism.

The constrained optimization problem described previously is
solved with the “fmincon” algorithm in MATLAB for densities in
the range 10–200 kg/m3.

Figure 16 shows the dissipated energy per cycle as a function
of the density for optimal hybrid lattices constructed with ten dif-
ferent polymers (as described in Sec. 5.1, all polymers have the
same value of jE�j tan d ¼ 108). As before, nickel is used as the
metal layer for all lattices. The maximum amounts of dissipated
energy for four polymer choices are shown in Fig. 16 to avoid

overcrowding the figures, whereas the optimal dimensions are
detailed in Fig. 17.

The key conclusion is that adding a polymer inner layer to a
metallic wall in an ultralight hollow lattice increases the energy
dissipation related to this structural damping mechanism by �6–8
times. This is due to an increase in the local buckling load pro-
vided by the sandwich construction of the bar walls. Such
increase, however, varies only slightly for polymers with different
properties. In fact, there is only a 15% difference between the
increase in energy dissipation yielded by using the polymers with
the lowest damping coefficient and the polymer with the highest
damping coefficient. This is because the critical buckling load of
the hybrid lattice is a strong function of the stiffness of the metal
layer and the geometry of the lattice, and is largely unaffected by
the properties of the polymeric layer. However, note that, as
detailed in Sec. 5.1, the polymer with higher damping coefficient
yields higher constrained-layer viscous damping (for polymers
with tan d < 0:1), and hence, higher overall damping at the lattice
level.

Comparing the optimal lattice dimensions captured from opti-
mizing the constrained-layer damping (Figs. 13(b)–13(e)) and the

Fig. 15 (a) Material index (jE�j1/3/q) versus loss factor and (b) Young’s modulus versus density, comparing bulk nickel, bulk
TPU, nickel microlattice, TPU microlattice, Reuss composite, Voigt composite, and hybrid microlattices with two different con-
straints (tp /tm < 10 and tp /tm <25)

Fig. 16 Map of achievable dissipated energy in hybrid microlatti-
ces for the four different polymers, compared to nickel microlattices
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structural damping (Fig. 17) mechanisms clearly reveals that the
two optimal dimensions are completely different from each other.
The unfortunate implication is that designing an ultralight hybrid
lattice which is simultaneously optimized for constrained-layer
damping and structural damping does not appear possible.

6 Conclusions

Hybrid hollow microlattices with metal/polymer/metal sand-
wich walls are fabricated with an extremely scalable additive
manufacturing process, and their damping performance is thor-
oughly investigated. An analytical model is introduced to capture
the constrained-layer damping mechanism. The analytical model,
which expresses stiffness and damping coefficient as a function of
microlattice geometry and materials properties, is validated by
finite element simulations and resonance experiments. In the ultra-
light regime (�q < 0:1%), hybrid hollow microlattices may show
recoverability under large compressive strain, due to a mode of
deformation characterized by local buckling of the hollow bars.
This mechanism—well established for metallic hollow lattices—
introduces additional energy dissipation, and can be seen as a
unique form of structural damping. Clearly, this damping mecha-
nism is only active when the lattice is subjected to large strain
amplitudes. An analytical model for this structural damping mech-
anism, previously derived for metallic hollow microlattices, is
extended to hybrid designs, and validated by finite elements simu-
lations. The model allows estimation of the energy dissipation per

unit volume as a function of microlattice geometry and materials
properties. Finally, the mechanical models for constrained-layer
damping and structural damping are adopted in optimal design
studies where the geometric properties of the lattice are optimized
for maximum damping figures of merit. The results show that the
constrained-layer damping mechanism significantly increases the
damping performance of microlattices. Experimental data on a
relatively low-density hybrid hollow microlattice sample show an
increase in the damping coefficient of �20% relative to an all-
metallic sample of comparable geometry. The improvement is
expected to be significantly larger in denser samples which exhibit
less structural damping.

An investigation of the role of polymer properties on
constrained-layer damping of the lattices reveals that the ideal
polymer is not necessarily the lossiest: sufficient stiffness in the
polymeric layer is required for efficient damping at the microlat-
tice level. Furthermore, we demonstrate that the presence of the
polymer increases the energy dissipation associated with the struc-
tural damping mechanism by 6–8� for ultralight lattices
(�q < 0:1%). The caveat is that the optimal geometry maps for
these optimization studies are significantly different; therefore, in
the ultralight regime, we cannot design a single lattice with maxi-
mum constrained-layer and structural damping performance.
Nonetheless, for situations where both low-strain and high-strain
damping are important, the analytical models proposed in this
work can be used in optimization studies with more complex fig-
ures of merit that combine both damping mechanisms.

Fig. 17 Optimal dimensions for hybrid lattices that maximize dissipated energy, DU
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