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Abstract

The time and cost saving for banks when implementing cloud computing strategies are
staggering. However, it is important to consider the security and protection of data when
it comes to the widespread adoption of cloud. Fully homomorphic encryption is currently
still undergoing experimentations. One of its limitation is the time required to encrypt and
decrypt the sensitive data, as the traditional encryption systems showed a level of
resistance and considerable maturity that can be rehabilitated or hybridized for
application in the field of sensitive data protection hosted in the Cloud.

In this paper we will propose hybrid homomorphic system that will be applied to the
banking data to perform operations on encrypted data without decrypting, based on the
encrypting, the decryption and the operation treatment time on the ciphertext which were
obtained by simulating an addition and multiplication homomorphic cryptosystem and
comparing it with DGHV that is somewhat homomorphic; then we will choose our model
which is most suitable for banking application.
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1. Introduction

Companies do not longer refute the need of storing its sensitive data on the cloud,
which they already do using traditional encryption systems. The question here is how to
process this data without decrypting it in order to respect the company’s privacy. Hence
the idea of using homomorphic encryption for banking data which is a new approach that
can help banks take their data management to the highest level: the cloud [1].

Cloud Computing is not only a new seductive marketing trend, but it is an economic
reality to access many services online. This comprehensive access offer to computing
resources allows evolutionarily companies to focus on their core competencies by
exempting them from their servers’ management. The major question that keeps many
companies reluctant regarding this new storing technology, including banks, is the
security of their sensitive data hosted on the Cloud.

Cloud computing may offer several advantages in terms of cost reduction and
scalability but raises new security issues regarding sensitive data.

Following this, and in order to perform operations on encrypted banking data stored in
the cloud without decrypting them, we will opt for the homomorphic encryption [2, 3].
This latter consists in encrypting the client's identity with a multiplicative homomorphic
encryption which corresponds to the "logical and" used for keyword searching into an
encrypted database. Add to this, the data concerning a client’s deposits of all his or her
accounts is encrypted by an additive homomorphic encryption; aiming to compute the
total amount of the client’s deposits by the cloud server and deciphering the result at the
level of client’s private bank. In both cases, the result is the same, as if the calculations
were made using raw data.
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In Section 2, we will talk about the lack of Cloud adoption by banks. In Section 3, we will
define Homomorphic Encryption and we will illustrate some examples of existing
Homomorphic cryptosystems. In Section 4, the focus will be on our simulation and its
analysis, in Section 5; we will present the scheme of our banking application with some
examples of calculations on banking accounts of customers. The conclusion and
perspectives are dealt with in Section 5.

2. Banking in the Cloud

The lack of cloud services usage, not only by banks but also by all the companies in all
the fields, creates a strong incentive for the researches and cloud providers to adapt their
solutions to the security required by banks, encouraging them to migrate and to outsource
their computations to the cloud; allowing them to focus only on their core competencies.

The migration to the cloud will lead to a control loss over the customer bank data
(account numbers and sum of deposits, loans allocations...).

There are many compelling reasons to migrate applications and data to a private or a
public cloud: scalability, agility, cost savings and so on and so forth. However, those
benefits come along with a new risk regarding the security of critical business data; a risk
that has to be managed by any organization whose data migrated to the cloud using a
robust solution for data encryption and encryption key management. This risk is
illustrated through the USA PATRIOT Act [4]; an act that makes it possible for
competitors and governments to access data through cloud providers without the consent
of the data owner. Even storing data in foreign jurisdictions does not provide a sufficient
guaranty that customers’ data is out of reach of disclosure requirements.

To solve this problem, some security vendors require the installation of a physical key
management server in the data center as a prerequisite. Other security providers require
you to "trust” them and use their key management service. This approach violates the
principle and the respect of the requirements keeping the keys under your own control.

The banking sector is renowned for the volume and speed of data it produces,
transports and stores. Given the recent financial crisis and subsequent regulatory
pressures, the cost of computers has grown exponentially not only for the banking
organization as a whole, but even at the level of the division.

Nowadays, Banks have to cut their IT costs, but it should not be done at the stake of
compromising their data security and integrity. The need, therefore, to explore the
unconventional and innovative options reduced IT costs while maintaining data integrity.
However, with limited resources and even limited budgets, a methodology for traditional
IT implementation is neither effective nor desired [5].

The Cloud Computing [6], as a technology option for data and business processes, took
credible foothold in recent times in several industry sectors including financial services.
This paper details the "must knows" to implement an efficient and secure information
management framework in a cloud environment. We will, first, explore the various
delivery and deployment of cloud models available to a bank.

The security must be your cloud provider’s top priority. As matter of fact, the highest
portion of Amazon Web Services (AWS) investments is dedicated to increase this level of
security is based on a model of shared responsibility: AWS [7] ensures the security of the
lower layers (physical buildings, networks, virtualization...), and you are responsible for
the security of your applications, OS and data on which you have total control (e.g.,
administrator access to VM).

This means that you apply the same rules of security on your applications in the cloud
infrastructure.
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3. Homomorphic Cryptosystems

Cloud Encryption is the only solution that offers the convenience of encryption and key
management in virtualized environments, without giving up data confidentiality.

Security requirements for data and algorithms have become stricter throughout the
latest years. Due to the large growth of the technology, a wide variety of attacks on digital
assets and technical devices are activated. For storage and safe data reading, there are
several possibilities such as data encryption. The problem becomes more complex when
asking to perform computation on encrypted data. This is where the homomorphic
cryptographic systems can be used.

The partial homomorphic encryption allows some operations on encrypted data without
decrypting it, examples: RSA, Paillier.

3.1. Multiplicative Homomorphic Encryption

The multiplicative homomorphic encryption
Dk(Ek(n) X Ek(m)) =nxm QU Ek(x®y) = Ek(X) & Ek(y)

Example of Multiplicative Homomorphic Encryption (RSA) [8]:

RSA : Multiplicative homomorphic encryption

Let n = pg, such that p and q are relatively prime, a and b are
selected such that ab =1 (mod ®(n)).
n and b are public; p, g and are private.

Ex(x) = x* mod n

Di(y) = y* mod n

Ek(x1) % Ek(x2) = xlb x2b mod n = (x1x2)b mod n = E(X1X2)

3.2. Additive Homomorphic Encryption

' The additive homomorphic encryption
DL(EL(!‘!) x E;_(m)) =n+m OU Ek(X @y) = Ek(x) ® Ek(y)

Example of Additive Homomorphic Encryption (Paillier) [9]:

Paillier : Additive homomorphic encryption

Let p and gq be two large prime numbers, et n = pg. A denotes the
Carmichael function as, A(n) = gem(p — 1,9 — 1).

Let g € Z} a random as L(g* mod n?) is invertible modulo n (ol
L(u) = “=1). n and g are public; p et q (or A) are private.

Ex(x,r) = g*r" mod n?

A 2
Di(y) = {1 mogm) mod

Ex(x1,11)XEk(x2,12)=0" ¥ 2(r1r9) mod n? = Ex(xq +x,1119)
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3.3. Somewhat Homomorphic Encryption (DGHV) [10]

Encryption settings: r, pet q, r ~ 2", p ~ 2"2 g ~ 2"° p prime, p
is the private key.

Ex(x) = pg +2r +x

Di(y) = (y mod p) mod 2

Proof : pq is greater than 2r+x
thus y mod p = 2r + x
at last (y mod p) mod 2 = (2r + x) mod 2 = x

For two ciphertexts ¢ et ¢y :

c1 +e2=(q) +a)pF2(ry frp)tmy tmy

So, if : 2(r] +rp) + my + mp <<p

Then (c] + ¢cp) mod p =2(r] + 1) + m| + mp

so, it is homomorphic for addition

cp xe2= [qrqgp +(2rq +my) + (2ry + mp)]p + 2(2ryrp +rymy +rymy) +mymy
So, if: 2(2rirp+rymy+romy)+tmymy <<p

Then (¢ % ¢p) mod p = 2(2rirp + rym; + romp) + mymy

S0, it is homomorphic for multiplication

4. Simulation and Analysis
Practical evaluation is performed in a MacBook Pro (MacBookPro 9,2), with the
following characteristics:
Intel Core i5 @ 2000 MHz 4 GB - DDR3 @ 1600 MHz
Intel HD Graphics 4000
4.1. Result of RSA Simulation:
For RSA, the Following Table Shows the Different Simulation Values

Table 1. Simulation Results of RSA Multiplicative Homomorphic Encryption

Key sze

RSA 5% il 104 48
Ectypion e CLCE | D4 i oL e | Dt eyt e C4C) e | DL e[y e CLCE e | Do)
i Bms | dms | oms | Bms | dms | bms | BBms | Ums | Woms | 136ms | Ums | Dhoems
10K Bms | Ums | Sms | 3dms | Bms | 33%ms | 260Tms | Thms | 23435ms | I68dEms | Bdms | 176348ms
100K8 4060Tms | 96ms | 40676ms | 26084ms | 2330ms | 284736ms
Treatement duration

Wit
s e
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Figure 1. The RSA Encryption
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Figure 2. The Multiplication Time
of Two Ciphertexts (C1xC2)
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Figure 3. Decryption Time Dec (C1xC2)

e For 1KB text size, RSA homomorphic cryptosystem is able to encrypt, multiply two
cleartexts and decipher the result of the multiplication using a 2048 key size.
e For 10KB text size, RSA homomorphic cryptosystem is able to encrypt, multiply two
cleartexts and decipher the result of the multiplication using a 2048 key size, but with
a very elevated processing time.
e Fora 1024 key size the RSA homomorphic cryptosystem is no longer able to multiply
two ciphertexts of 100KB each, so it is limited in 1024 key size and 100KB cleartext

size.

4.2. Result of Paillier Simulation:

For Paillier, The following table shows the different simulation values

Table 2. Simulation Results of Paillier Additive Homomorphic Encryption

Key size
Paillier % 3] 104 14
Enrypin i | (CLACE) e | Dee L2 i | Enrypion b (CLACE) time | DecfC14C0) | nerypton tre (CLAC) e | D CL4CE) i iyt i CLACE e | DefCCR) e
1B 1346ms | Bms | 6Ims | 867tms | Tims | 17010ms | 6306dms | 175ms | 126209ms | 48397Sms | S26ms | 971372ms
5% 10kB 11438ms | 2dms | 2053ms | 79584ms | S69ms | 162244ms | 624020ms | 1798ms |1186745ms |1395256ms| 2265ms | 1404403ms
" 100K8 107600ms | 190ms | 2408205 | e | e | ]| e | e | e | | e

Treatement duration
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Figure 4. The Paillier Encryption
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Figure 5. The Multiplication Time
of Two Ciphertexts (C1xC2)

Treatment Duration (s)

1600

1400

1200

1000

==1Ko

800

=—=10Ko

600

400

200

256

512

1024 2048

Key size
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For 1KB text size, Paillier homomorphic cryptosystem is able to encrypt, multiply

two cleartexts and decipher the result of the multiplication using a 2048 key size, with
a processing time of 16.18 minutes.

For 10KB text size, Paillier homomorphic cryptosystem is able to encrypt, multiply

two cleartexts and deciphering the result of the multiplication using a 1048 key size,
but with 19.77 minutes for deciphering, and 23 minutes to decipher the result using

2048 key size.

For a 512 key size the Paillier homomorphic cryptosystem is no longer able to

multiply two ciphertexts of 100KB each, so it is limited at 512 key size and 100KB of

cleartext.

4.3. Result of DGHV Simulation:
For DGHYV, the following tables show the different simulation values

Table 3. Simulation Results of DGHV Additive Homomorphic Encryption

Key size
DGHV [Addition) [ 128
Encryption time | [C1+C2) time | Dec|C1+C2) time | Encryption time | [C1+C2) time | Dec|C1+C2) time
Text zise 128 bytes 44165ms 8527ms 2688ms 30B1206mMS | e | e
256 bytes 53723ms | 19836ms 6256mMs | e | e | e

Treatement duration

66

Copyright © 2015 SERSC




International Journal of Security and Its Applications
Vol. 9, No. 6 (2015)

Table 4. Simulation Results of DGHV Multiplicative Homomorphic

Encryption
Key size
DGHV [Multiplication) 54 128
Encryption time | (C1xC2) time | Dec|C1xC2) time |Encryption time | [C1xC2) ime | DeclC1xC2) time
Text zise 128 bytes 46112ms | 1536dms | 10401ms [ 2B55851ms| ==we--
256 bytes 55254ms

Treatement duration

e For 10KB text size, DGHV additive homomorphic cryptosystem is able to encrypt,
multiply two cleartexts and deciphering the result of the multiplication using a 1048
key size, but with 19.77 minutes for deciphering, and 23 minutes to decipher the
result using 2048 key size.

e Fora512 key size the DGHV multiplicative homomaorphic cryptosystem is no longer
able to multiply two ciphertexts of 100KB each, so it is limited at 512 key size and
100KB of cleartext.

5. Hybrid Homomorphic Encryption Applied to Banking Data in the
Cloud

5.1. Application’ Scheme
Our application scheme is as follows:

2- The bank's client application encrypts the banking data using the
BANK public key already generated, and sends them to the Cloud server.

T

g .
| 3- The bank sends the server an encrypted request. { S
ll 4- The Cloud server performs the requested operation and returns Cloud Server
_ the encrypted result to the bank.

1- The bank's client application
generates the public and
private keys [RSA & Paillier).

5- The bank's client application
decrypts the result of the
operation sent by the Cloud
server using the secret key
already generated.

Figure 7. Scheme Representing the Link between a Client Company (Bank)
and its Data Hosted in a Cloud Provider Server

VPN network linking the customer company (bank) with the server in the cloud;
Our Cloud platform is set on a Citrix [11] server.

1. The bank's client application generates encryption keys with Paillier and RSA
cryptosystems, encrypts data, and transmits it to the cloud server

2. The names and account numbers of customers are encrypted with RSA to enable
keyword search in the encrypted data without decrypting it.

3. The sum of deposits for each customer's account is encrypted with Paillier to allow an
addition operation on all the accounts of the same customer.

4. The bank sends a request to calculate the total amount of the customer’s deposits

The Cloud server performs the calculations on encrypted data and return the

encrypted result to the bank

o
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6. Using the private key, the client application decrypts the encrypted result and obtains
the same sum as if the calculation was carried out on the raw data.

5.2. Parameters and Results

For our banking application, the data to be encrypted does not exceed 1KB (Name,
Account number and amount of money). So we chose to execute a keyword search
processing on an encrypted database and compute the sum of a customer deposits, whose
data has been encrypted and stored in the cloud using a 1024 key size for RSA that
requires 2,384s to encrypt, 11ms to calculate the product of two ciphertexts and 2,37s for
deciphering.

For Paillier homomorphic cryptosystem we chose a key size 512 that requires 8,671s to
encrypt, 71ms to compute the sum of two ciphertexts and 17,01s for deciphering,

At the level of the bank application, we have this database:

Account-1D Last Name First Name Account Number | Amount Money
2 Tebaa Maha 1230001 10000 MAD
3 Tebaa Maha 1230002 200500 1MAD
4 Kik Karim 1250001 J0000 MAD
5 ik Karim 1250002 10500 MAD
a E1l Hajji Said 1240001 20000 MAD
Fi E1l Hajji Said 1230002 20000 MAD

At the level of the Cloud server, data is stored encrypted:

2 141479584167345: 0067857878412112; 15951989389425504° 33853755614290810588889489148
3 141479584167345: 00678578784121121 15951989389425504° 16772414756787303872894522836
41134150767924082(| 0763165154812574! | 15951989389425504° | 36600050860816331986748394990
5 134150767924082( 0763165154812574' 15951989389425504° 20037575252764582448060162753
6|063026381043247¢  1807227423402023: | 15951989389425504 | 81864430013579931704286906475
7 063026381043247¢ 1807227423402023: 15951989389425504° 13065914010218813318969355515
The customer’s name encrypted The customer account balance encrypted
using RSA using Paillier

1414795841 82042993956449419 4 338537556142908105888 4
3287576151 34753157790479327 | § 894891483452611354170
135542803873784447954116553253373 |= 117883866940775163211
5947675308700114 46127375157680286 287391198765416289137 |
387321783207502072391425418086126 245550284027670295835 |~
570713377529632930179550705356173 756364548741174643811
875468795690130193563599200109527 T49360470221601493786
187770837622557760411789327604295 562704766165901158843 —
593221180808661177371167684776010 108489515108459904744
8832719 a0 289390159599353216337
918726583987848468900000551174700 025798956276633735557
930484756624413692849669259305027 €73517907615767041218
108844576761099897131417919487¢664 163896812895609556879
13975056267973305816332679516027 584046779555661621652
245318119774259887588570491031439 458259592856430229941 ~

68 Copyright © 2015 SERSC



International Journal of Security and Its Applications
Vol. 9, No. 6 (2015)

Solde total

Calculer solde

Indeed, the Balance of all the Accounts Hold by the Customer “Tebaa Maha” is
10000MAD+200500MAD= 210500 MAD

5. Conclusion

This hybrid system to respect the confidentiality and privacy of the database of bank
accounts stored in the cloud will encourage cloud providers to integrate the homomorphic
encryption in the deployment of their security solutions, to encourage banks to enjoy the
benefits cloud computing [12], among the problems that exist is the management of
private keys generated at the bank, you have to predict a very elevated level of protection
and have a backup system to store the encryption keys and deciphering, because it is the
only information that allows to access the encrypted data stored in the cloud.
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