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Electroencephalography (EEG) is a portable brain-imaging technique with the advantage

of high-temporal resolution that can be used to record electrical activity of the brain.

However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts,

and which potentially results in misleading conclusions. Also, it is a proven fact that

the contamination of ocular artifacts cause to reduce the classification accuracy of a

brain-computer interface (BCI). It is therefore very important to remove/reduce these

artifacts before the analysis of EEG signals for applications like BCI. In this paper, a

hybrid framework that combines independent component analysis (ICA), regression and

high-order statistics has been proposed to identify and eliminate artifactual activities

from EEG data. We used simulated, experimental and standard EEG signals to evaluate

and analyze the effectiveness of the proposed method. Results demonstrate that the

proposed method can effectively remove ocular artifacts as well as it can preserve the

neuronal signals present in EEG data. A comparison with four methods from literature

namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA)

confirms the significantly enhanced performance and effectiveness of the proposed

method for removal of ocular activities from EEG, in terms of lower mean square error

and mean absolute error values and higher mutual information between reconstructed

and original EEG.

Keywords: electroencephalography, electrooculography, ocular artifacts, independent component analysis,

regression analysis, median absolute deviation, composite multi-scale entropy, kurtosis

INTRODUCTION

Nowadays, researchers have been using non-invasive neuro-physiological techniques to understand
the functional dynamics of the brain (Jöbsis, 1977; Friston et al., 1994; Kiebel et al., 2009; Kamran
et al., 2012, 2015; Hogervorst et al., 2014). Electroencephalography (EEG) is a portable and high-
temporal resolution brain-imaging method that can be used for quantitative analysis of the brain’s
different functional states (Gwin et al., 2010; Kamran and Hong, 2013, 2014; Zeng et al., 2013;
Sameni and Gouy-Pailler, 2014; Schmüser et al., 2014). However, a recorded EEG signal is highly
contaminated with non-neuronal activities from different sources like eye blinking, eyemovements,
muscle movements, and electrocardiography (ECG) (Xia et al., 2014; Zaho et al., 2014; Mannan
et al., 2016). Eye movements and blinking generate major artifacts with high magnitudes as
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compared to the pure neuronal activity (Berg and Scherg, 1991;
Wallstrom et al., 2004; Dimigen et al., 2011). Such interferences
are commonly known as ocular artifacts (Corby and Kopell, 1972;
Gratton et al., 1983). Also, it has been proven that these artifacts
diminish the classification accuracy of brain-computer interface
(BCI) applications (Fatourechi et al., 2007). Therefore, for EEG
signal analysis, a method is required that can efficiently remove
ocular artifacts without distorting and losing neuronal-activity-
related EEG signals.

In the past, several manual and automated methods have been
developed to deal with this challenging task. One straightforward
approach to the reduction of ocular artifacts is to prevent eye
movements as much as possible, though requiring this and
achieving it are two very different things. Another commonly
employed solution is to discard those epochs of EEG data that
contain ocular artifacts, but this can also cause to loss neuronal-
activity-related EEG data. Alternatively, several automated
methods for detection and removal/reduction of ocular artifacts
have been proposed. These methods can be divided into two
groups: regression-based methods (Croft and Barry, 1998a,b,
2000a,b; Wallstrom et al., 2004; Croft et al., 2005; Romero
et al., 2009) and blind source separation techniques (Barbati
et al., 2004; Joyce et al., 2004; Hoffmann and Falkenstein, 2008;
Ghandeharion and Erfanian, 2010; Javidi et al., 2011; Winkler
et al., 2011; Mahajan and Morshed, 2015).

Regression methods are based on a simple methodology
entailing the subtraction of electrooculography (EOG) signals
from EEG signals after estimation of the ocular artifacts
propagation coefficients (He et al., 2004; Klados et al., 2011; Peng
et al., 2013). Removal of ocular activities using regressionmethod
is based on an invalid assumption that there is no correlation
between the neuronal activity in EEG signal and EOG signals
(Sadasivan and Narayana, 1996; Jervis et al., 1998). As a result,
regression analysis eliminates the neuronal activity common to
both EEG and EOG from EEG signals. Regression methods are
computationally simple but their outcome is highly effected by
bidirectional contamination (Klados et al., 2011). The schematic
diagram of a representative regression method is shown in
Figure 1A.

Alternative to regression methods, blind source separation
assumes that artifactual activities and cerebral activities are
independent of each other. Independent component analysis
(ICA) is themost commonly employedmethod which utilizes the
assumptions of blind source separation technique (Iriarte et al.,
2003; Barbati et al., 2004; Kong et al., 2013). In general, ICA
decomposes multi-channel EEG signals from different sources
into independent components (ICs). Recently, ICA emerged
as a valuable tool for removing ocular artifacts from EEG
signals because it does not experience the disadvantages that
are suffered by regression analysis. Although the performance
of ICA is promising, it should be employed with care (Stone,
2002). Most of the ICA based studies focused extensively on
the removal of artifacts from EEG signals (Tran et al., 2004),
while the effect of the method on the neuronal part of EEG
signals have been neglected (Castellanos and Makarov, 2006).
Additionally, the selection of artifactual components has been
done by visualizing the topographic maps and time series of

the ICs (Jung et al., 2000a; Iriarte et al., 2003; Makeig and
Onton, 2009), thus highly depending on the expertise of the
researcher. Usually this manual identification leads to divergent
results (Plöchl et al., 2012). In recent years several automated
methods to identify and remove artifactual ICs have been
developed (Bian et al., 2006; Mammone and Morabito, 2008;
Winkler et al., 2011; Plöchl et al., 2012; Kong et al., 2013). These
methods proved to be effective in terms of artifact reduction
and computational cost but removing artifactual ICs may cause
some amount of neuronal activity loss from the EEG signal
(Barbati et al., 2004; Castellanos andMakarov, 2006; Klados et al.,
2011). Figure 1B demonstrates the removal of ocular artifacts
using ICA.

This study presents a novel automatic artifact removal
methodology for EEG signals analysis that proceeds by
combining the advantageous features of ICA and regression
analysis. ICA is used to decompose EEG data into different
ICs, which are then separated into neuronal and ocular
components by two statistical measures, namely composite
multi-scale entropy and kurtosis. Then, in the proposed method’s
second step, high-magnitude ocular activities are removed from
identified artifact-related ICs by usingmedian absolute deviation.
In the third step, the artifact-related ICs are further processed
to a linear regression model in order to completely remove
ocular artifacts and to recover the neuronal activities from
the ICs. Finally, in the fourth step, all of the ICs (neuronal-
activity-related ICs and ICs reconstructed by the proposed
method) are back-projected to reconstruct artifact-free EEG
signals. In this study, we assumed that artifactual activities are
included in few components, therefore, the neuronal activity
present in those components will be minimal. It can be further
assumed that the neuronal activity present in artifactual ICs
is very low as compared to that of present in EEG, which
means that the common neuronal activity between artifactual
ICs and EOG signal will be minimum. In this way, applying
regressions to artifactual ICs causes less removal of neuronal
activity. Thus, only ocular artifacts related to EOG signals are
removed, while the remaining neuronal activity in the artifactual
component is projected back. In this way the reconstructed
EEG incorporates more neuronal information compared to the
previous methods. Moreover, simulated datasets are utilized to
compare and evaluate the effectiveness of the proposed method
with four conventional methodologies from the literature, (1)
ICA (Mognon et al., 2010), (2) least mean square based regression
method, (3) wICA (Castellanos and Makarov, 2006), and (4)
REGICA (Klados et al., 2011). The performance evaluation
indexes employed are the mean square error and the mean
absolute error in time- and frequency-domain, respectively.
Additionally, mutual information is utilized to estimate the
common information between reconstructed EEG signal and
artifact-free EEG signal. Also, significant improvement in
removing ocular activities from EEG data achieved by the
proposed method relative to the conventional methods is
statistically validated by using paired t-test. Moreover, the
qualitative results on real EEG datasets further enhance the
effectiveness of the proposed method. The results demonstrate
that the proposed framework can be utilized as an effective
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FIGURE 1 | Schematic diagrams. (A) Regression method. (B) Independent component analysis.

TABLE 1 | Summary of the proposed method.

Input: Contaminated EEG data, vertical EOG, horizontal EOG

Output: Artifact-free EEG data

1. Decompose contaminated EEG data using ICA to get ICs

2. Calculate composite multi scale entropy and kurtosis to identify ocular artifact

related ICs

3. Apply median absolute deviation to remove high magnitude ocular artifacts

4. Filter ICs with linear regression model and extended recursive least squares

5. Artifact-free EEG data by back projecting all ICs using inverse ICA

method for automatic detection and removal of ocular activities
from EEG data. Figure 2 shows the schematic diagram and
Table 1 lists the summary of the proposed method, respectively.

MATERIALS AND METHODS

Materials
We used simulated, experimental, and standard EEG datasets to
illustrate the effectiveness of the proposed method.

Simulated Datasets
The primary tool to analyze the performance and effectiveness
of any method is its utility for removal of ocular activities from
simulated EEG datasets. For this analysis, artificially simulated
EEG datasets with EOG signals were sampled from Klados et al.
(2011). In this dataset, 54 artifact-free (27 in eye open session
and 27 in eye closed session) EEG and EOG epochs of 30 s
duration were recorded from 27 healthy participants. Nineteen
EEG electrodes positioned according to the international 10–20
system (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, T7, T8, P7,
P8, P3, P4, O1, and O2) were used for acquiring EEG signals.
Electrodes with odd and even indices were referenced to the
left and right mastoids, respectively. Central electrodes were
referenced to the half of the sum of the left and right mastoids. In
this study, we only used 12 datasets to analyze the performance
and effectiveness of the proposed method. All the data were

sampled at 200 Hz. The EEG and EOG data were filtered between
0.5–40 and 0.5–5 Hz, respectively.

Finally, the contaminated EEG was generated by Elbert’s
contamination model (Elbert et al., 1985) as

CEEGi = PEEGi + aivEOG+ bihEOG, (1)

where CEEGi ∈ ℜ1×N and PEEGi ∈ ℜ1×N are the artificially
contaminated and pure EEG signals, vEOG ∈ ℜ1×N and hEOG ∈
ℜ1×N are the vertical and horizontal EOG signals,N is the sample
size, ai ∈ ℜ and bi ∈ ℜ are the contamination coefficients
initialized according to Lins et al. (1993) and i represents the
electrode.

Experimental Datasets
Simultaneous EEG and EOG data were recorded from 11
healthy participants, all male, mean age 28. Experiment was
performed in accordance with the guidelines of theDeclaration of
Helsinki. All participants provided written, informed consent to
participation in this study. Experimental protocol was approved
by the Institutional Review Board of Pusan National University.
The participants were students of Pusan National University
who all had reported normal or corrected-to-normal vision. The
experiment was performed in a quiet room with dim lighting to
prevent environmental disturbances.

Each participant was seated in an armchair at a distance
of about 1m from a 15.6′′ laptop screen (Samsung, resolution
1366 × 768). The experimental protocol was as follows. At the
start of the experiment the subject was instructed to close his eyes
for 10 s. A sound beep was used to indicate the subject to open
their eyes. Five different word cues (blink, move up, move down,
move right, move left) were used in the experiment. Subjects were
asked to blink their eyes or move them vertically or horizontally
according to the eight visual cues that appeared for 2 s each at the
center of the screen. The interval between the cues was 3 s. At the
end of experiment, each subject was again asked to close his eyes
for 10 s.

EEG data were acquired using an ActiCap 32-channel active
electrode system with a BrainAmp DC amplifier (Brain Products
GmbH, Gilching, Germany). The sampling rate of the data
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FIGURE 2 | Schematic diagram of the proposed method.

was 250 Hz. The scalp electrodes were positioned, as shown
in Figure 3A, according to the international 10–20 system. The
impedance of all electrodes was reduced below 5 k�. The data
were band pass filtered between 0.5 and 40Hz.

EOG data were acquired using the BrainAmp ExG system
(Brain Products GmbH, Gilching, Germany). The electrode
placement was as indicated in Figure 3B. The data were band
pass filtered between 0.5 and 5 Hz.

Standard Dataset
The principal evaluation measure of the effectiveness of the
proposed method is its ability for removal of ocular activities
from standard datasets. For this, an ocular artifacts-contaminated
EEG datasets with EOG signals were sampled from the
Physiobank database (Goldberger et al., 2000). In this dataset,
each participant had been asked to spell a total of 20 characters
from a 6 × 6 matrix speller. The signals recorded comprised
64 EEG electrodes, two earlobes referencing, and horizontal and
vertical EOG for artifact removal. Twelve subjects’ data were
acquired with a sampling rate of 2048Hz (see Citi et al., 2010 for
details). In the preprocessing part, we removed the baseline from
all of the data. The EEG and EOG data were band pass filtered
between 0.5–40 and 0.5–5 Hz, respectively.

Methods
Independent Component Analysis
ICA is a computational and statistical method used to decompose
multi-channel datasets into various ICs under the following
assumptions (Delorme et al., 2007):

(1) The maximum number of ICs must be less than or equal to
the number of electrodes used to acquire EEG data;

(2) The neuronal and artifactual sources are independent of each
other and linearly mixed;

(3) Propagation delays from the brain sources to the electrodes
are negligible.

The basic aim of ICA is to find linear projections of the data that
maximizes their mutual independence. Mathematically,

x(k) = As(k), k = 1, 2, 3, ...,N (2)

where x(k) ∈ ℜM×1 represent the recorded EEG signals, s(k) ∈
ℜM×1 represent the corresponding ICs, A ∈ ℜM×M represent
the full rank unknown mixing matrix, k represents the discrete
time, and M represents the number of electrodes. Since the ICs
contributing to EEG signals are unknown, in this study it was
supposed to be equal to the number of EEG electrodes used to
record signals. Given x(k), the issue is how to estimate both A

and s(k). The ICs ŝi(k), i = 1, 2, 3, ..., M can be described as

ŝi(k) = wT
i x(k), k = 1, 2, 3, ...,N (3)

where wi is a column vector. After estimation of each wi, the ICs
can be calculated as

ŝ(k) = Wx(k), W ≈ A−1 (4)

We employed infomax ICA method with default parameters
using the runica function of the EEGLAB tool box (MATLAB,
CA, US) (Delorme andMakeig, 2004). These parameters involved
pre-sphering of the data to stop training if the weight change
was < 10−6.

Regression Model
The regression methods assumes that the observed EEG signal is
a combination of the EOG signals and the true EEG signal, where
the latter is the unobserved signal that would have been recorded
without any artifact contamination. The linear model to relate
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FIGURE 3 | Electrode configurations (A) Electroencephalogram (EEG). (B) Electrooculogram (ExG).

the observed EEG signal to the observed EOG signal and the true
EEG signal can be represented as Klados et al. (2011)

oEEGi = tEEGi + αivEOG+ βihEOG, (5)

where oEEGi ∈ ℜ1×N and tEEGi ∈ ℜ1×N are the observed and
true EEG signals at the ith electrode respectively.

In this study, an extended recursive least squares method was
utilized to approximate the parameters of the regression model.
Extended recursive least squares is an adaptive tracking scheme
that estimates the state of a process by employing a recursively
updated regularized linear inversion routine. Extended recursive
least squares offers a better tracking performance in finding
optimal parameters than does the recursive least squares method
(Liu et al., 2009). The extended recursive least squares method
is an adaptive filter which recursively finds the coefficients that
minimize a cost function relating to the input signals. The
coefficients are estimated in each recursion on the basis of error
in the estimation. Mathematically, it proceeds (Hansen et al.,
2013) by expressing the linear regression model Equation (5) for
a particular electrode i as

εi(k) = oEEGi(k)− oEÊGi(k), (6)

oEÊGi(k) = X(k)θ̂i(k− 1), (7)

θ̂i(k) = θ̂i(k− 1)+ K(k)εi(k), (8)

K(k) = P(k− 1)X(k)
[

I + XT(k)P(k− 1)X(k)
]−1

, (9)

P(k) = P(k− 1)− P(k− 1)X(k)XT(k)P(k− 1)
[

I + XT(k)P(k− 1)X(k)
]

, (10)

where εi(k) is the estimation error, oEÊGi is the estimation of
oEEGi, X(k) is the matrix containing vEOG(k) and hEOG(k),
θ̂ i = [α̂i β̂i] is the parameter vector, K(k) is the weighting vector
for parameter updating, and P(k) is the input covariance matrix
updated at each time step k. The initial value P(k) is chosen to be
δI, δ = 10.

Finally, the estimated true EEG can be calculated by
subtracting the estimated EOG signals from the observed EEG
signal using the formula

∧
tEEG i = oEEGi − α̂ivEOG− β̂ihEOG, (11)

where the indicator .̂ represents the estimated variables.

Features for Identification of Ocular Artifacts-Related

ICs

Composite multi-scale entropy
Quantifying the amount of regularity for identification of the
artifactual ICs in a physiological signal using entropy has been
found to be very useful. An efficient method to compute
the entropy values of the physiological signals was developed
(Costa et al., 2005), and has been successfully applied to extract
more information on physiological signal regularity than can
Shannon’s or Renyi’s entropy (Bosl et al., 2011). Thus, in the
present study, ocular artifacts-related ICs were identified by
composite multi-scale entropy (Wu et al., 2013).

The intuition that composite multi-scale entropy can detect
ocular artifact related ICs lie in the fact that artifactual
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components have low entropy values because its pattern is more
typical as compared to neuronal activity. So, composite multi-
scale entropy could be used as a good statistical measure for
recognition of ocular components. Mathematically, composite
multi-scale entropy can be calculated as below:

(1) Let ui be the ith IC, the lth coarse-grained time series for a

scale factor of τ , z
(τ )
l

=
{

z
(τ )
l,1

z
(τ )
l,2

· · · z(τ )
l,p

}

can be defined as

z
(τ )
l,j

= 1

τ

τ+l−1
∑

i=(j−1)τ+l

ui, 1 ≤ j ≤ N

τ
, 1 ≤ l ≤ τ (12)

(2) In the composite multi scale entropy algorithm, at a scale
factor of τ , the sample entropies (SampEns) of all coarse-
grained time series are calculated and the composite multi
scale entropy value is defined as the mean of τ entropy
values. That is

CMSE(u, τ,m, r) = 1

τ

τ
∑

l=1

SampEn (z
(τ )
l

,m, r) . (13)

whereCMSE defines composite multi scale entropy. In this paper,
the composite multi scale entropy was calculated from τ =
1 to 20, and the sample entropy of each coarse-grained IC was
calculated with m = 2 and r = 0.15σ , where σ is the standard
deviation of the IC (Costa et al., 2005; Wu et al., 2013).

Kurtosis
Kurtosis is a statistical measure of peakedness of distributions in
random variables. The global kurtosis coefficient of the ith IC can
be computed (Barbati et al., 2004) as

K(i) = m4(i)− 3m2
2(i), (14)

mn(i) = E{(x(i)−m1(i))
n}, (15)

wheremn is the nth central moment,m1 is the mean, and E is the
expectation operator. Ocular artifacts-related activities typically
have a peaked distribution and a high kurtosis value in EEG
recordings. So, kurtosis can be used as a good measure to detect
ocular artifacts-related ICs. In this study, an inbuilt function of
Matlab, kurt.m, was utilized to calculate the kurtosis values of
all ICs.

Procedure for Identification of Ocular Components
After ICA decomposition of EEG signals, composite multi-scale
entropy and kurtosis are calculated for all ICs. As ocular artifacts
are notable outliers with high-magnitudes, they can be identified
using reasonable threshold for entropy and kurtosis. Ocular
artifacts-related ICs are identified using a two-tailed t-test with
a 95% confidence interval. As explained earlier, the expected
values of entropy for artifactual ICs is low, therefore the 95%
convergence interval is used as the lower-limit threshold,

θL = x− s√
N

× tM−1, (16)

where θL represents the lower limit for the entropy values
as a threshold, x is the mean of the entropy values for all
components, s is the standard deviation of the entropy values for
all components,M is the total number of components, and tM−1

is the corresponding t-value. All components with entropy values
below the threshold are assumed to be artifactual ICs and selected
for reconstruction.

Because it is expected that the kurtosis values for artifactual
ICs are high, the upper limit of the 95% convergence interval for
the mean is used as the threshold:

θU = x+ s√
N

× tM−1, (17)

where θU represents the upper limit for the kurtosis value as a
threshold.

Procedure for Reconstruction of Artifactual ICs
At this stage of the algorithm, artifactual ICs identified using
composite multi-scale entropy and kurtosis are processed for
artifact removal. ICs identified as artifactual components might
also contain considerable neuronal activity (Castellanos and
Makarov, 2006). Also, there is a notable difference between
the amplitudes of ocular and neuronal activities. Indeed, ocular
artifacts are of high magnitude, and can be localized in the time
domain (Castellanos and Makarov, 2006). Removing these ICs
by replacing them with zero cause considerable loss of EEG data
and discards results. In this study, a multi-step methodology is
adopted to tackle this problem. The first step yields the removal
of high-magnitude ocular activities by setting them to zero. In
this way, neuronal activity present in the artifactual ICs can be
retained. In this paper, we used median absolute deviation to
identify and eliminate outliers from the ICs (Leys et al., 2013).
Mathematically, median absolute deviation can be calculated as
below:

(1) Evaluate the median absolute deviation of the identified ocular
activity among the identified artifactual ICs (median absolute
deviation is defined as the median of the absolute deviations
of each time point from the median)

MAD = bM
(∣

∣ui(k)−M(ui)
∣

∣

)

(18)

where MAD represents median absolute deviation, M
represents the median,M(ui) represents the median of the ith
artifactual IC, b is a constant;

(2) If ui(j) exceeds the criteria calculated using Equation (20), it is
thresholded to zero:

M(ui)− 3×MAD < ui(k) < M(ui)+ 3×MAD, (19)

ui(k)−M(ui)

MAD
> | ± 3| . (20)

This procedure will remove only those ocular activities that can
be easily visualized and are identifiable in the artifactual ICs. In
the next step, the ICs are processed to remove further ocular
artifacts and to compensate for the possible loss of the neuronal
signal in the first step. The expected neuronal activity present
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in the contaminated EEG signal is much higher as compared
to that of present in the artifactual component, therefore it
can be supposed that these ICs contain less information similar
to EOG signals. In this way, applying regression to artifactual
ICs will result in less removal of useful information. A linear
regression model can be used to describe the contamination of
artifactual ICs according to the linear model (Equation 5). So,
the model described in Equation (5) receives artifactual ICs as
input and EOG signals as reference. To estimate the coefficients
of the EOG signals, an adaptive filter based on the extended
recursive least squares described in Equations (6–10) can be used.
The artifact-free ICs are calculated by subtracting the estimated
EOG for the contaminated ICs using Equation (11). Finally, all
of the ICs are back-projected to reconstruct the cleaned EEG
data.

ALTERNATIVE METHODS

In this section, the conventional methods used for comparison
purpose are described. Additionally, the procedure for manual
detection of artifactual ICs by experts is also described.

Regression Method
Regression method is implemented as follows

1. EOG parameters are estimated by applying least mean squares
estimation.

2. Estimated vEOG and hEOG are subtracted from EEG to
reconstruct artifact-free EEG.

ADJUST Based ICA
ICA method is implemented as described by Mognon et al.
(2010). The step-wise implementation is described below

1. ICA decomposition of EEG signals.
2. Artifactual ICs are identified by combining stereotyped

artifact-specific spatial and temporal features.
3. Features are optimized to detect eye movements and blinks.
4. Removal of artifactual ICs.
5. Inverse ICA to obtain artifact-free EEG signals.

In this paper, a plugin of EEGLAB toolbox is used to implement
ADJUST.

Wavelet-ICA
wICA is implemented as described by Castellanos and Makarov
(2006).

1. EEG signals are decomposed into ICs using ICA.
2. Apply wavelet transform to ICs.
3. Threshold wavelet coefficients to remove artifacts.
4. Inverse wavelet transform to obtain artifact-free ICs.
5. wICA reconstructed EEG by inverse ICA.

REGICA
REGICA is implemented as follows (Klados et al., 2011)

1. ICA decomposition of EEG signals.
2. Filter the ICs using stabilized recursive least squares method

with EOG signal as reference.

TABLE 2 | Performance comparison of the proposed method and ADJUST

for identification of ocular artifact related ICs with manual detection.

Parameters/Methods Proposed ADJUST

True Positive (TP) 51 44

False Positive (FP) 10 13

True Negative (TN) 285 282

False Negative (FN) 6 13

Average Sensitivity 89.47% 77.19%

Average Specificity 96.61% 95.59%

Agreement Rate 95.45% 92.61%

3. Back projection of all ICs to reconstruct EEG signal.

In this paper, REGICA has been implemented as a plugin of the
EEGLAB toolbox.

Identification of the Artifactual ICs by
Experts
In this article, a combination of kurtosis and entropy based
identification criteria is developed to use for automatic detection
of ocular artifact related ICs. The validation of this identification
procedure is done by comparing the results with manual
identification of two independent EEG experts. For this
validation, topographic maps and time series of all the ICs were
shown to the experts to identify ocular artifact related ICs.

EVALUATION INDEXES

Mean Square Error and Mean Absolute
Error
In this paper, the performance and effectiveness of the proposed
method and conventional methods were evaluated by utilizing
the mean square error and mean absolute error criterion. Mean
square error was defined (Peng et al., 2013) as

MSE =
N

∑

n=1

[EEGout − EEGin]
2

N
, (21)

where EEGout is the reconstructed EEG from the proposed
method and EEGin is the artifact-free EEG. An effectivemethod is
supposed to remove all artifacts so that the output EEG is as close
as possible to the pure EEG; thus, the mean square error between
them should be as low as possible.

Mean absolute error is defined to measure the distortion
across different frequency bands, delta (0.5–4Hz), theta (4–
8Hz), alpha (8–12Hz), beta (12–30Hz), and gamma (30–40Hz)
(Klados et al., 2011)

MAE = |PinEEG − PoutEEG| , (22)

where P denotes the power spectrum density (PSD). PSD is
estimated using Welch method with parameters, 200 sample
points as the length of window and 5 sample points overlap.
The average PSD for each frequency band was calculated for all
subjects.

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2016 | Volume 10 | Article 193

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mannan et al. Ocular Artifact Removal from EEG

FIGURE 4 | Comparison of the proposed method with ICA and regression analysis using simulated dataset. (A) Simulated true EEG data. (B) Artificially

contaminated EEG data. (C) Reconstructed EEG by the proposed method. (D) Comparison of the proposed method and ICA reconstructed EEG with artificially

contaminated EEG. (E) Comparison of the proposed method and ICA reconstructed EEG with simulated true EEG. (F) Partial enlargement of highlighted region. (G)

Comparison of the proposed method and regression method reconstructed EEG with artificially contaminated EEG. (H) Comparison of the proposed method and

regression method reconstructed EEG with simulated true EEG. (I) Partial enlargement of highlighted region.

Finally, paired t-test was utilized to statistically compare
the MSE and MAE values for the proposed method on each
simulated dataset with those of ICA, regression analysis, wICA,
and REGICA.

Mutual Information
The amount of mutual information between reconstructed EEG
signal by the proposedmethod and artifact-free EEG is calculated
to analyze the ability of the proposed method in recovering the
neuronal activity related EEG signal. Mathematically, it can be
calculated as follows (Ghandeharion and Erfanian, 2010)

MI =
∞

∫

−∞

∞
∫

−∞

f (a, b) log
f (a, b)

f (a)f (b)
dadb, (23)

where f (a, b) represents the joint pdf and f (a) and f (b) represent
the marginal pdfs. The artifact-free EEG and reconstructed

EEG from the proposed method are closely related if and
only if the mutual information values between them are
large.

RESULTS

The present study proposed to use a combination of entropy
and kurtosis to improve the automatic detection of artifactual
ICs. The results of this automatic identification are compared
with the manual identification of two EEG experts. Notably, both
experts’ classification of ocular artifact related ICs was identical.
Additionally, the performance of the automatic identification
is also compared with ADJUST based identification of ocular
artifacts related ICs (Mognon et al., 2010). Furthermore, four
statistical measures are calculated to verify the ability of the
automatic identification procedure to detect the artifactual ICs.
True Positive (ICs identified as artifact related by the method
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TABLE 3 | Average mean square error and mean absolute error values results in different frequency bands for the proposed method against conventional

methods using simulated EEG datasets.

Bands/Method Proposed ICA t-test Regression t-test wICA t-test REGICA t-test

MSE 2.0459± 2.6692 14.7990± 21.7546 *** 9.1388± 16.8010 *** 9.5063±18.5083 *** 5.0092± 8.6684 ***

Delta 0.1087± 0.0458 2.2660± 1.1004 *** 0.3745± 0.2162 *** 1.7058±1.0042 *** 0.1884± 0.1411 *

Theta 0.0293± 0.0128 1.0257± 0.3873 *** 0.0962± 0.0586 *** 0.8975±0.3943 *** 0.0453± 0.0221 **

Alpha 0.0028± 0.0011 0.8059± 0.1905 *** 0.0054± 0.0027 *** 0.9423±0.7117 *** 0.0043± 0.0026 *

Beta 0.0022± 0.0009 0.9501± 0.2670 *** 0.0042± 0.0018 *** 0.8893±0.2801 *** 0.0031± 0.0013 **

Gamma 0.0024± 0.0014 1.6669± 0.8391 *** 0.0044± 0.0025 *** 1.3765±0.6174 *** 0.0034± 0.0016 **

MSE: mean square error.

*p-value is smaller than 0.06.

**p-value is smaller than 0.01.

***p-value is smaller than 0.001.

FIGURE 5 | Comparison of the proposed method with wICA and REGICA using simulated dataset. (A) Simulated true EEG data. (B) Artificially contaminated

EEG data. (C) Reconstructed EEG by the proposed method. (D) Comparison of the proposed method and wICA reconstructed EEG with artificially contaminated

EEG. (E) Comparison of the proposed method and wICA reconstructed EEG with simulated true EEG. (F) Partial enlargement of highlighted region. (G) Comparison of

the proposed method and REGICA reconstructed EEG with artificially contaminated EEG. (H) Comparison of the proposed method and REGICA reconstructed EEG

with simulated true EEG. (I) Partial enlargement of highlighted region.

and experts), False Positive (ICs identified by the method
but not by experts), True Negative (ICs identified neither
by the method nor by experts), and False Negative (ICs not

identified by the method but by experts) are calculated to
compare the performance and effectiveness of the proposed
method and ADJUST. Table 2 list the results of each measure

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2016 | Volume 10 | Article 193

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Mannan et al. Ocular Artifact Removal from EEG

for all subjects. Moreover, average sensitivity and average
specificity are computed as below (Mahajan and Morshed,
2015):

Sensitivity = TP

TP + FN
× 100% (24)

Specificity = TN

TN + FP
× 100% (25)

We also computed the agreement rate between the proposed
method, ADJUST and manual identification (Mahajan and
Morshed, 2015):

Agreement Rate = TP + TN

TP + TN + FP + FN
(26)

The results of this evaluation recommend that the proposed
automatic identification can be utilized as a good tool to detect
ocular artifact related components.

The performance and effectiveness of the proposed method is
verified by utilizing 12 simulated EEG datasets. The comparison
of the proposed method with ICA and regression method for the
simulated dataset is shown in Figure 4. Figures 4A,B plot the
simulated true EEG data and artificially contaminated EEG data,
respectively. The proposed method’s result of artifact removal
is plotted in Figure 4C. Figure 4D shows that although both
methods are successful in removing ocular artifacts, but the
reconstructed EEG signals by the proposed method (green line)
almost completely overlaps with the true EEG signal, whereas
that from the ICA (magenta line), as depicted in Figure 4E,
includes distortion. Figure 4F shows a partially enlarged region
of Figure 4E highlighted with a black box, from which it can
be visualized that the proposed method preserves the true
EEG much better than does ICA. For the purposes of further
validation, in Figure 4G, the results of the proposed method also
are compared against the regression method for the simulated
EEG data. As illustrated in Figure 4H, the proposed method
outperformed the regression method (red line) in removing
ocular activities from the simulated EEG data. From the traces in
Figure 4I, it can be visualized that the regression methods tracks,
to a certain extent, the EEG data in the non-artifactual zone, but
still causes distortion in EEG data. Furthermore, the performance
of the proposed method is assessed against wICA and REGICA
in Figure 5. Figure 5F shows that wICA, although performing
better than ICA, still leaves distortions as compared to the
proposed method. In contrast to wICA, REGICA gives a better
approximation of the artifact-free EEG signal (Figures 5G–I), but
the proposed method also outperforms it (Table 3). Figure 5H
also presents that both proposed method and REGICA are
close enough, but Figure 5I discloses that, qualitatively, proposed
method gives a closer approximation of the artifact-free EEG
signal. Also, it can be difficult to distinguish true EEG (black line)
in Figures 4F,I, 5F,I due to the reason that the reconstructed EEG
obtained by the proposed method overlaps the true EEG. Table 3
list the average mean square error andmean absolute error values
in different frequency bands for all methods for 12 simulated
datasets. The results of this analysis verify the effectiveness of

TABLE 4 | Average mutual information values results for the proposed

method against conventional methods for all electrodes using simulated

EEG data.

Electrode

location

Proposed ICA Regression wICA REGICA

Fp1 1.6398 0.9039 0.2651 1.4421 0.2259

Fp2 1.5366 0.9988 0.2342 1.3944 0.2690

F3 1.9059 1.4578 0.7306 1.8121 0.6418

F4 1.8062 1.4285 0.5596 1.7177 0.6026

F7 1.9909 1.8399 1.0204 1.8886 1.0216

F8 1.8728 1.7351 0.8462 1.7651 0.9651

Fz 1.9224 1.9765 1.0893 1.8303 1.2459

C3 1.9617 1.9696 0.8580 1.8864 1.2405

C4 1.9550 2.0387 1.1039 1.9239 1.3584

Cz 1.9929 2.0350 0.9358 1.9143 1.3500

T7 1.7554 1.2134 0.4181 1.6996 0.3862

T8 1.7768 1.2044 0.3557 1.5369 0.3581

P7 1.9318 1.5764 0.6672 1.8447 0.6997

P8 1.7724 1.5598 0.4813 1.6181 0.6670

P3 1.9143 1.7891 0.9618 1.8756 1.1355

P4 1.8039 1.8235 0.7050 1.7417 1.1603

Pz 1.8732 1.3261 0.6534 1.7142 0.5122

O1 1.9088 1.7704 0.9169 1.7895 0.9032

O2 1.9677 2.0576 1.1030 1.8811 1.2322

the proposed method over conventional methods. Paired t-test
with 11 degrees of freedom, revealed the statistically significant
difference between the proposed method and conventional
methods except for delta (p< 0.055) and alpha (p< 0.028) bands
in REGICA. Finally, the mutual information metric is utilized
and calculated to enhance the applicability of the proposed
method as compared to the previous methods. Table 4 list the
average values of mutual information for all electrodes using 12
simulated datasets. It can be seen that the mutual information
values of the proposed method are higher than the mutual
information values of the conventional methods. In other words,
the proposed method can preserve more useful information as
compared to the other methods.

Unlike the simulated EEG datasets, there is no pure EEG for
experimental and standard EEG signals, thus only qualitative
results are presented to enhance the effectiveness of the proposed
method. For further verification, the proposed method was
assessed for 11 experimental datasets. Figure 6 shows the artifact
removal results for one subject after the application of the
proposed method. Figures 6A,B display the recorded EEG
signals and the corresponding ICs, respectively. Figure 6C show
the reconstructed EEG obtained from the proposed method.
It can be visualized that the proposed method successfully
removes the ocular artifacts. Figure 7 shows the comparison of
the proposed method, wICA and REGICA for removing artifacts
for one subject at Fp1. Figure 7A displays the artifactual segment
of the EEG signal; Figures 7B,C show the reconstructed EEG
obtained after the artifact removal by the proposed method
and wICA, respectively; Figure 7D shows the comparison of
the contaminated EEG signal with the reconstructed EEG
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obtained by the proposed method and wICA. Figures 7E,F show
the uncontaminated region and contaminated region of the
EEG signal highlighted in Figure 7D, respectively. Figure 7E
shows that the proposed method can preserve more neuronal
information as compared to wICA. Figure 7F illustrates the
improved performance and effectiveness of the proposed method
in terms of removing artifactual activities as compared to
wICA. Figure 7G shows the reconstructed EEG by REGICA;
meanwhile, the comparison of the proposed framework against
REGICA verify the better performance of the proposed method
(Figures 7H–J).

Lastly, standard EEG signals are utilized to test the
effectiveness of the proposed method in removing artifactual
activities from contaminated EEG data. Figure 8 compares
the proposed method with ICA and regression analysis for
one subject at Fp1. Figures 8A–C show the segment of
standard EEG signal, reconstructed EEG by the proposed
method and ICA, respectively. Although both methods were
successful in removing ocular artifacts, but the comparison
of the reconstructed EEG by the proposed method and
ICA with contaminated EEG demonstrates that the proposed
method performed better in keeping the useful EEG signals
(Figures 8D–F). Further, an assessment of the proposed method
with the regression analysis is provided in Figures 8G,H.
Similarly to the simulated and experimental study results, the
proposed method demonstrates improved performance over the
regression method (Figures 8I,J).

DISCUSSION

It is very essential to remove non-neuronal activities such
as ocular artifacts from EEG signals before its analysis
for applications like BCI. In this paper, a combined ICA
and regression-based method is developed for automatic
identification and removal/reduction of ocular artifacts from
EEG data. The performance and effectiveness of the proposed
method is evaluated against conventional methods to show the
significant improvements in the results by utilizing simulated,
experimental and standard EEG datasets along with mean
square error, mean absolute error and mutual information
as quantification metrics. The underlying true EEG signal in
artificially contaminated EEG data is known, therefore such
artificially contaminated EEG data is used as a primary tool to
evaluate the performance of each artifact rejection method. The
EEG data recorded in eye close session is utilized to simulate
contaminated EEG. However, EEG data in eye-close session may
also contain low frequency eye movements. But, the signals in
eye-closed session are preferred because it seems to contain
minimal artifacts. Alternative to this was acquiring EEG data
in an eye open session. But human eyes produce much higher
amplitude signals in light as compared to darkness (Elbert
et al., 1985). In this sense, EEG signal in an eye-close session
is preferred. However, EOG signals were acquired in an eye-
open session with different eye movements. The recorded EOG
signal was filtered between 0.5 and 5 Hz (Lins et al., 1993). In
literature some studies used the limit of 7.5 Hz low pass filter

(Romero et al., 2009), but there is still no evidence on the optimal
low pass frequency of EOG signals. Also, in this study statistical
analysis is utilized to validate the significant improvement in
the performance and effectiveness of the proposed method with
respect to conventional techniques.

Urigüen and Garcia-Zapirain (2015) suggested that the
combination of multiple artifact removal methods can be
developed to efficiently remove artifacts from the recorded EEG
signals. Castellanos and Makarov (2006) were the first to develop
a method which combined ICA and wavelet transform to recover
the leaked-neuronal activity from artifactual components. Later
on Klados et al. (2011) extended their idea and proposed
a regression based method to remove ocular artifacts from
ICs. These methods performed better than previous methods
in terms of removing artifacts from the signals but there is
no criteria to detect artifactual ICs and hence, require extra
computational efforts to process all ICs which is not plausible
for BCI applications. Moreover, application of these methods
to all ICs may cause to loss neuronal activity related signals
and may, therefore, result in distortion to EEG signals. Unlike
to the conventional methods, the framework proposed in this
study automatically identify and filter only the artifactual ICs.
Therefore, the proposed method can be used to preserve
more useful information related to neuronal activity with less
computational cost. Results confirm our hypothesis that only
artifact related ICs should be processed instead of processing all
components (Figures 5, 7, Tables 3, 4).

The performance and effectiveness of the proposed
framework is evaluated and assessed against four conventional
methodologies from the literature, namely ICA (Mognon et al.,
2010), least mean square based regression method, wICA
(Castellanos and Makarov, 2006), and REGICA (Klados et al.,
2011). In the time domain analysis, we used mean square error
as a performance metric to analyze the ability of each method
in both removing artifactual activities as well as calculating
the amount of distortion produced in the EEG signal. Efficient
removal of ocular activities and preservation of neuronal signal
suggest that the proposed method performed better as compared
to ICA, regression, wICA, and REGICA methods (Table 3). In
addition, mean absolute error is used as a quantificationmetric to
evaluate the effectiveness of the proposed method in frequency-
domain. Results show that the proposed method produce
less distortion in different frequency bands as compared to
conventional methods (Table 3). Paired t-test also revealed that
the difference between the proposed method and conventional
methods is highly statistically significant (p < 0.001) except
for delta (p < 0.055) and alpha (p < 0.028) bands of REGICA.
Finally, we adopted mutual information metric to compute that
how much information reconstructed EEG by different methods
shares with the artifact-free EEG signals (Table 4). The average
mutual information for the proposed method (1.8573) against
ICA (0.7319), regression (1.6160), wICA (0.8409), and REGICA
(1.7514) demonstrate better performance of the proposed
method. Additionally, the performance and effectiveness of
the proposed method is also analyzed using real EEG datasets
(Experimental and standard EEG signals). Since there is no
ground truth “pure” EEG, we have only presented qualitative
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FIGURE 6 | Results for removal of ocular artifacts using experimental dataset. (A) Experimental EEG data for one subject. (B) ICs obtained from ICA

decomposition of EEG data. (C) Reconstructed EEG data by the proposed method.
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FIGURE 7 | Comparison of the proposed method with wICA and REGICA using experimental dataset. (A) Experimental EEG data. (B) Reconstructed EEG

by the proposed method. (C) Reconstructed EEG by wICA. (D) Comparison of the proposed method and wICA reconstructed EEG with experimental EEG. (E) Partial

enlargement of non-artifactual region. (F) Partial enlargement of artifactual region. (G) Reconstructed EEG by REGICA. (H) Comparison of the proposed method and

REGICA reconstructed EEG with experimental EEG. (I) Partial enlargement of non-artifactual region. (J) Partial enlargement of artifactual region.
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FIGURE 8 | Comparison of the proposed method with ICA and regression using standard dataset. (A) Standard EEG data. (B) Reconstructed EEG by the

proposed method. (C) Reconstructed EEG by ICA. (D) Comparison of the proposed method and ICA reconstructed EEG with experimental EEG. (E) Partial

enlargement of non-artifactual region. (F) Partial enlargement of artifactual region. (G) Reconstructed EEG by regression method. (H) Comparison of the proposed

method and regression method reconstructed EEG with experimental EEG. (I) Partial enlargement of non-artifactual region. (J) Partial enlargement of artifactual region.
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results for real EEG datasets. Qualitatively, results on real EEG
datasets show better performance of the proposed method as
compared to the conventional methods (Figures 6–8).

Although the proposed method showed improved
performance for removing ocular activities from EEG signals
as compared to the conventional techniques, it also has some
drawbacks/limitations. One obvious drawback of the proposed
method is that it always requires EOG signals to remove
ocular activities from EEG signals whereas all the ICA based
methods have the ability to remove artifactual components
without the need of EOG signals. However, the removal of
artifactual components based on ICA cause distortion in the
neuronal signal, therefore it is preferable to use EOG signals
to remove ocular artifacts. Furthermore, in the present study
only spontaneous EEG is considered rather than event related
potentials (ERPs). In literature, ERP paradigms have been
used to evaluate the performance of artifact rejection methods
(Gratton et al., 1983; Jung et al., 2000b; Plöchl et al., 2012). They
enhance the effectiveness of their methods by claiming that
their method can keep ERPs evoked by visual stimuli. To this
extent, it is our future plan to examine whether the proposed
method can achieve better results in terms of preserving ERP
contributions over previous methods. Besides, in the present
study the proposed method only deals with ocular activities and
removal/reduction of other types of artifactual activities is yet to
be examined in immediate future work. One possible extension
of the proposed method is to include features that can be used to
identify muscle artifacts (Barbati et al., 2004). Another essential
extension is to use features based on the correlation with ECG
signal (Joyce et al., 2004).

CONCLUSIONS

The optimal performance of a BCI depends on the
effective removal/reduction of ocular artifacts from EEG
recordings. In this paper, we proposed a novel method
for automatic identification and removal/reduction of
ocular artifacts from EEG signals by combined ICA,
regression and high-order statistics. The performance and
effectiveness of the proposed framework was illustrated
using simulated and real EEG datasets. Results show
that the proposed method can effectively remove ocular
artifacts as well as it can preserve the neuronal activity
related EEG signals. The results demonstrate, additionally,
that the proposed method outperforms the conventional
techniques.
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