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Abstract: This study explores the synchronization issue for uncertain multi-link complex networks
incorporating stochastic characteristics and hybrid delays. Unlike previous works, internal delays,
coupling delays, and stochastic delays considered in our model change over time; meanwhile, the
impulse strength and position change with time evolution. To actualize network synchronization,
a strategy called hybrid impulsive pinning control is applied, which combines the virtue of impul-
sive control and pinning control as well as two categories of impulses (i.e., synchronization and
desynchronization). By decomposing the complicated topological structures into diagonal items and
off-diagonal items, multiple nonlinear coupling terms are linearly decomposed in the process of theo-
retical analysis. Combining inequality technology and matrix decomposition theory, several novel
synchronization criteria have been gained to ensure synchronization for the concerning multi-link
model. The criteria get in touch with the uncertain strengths, coupling strengths, hybrid impulse
strengths, delay sizes, impulsive intervals, and network topologies.

Keywords: multi-link network; mean square synchronization; stochastic characteristics; impulsive
pinning control

MSC: 37N35

1. Introduction

People generally live in various complex networks, such as transportation networks,
information networks, power grids, and so on. Synchronization is a representative col-
lective behavior of complex networks, which has a prominent theoretical meaning and
extensive practical applications in non-fragile filtering, topology recognition, system sta-
bility, encryption, and decryption [1–5]. Recently, numerous synchronization modes have
been discussed in depth, incorporating complete synchronization [6,7], cluster synchroniza-
tion [8,9], quasi-synchronization [10,11], projective synchronization [12,13], exponential
synchronization [14–16], etc. Regrettably, considering a complex network could have multi-
links, many publications for synchronization analysis mainly concern complex networks
including only a single link, making it difficult to portray the real network precisely. Multi-
links mean that there may exist more than one path between each pair of nodes and that
each pair has its special attributes. For instance, in the transportation networks, there are
significant differences in carriage delays and connectivities among aviation networks, land
networks, and waterway networks, which indicates single-link systems cannot characterize
such types of multichannel transportation networks well (see Figure 1). For a human con-
nection network, there are different communication tools, including e-mail, telephone, and
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Facebook. Obviously, this network represents a characteristic multi-link model that cannot
be expressed by a single-link system. Hence, it is necessary to further study multi-links
systems owing to their universality. Recently, some scholars have noticed various synchro-
nization problems in such networks [17–19]. In [17], Zhou et al. discussed the exponential
synchronization of stochastic complex dynamical networks including multi-links. In [18],
Guo et al. considered the synchronization of multi-link networks with switching signals in
finite time. In [19], Xu et al. gained impulsive synchronization conditions for multi-link
dynamical systems embedding non-integer order effects. It should be pointed out that the
effect of time delays was not considered in these multi-link models mentioned above.
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· ·
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· ·

·

· ·
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·
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Figure 1. (A) Complete transportation network; (A1) aviation network; (A2) land network; and
(A3) waterway network.

In a multi-link network, the delay cannot be avoided due to the influence of network
width, congestion, and transmission distance. Considering the significant differences
between subnetworks, each subnetwork often has different time delays. Observing a
transportation network, which usually consists of the aviation network, highway network,
and railway network, each subsystem possesses different vehicle speeds and link types,
which means the time delays in each coupling structure of subnetworks may not be
the same. To construct a more practical system, in [20], delays in the coupling state
were discussed in the multi-link networks. In [21], the authors explored synchronization
problems for memristor-based multi-link systems containing leakage delays. In [22], Zhou
et al. considered the synchronization of delayed multi-link dynamical systems including
non-monolayer coupling. In [23,24], two types of delays including internal and coupling
delays were discussed in the time-varying multi-link systems, and several synchronization
criteria could be gained with the aid of different differential inequalities.

In addition, systems in real environments often encounter various stochastic distur-
bances, and these disturbances may disrupt the steady state of systems or cause asynchro-
nization [25]. As a consequence, when modeling a delayed complex network, stochastic
disturbances should not be left out. Up to now, several relevant synchronization results
paid attention to such phenomena. For example, in [26], Zhou et al. considered the intermit-
tent synchronization of non-strong connectivity networks comprising time-varying delays
and stochastic disturbances. In [27], Shi et al. studied the sampling synchronization for
memory neural networks with random network attacks in finite time. In [28], Zhang et al.
gained sufficient conditions of exponential synchronization for delayed stochastic systems
by impulsive technologies. In [29], Liu et al. dealt with the inner synchronization issue
for stochastic impulsive networks. Note that these works were considered for single-link
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stochastic complex systems rather than multi-link stochastic systems. To study the effect of
stochastic perturbations on multi-link systems, Zhao et al. [30] investigated projective syn-
chronization for multi-link dynamical networks including stochastic disturbances, where
system delays are neglected. As we know, studies on the mean square synchronization
of uncertain multi-link dynamical networks incorporating stochastic noise and hybrid
time-varying delays are sparse, which is the first motivation for this study.

It is necessary to exert external control over the network to achieve network syn-
chronization since many networks cannot achieve synchronization only by relying on the
coupling between different nodes. From the point of time series, the mainstream con-
trol mechanism consists of two types. One is continuous control, for instance, feedback
control [31], and adaptive control [32]. Another is discrete control, such as intermittent con-
trol [33], and impulsive control [34]. As a kind of discontinuous input method, impulsive
control is only activated at some finite time points, efficiently reducing the control time
and increasing the synchronization security [35]. For example, Tang et al. [36] attained
the synchronization criteria for derivative-coupled systems utilizing impulsive control
schemes. By constructing the impulsive comparison principle, the authors in [37] dealt
with the impulsive synchronization problems of dynamical networks incorporating delays
without bounds. Generally, it is impractical to control all nodes in the network because
complex dynamic networks are often large-scale. Pinning control is an efficient method
because it can control the whole system by pinning a small fraction of network nodes in-
stead of all nodes. Naturally, pinning impulsive control, which integrates the superiorities
of pinning control and impulsive control, can be more efficient to achieve synchronization
since it only needs to control a few nodes at several discrete instants. At present, many
previous results about synchronization have been obtained by pinning impulsive control
strategies. Specifically, the impulsive effect is always assumed to satisfy µ ∈ (−2, 0) [38],
µ ∈ (−1, 1) [8,39], µ ∈ (0, 1) [40], or other homologous restricted intervals, which implies
only impulsive effects profiting synchronization are considered. In reality, when network
nodes transmit information to each other, impulses can act on beneficial and harmful
effects, which means that various types of impulses should be considered meanwhile. For
multi-link complex networks, very few works considered both synchronizing impulse
and desynchronizing impulse, which forms the second reason for researching this article.
These comprehensive factors including uncertainties, stochastic characteristics, and various
delays in multi-link complex networks pose new challenges to the study of system synchro-
nization. Our research focuses on utilizing the positive and negative effects of impulses for
solving this difficulty.

Enlightened by the literature above, this study considered the impulsive synchroniza-
tion of uncertain stochastic multi-link complex networks involving hybrid delays utilizing
hybrid control schemes. To be more authentic, nonlinear couplings are introduced and
uncertainties are time-varying. The principal highlights of this study contain three parts.
Firstly, time-varying factors, including internal delays, coupling delays, stochastic noise,
and uncertain disturbances, are incorporated into our model, which makes the results
obtained in this paper exceed the previous related works. Secondly, discriminating from
the impulsive effects in [8,38–40], synchronizing impulses, and desynchronizing impulses
are first applied to multi-link systems in this study, i.e., the scopes of impulsive strength
need not be restricted, regardless of whether the impulses are beneficial or harmful to
the synchronization state. Lastly, some novel synchronization criteria for the generalized
multi-link network models are obtained based on the hybrid pinning impulsive control
methods and matrix decomposition techniques.

Besides the introduction part, Section 2 introduces the mathematical model descrip-
tion of uncertain stochastic multi-link systems. Section 3 studies the hybrid impulsive
pinning control for mean square synchronization of the concerned multi-link systems.
Section 4 gives a simulation experiment for validating purposes, and Section 5 presents
the conclusion.
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Notation 1. Rn represents the n-dimensional real space with Euclidean norm ‖ · ‖. λmax(B)
stands for the maximum eigenvalue of matrix B. diag{· · · } stands for a diagonal matrix. For
matrices X ∈ Rn×m and Y ∈ Rp×q, X⊗Y ∈ Rnp×mq can be computed as

X⊗Y =


x11Y x12Y · · · x1mY
x21Y x22Y · · · x2mY

...
...

. . .
...

xn1Y xn2Y · · · xnmY

.

2. Model Introduction and Preknowledge

The uncertain multi-link complex networks incorporating stochastic characteristics
and hybrid delays could be modeled as

dzi(t) =
[
− (A + ∆A(t))zi(t) + (B + ∆B(t))h(zi(t)) + (D + ∆D(t)) f (zi(t− τ0(t)))

+ c1

N

∑
j=1

Θ(1)
ij Γ1ψ1(zj(t− τ1(t))) + c2

N

∑
j=1

Θ(2)
ij Γ2ψ2(zj(t− τ2(t))) + · · ·

+ cm

N

∑
j=1

Θ(m)
ij Γmψm(zj(t− τm(t)))

]
dt + g(t, zi(t), zi(t− τ0(t)))dw(t) + ui(t), (1)

where i = 1, 2, . . . , N, and zi(t) = (zi1(t), zi2(t), . . . , zin(t))T ∈ Rn is the state vector of node
i, A = diag{a1, a2, . . . , an} is a diagonal matrix with ai > 0. B = (bij)n×n and D = (dij)n×n
are the non-delayed and delayed connection weight matrices, respectively. ∆A(t), ∆B(t),
and ∆D(t) denote the uncertain matrices. h(zi(t)) = (h1(zi1(t)), h2(zi2(t)), . . . , hn(zin(t)))T

and f (zi(t)) = ( f1(zi1(t)), f2(zi2(t)), . . . , fn(zin(t)))T represent the activation functions at
time t. ck(k = 1, 2, . . . , m) is the positive coupling strength for the kth coupling form.
ψk(zi(t))=(ψk1(zi1(t)), ψk2(zi2(t), . . . , ψkn(zin(t))T(k = 1, 2, . . . , m) stands for the kth cou-
pling nonlinear function. Γk = diag{γk

1, γk
2, . . . , γk

n} > 0(k = 1, 2, . . . , m) represents the

kth inner coupling matrix. Θ(k)= (Θ(k)
ij )N×N (k = 1, 2, . . . , m) represents the kth cou-

pling configuration matrix, where Θ(k)
ij is defined as follows: if there is a link from

node i to node j, then Θ(k)
ij 6= 0; otherwise, Θ(k)

ij = 0(i 6= j). Moreover, assume that

Θ(k) satisfies the diffusive coupling condition Θ(k)
ii = −∑N

j=1,j 6=i Θ(k)
ij (i = 1, 2, . . . , N).

The time-varying delays τ0(t) and τk(t)(k = 1, 2, . . . , m) are the bound functions, i.e.,
0 < τ0(t) ≤ τ, 0 < τk(t) ≤ τ(k = 1, 2, . . . , m), in which τ0(t) denotes the internal
or stochastic delay and τk(t) (k = 1, 2, . . . , m) denote the coupling delays, respectively.
w(t) = (w1(t), w2(t), . . . , wn(t))T ∈ Rn represents a bounded Weiner process, which satis-
fies E[dwi(t)] = 0, E[dw2

i (t)] = 1 and E[dwj(t)dwj(s)] = 0 for t 6= s. g(·) ∈ Rn×n stands for
the noise intensity function matrix, satisfying g(t, 0, 0) = 0.

Remark 1. To our knowledge, most multi-layer neural networks in engineering are multi-link since
each layer can be regarded as a subnetwork. Multi-layer neural networks have been successfully
utilized in various aspects, such as visual analysis, behavior recognition, machine learning, etc.
Unfortunately, very few works have investigated hybrid impulsive pinning synchronization problems
concerning uncertain multi-link stochastic networks including two impulses, and we try to solve
these problems in this study.

Let s(t) = (s1(t), s2(t), . . . , sn(t))T be an arbitrary solution of an isolated node of
system (1), which could be given by
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ds(t) =
[
− (A + ∆A(t))s(t) + (B + ∆B(t))h(s(t)) + (D + ∆D(t)) f (s(t− τ0(t)))

]
dt

+ g(t, s(t), s(t− τ0(t)))dw(t). (2)

Define ei(t) = zi(t)− s(t) be the synchronization error of node i between the current
state zi(t) and the objective state s(t). By imposing impulsive effects on the pinned nodes,
the impulsive pinning controllers can be considered as

Ii(t) =


+∞
∑

σ=1
ρσei(t)δ(t− tσ), i ∈ W(tσ),

0, i /∈ W(tσ),
(3)

where ρσ represents the impulsive strength at each discrete instant tσ. δ(.) denotes the
well-known Dirac delta function. The impulsive instants {tσ}meet tσ → +∞ as σ→ +∞.
W(tσ) = {i1, i2, . . . , il} ⊂ {1, 2, . . . , N} stands for the set of pinned nodes at t = tσ, and it
is defined as

(i) We can reset the errors e1(t), e2(t), . . . , eN(t) for ‖ep1(t)‖ ≥ ‖ep2(t)‖ ≥ · · · ≥ ‖epl (t)‖ ≥
· · · ≥ ‖epN (t)‖. If ρσ ∈ M := (−2, 0), thenW(tσ) = {p1, p2, · · · , pl}.

(ii) We can reset the errors e1(t), e2(t), . . . , eN(t) for ‖ev1(t)‖ ≤ ‖ev2(t)‖ ≤ · · · ≤ ‖evl (t)‖ ≤
· · · ≤ ‖evN (t)‖. If ρσ ∈ B := (−∞,−2) ∪ (0,+∞), then W(tσ) = {v1, v2, . . . , vl}.

Noting that c1
N
∑

j=1
Θ(1)

ij Γ1ψ1(s(t − τ1(t))) = c2
N
∑

j=1
Θ(2)

ij Γ2ψ2(s(t − τ2(t))) = · · · =

cm
N
∑

j=1
Θ(m)

ij Γmψm(s(t − τm(t))) = 0, and adding the impulsive effects to multi-link

networks (1), one can get the following error system:

dei(t) =
[
(A + ∆A(t))ei(t) + (B + ∆B(t))h̃(ei(t)) + (D + ∆D(t)) f̃ (ei(t− τ0(t)))

+
m
∑

k=1

N
∑

j=1
ckΘ(k)

ij Γkψ̃k(ej(t− τk(t)))
]
dt + g̃(t, ei(t), ei(t− τ0(t))) dw(t),

ei(t+σ ) = ei(t−σ ) + ρσei(t−σ ), i ∈ W(tσ),
ei(t) = ϑi(t), i ∈ [−τ, 0],

(4)

where h̃(ei(t)) = h(zi(t)) − h(s(t)), f̃ (ei(t − τ0(t))) = f (zi(t − τ0(t))) − f (s(t − τ0(t))),
ψ̃k(ej(t − τk(t))) = ψk(zj(t − τk(t))) − ψk(s(t − τk(t))) and g̃(t, ei(t), ei(t − τ0(t)))
= g(t, zi(t), zi(t − τ0(t))) − g(t, s(t), s(t − τ0(t))). Moreover, the initial values of error
dynamical system (4) are presumed to be ei(t) = ζi(t),−τ ≤ t ≤ 0, i = 1, 2, . . . , N, where
τ = max{τ0, τ1, τ2, . . . , τm} and ζi(t) ∈ C([−τ, 0], Rn).

Remark 2. Considering |1+ ρσ| > 1, i.e., ρσ ∈ B := (−∞,−2)∪ (0,+∞), impulsive influences
are harmful to the synchronization process of dynamical system (4), which leads to the synchro-
nization error increases large with time evolution, so they are called desynchronizing impulses.
Conversely, considering |1 + ρσ| < 1, i.e., ρσ ∈ M := (−2, 0), impulsive influences are helpful to
the synchronization process of dynamical system (4), and they are called synchronizing impulses.
Especially, if |1 + ρσ| = 1(ρσ ∈ {−2, 0}), impulsive influences are neither detrimental nor helpful
for achieving synchronization. This study only explores the first two impulses, and one can easily
extend them to ρσ ∈ {−2, 0}.

Remark 3. To characterize synchronizing and desynchronizing simultaneously, we assume that
the strengths of desynchronizing impulse select from a limited set {ρ̂1, ρ̂2, . . . , ρ̂r} ⊂ B. Meanwhile,
the strengths of synchronization impulse select from {ρ̌1, ρ̌2, . . . , ρ̌q} ⊂ M.

Next, some useful preliminary knowledge is introduced.
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Assumption 1. For the activation functions h : Rn → Rn, f : Rn → Rn, constants lh > 0,
l f > 0 exist, such that

‖h(zi(t))− h(s(t))‖ ≤ lh‖zi(t)− s(t)‖, ‖ f (zi(t))− f (s(t))‖ ≤ l f ‖zi(t)− s(t)‖

for any s(t) and zi(t), i = 1, 2, . . . , N.

Assumption 2. The parametric uncertainties ∆A(t), ∆B(t) and ∆D(t) can be expressed by

∆A(t) = MAΛ(t)HA, ∆B(t) = MBΛ(t)HB, ∆D(t) = MDΛ(t)HD,

where MA, MB, MD, HA, HB, HD are constant matrices and the unknown matrix Λ(t) meets
ΛT(t)Λ(t) ≤ In.

Assumption 3. For the nonlinearly-coupled functions ψkη(·), k = 1, 2, . . . , m, η = 1, 2, . . . , n,
constants α1 > 0 exist and α2 > 0, such that

[π(t)− π̄(t)][ψkη(π(t− τk(t)))− ψkη(π̄(t− τk(t)))

≤ α1[π(t)− π̄(t)]2 + α2[π(t− τk(t))− π̄(t− τk(t))]2

for any π(t), π̄(t) ∈ R.

Remark 4. Especially, when τk(t) = 0, k = 1, 2, · · · , m, one can obtain the following inequality

ψkη(π(t))− ψkη(π̄(t))
π(t)− π̄(t)

≤ α1 + α2.

Assumption 4. Assume that the intensity function g(·) conforms to the following requirement:

trace[(g(t, π1, z1)− g(t, π2, z2))
T(g(t, π1, z1)− g(t, π2, z2))]

≤ ‖M1(π1 − π2)‖2 + ‖M2(z1 − z2)‖2,

∀π1, π2, z1, z2 ∈ Rn, where M1, M2 represent suitable constant matrices.

Assumption 5. There are positive numbers Ťi and T̂j satisfying

Ňi(t, T) ≥ T − t
Ťi
− N0,

and
N̂j(t, T) ≤ T − t

T̂j
+ N0,

for N0 ≥ 0, Ťi, T̂j, i = 1, 2, . . . , q, j = 1, 2, . . . , r, where Ňi(t, T) and N̂j(t, T) represent the amount
of the synchronizing impulsive sequence and desynchronizing impulsive sequence on the interval
(t, T), respectively.

Definition 1. Under mean square sense, the controlled multi-link complex networks (1) can be
known as exponential synchronization, if positive constants λ, T0 and θ exist such that

E
N

∑
i=1
‖ei(t)‖2 ≤ θe−λt,

for all t > T0 and initial values ζi(t), i = 1, 2, . . . , N.
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Lemma 1 ([41]). For any real matrices X and Y with correct dimensions, a scalar ε0 > 0 exists
such that

XTY+YTX ≤ ε0X
TX+

1
ε0

YTY.

Lemma 2 ([42]). Let 0 ≤ τi(t) ≤ τ,F(t, v, v̄1, v̄2, . . . , v̄m) : R+ ×
m+1︷ ︸︸ ︷

R× · · · × R → R be nonde-
creasing in v̄i for each fixed (t, v, v̄1, . . . , v̄i−1, v̄i+1, . . . , v̄m), i = 1, 2, . . . , m, and Jσ(v) : R→ R
be nondecreasing in v. Assume v(t), w(t) ∈ PC([−τ,+∞), R)) meet{

D+v(t) ≤ F((t, v(t), v(t− τ1(t)), . . . , v(t− τm(t))), t 6= tσ, t ≥ 0,
v(tσ) ≤ Jσ(v(t−σ )), σ ∈ N,

and {
D+w(t) > F(t, w(t), w(t− τ1(t)), . . . , w(t− τm(t))), t 6= tσ, t ≥ 0,
w(tσ) ≥ Jσ(w(t−σ )), σ ∈ N.

Then, v(t) ≤ w(t) for −τ ≤ t ≤ 0 means v(t) ≤ w(t) for t ≥ 0.

3. Main Results

Before giving the main theorem, the meaning of two important symbols needs to be
explained. Let Θ(k) = Θ̄(k) + Θ̃(k), k = 1, 2, . . . , m, where Θ̄(k) = diag{Θ(k)

11 , Θ(k)
22 , . . . , Θ(k)

NN}
consist of the diagonal elements of Θ(k), and Θ̃(k) preserves the off-diagonal elements
of Θ(k).

Theorem 1. Assume that Assumptions 1–5 hold. Under the mean square sense, controlled multi-
link networks (1) can be globally exponentially synchronized to the target s(t):

E
N

∑
i=1
‖ei(t)‖2 ≤ ςe−λt,

if positive scalars αB, αD, α1, α2, lh, l f , η0, β0 and βk(k = 1, 2, . . . , m) exist, such that the following
conditions hold:

(i) Ω0 ≤ IN ⊗ η0 In,
(ii) Λ0 ≤ IN ⊗ β0 In,
(iii) Λk ≤ IN ⊗ βk In, k = 1, 2, . . . , m,
(iv) ξ − κγ > 0,

where ς = κE∑N
i=1 sup−τ≤s≤0{‖ζi(s)‖2}, κ = (

q
∑

i=1

r
∑

j=1
µ̌−1

i µ̂j)
N0 , ξ = −(η0 +

q
∑

i=1

lnµ̌i
Ťi

+

r
∑

j=1

lnµ̂j

T̂j
), µ̌i =

N+lρ̌i(ρ̌i+2)
N ∈ (0, 1), µ̂j =

N+lρ̂j(ρ̂j+2)
N ∈ (1,+∞), γ = β0 + ∑m

k=1 ckβk, Ω0 =[
IN ⊗

(
− 2A + MAMT

A + MBMT
B + MDMT

D + HT
AHA + αB

2 BBT + αD
2 DDT + MT

1 M1 +

( 2
αB

+λmax(HT
BHB))l2

h In

)
+ 2

m
∑

k=1
ckα1(Θ̄(k)⊗Γk)+

m
∑

k=1
ck(Θ̃(k)Θ̃(k)T⊗ΓkΓT

k )
]
, Λ0 =

[
IN⊗(( 2

αD
+ λmax(HT

DHD)
)
l2

f In + MT
2 M2

)]
, Λk =

[
2α2(Θ̄(k) ⊗ Γk) + IN ⊗ (α1 + α2)

2 In

]
, and λ

is a sole root of λ− ξ + κ[β0eλτ0 +
m
∑

k=1
ckβkeλτk ] = 0.
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Proof. Let e(t) = (eT
1 (t), eT

2 (t), . . . , eT
N(t)))

T . Construct the following Lyapunov function:

V(t) =
N

∑
i=1

eT
i (t)ei(t) = eT(t)e(t). (5)

Then, for any t ∈ [tσ−1, tσ), utilizing Itô-differential formula, one can obtain

LV(t) =
N

∑
i=1

2eT
i (t)

[
(−A + ∆A(t))ei(t) + (B + ∆B(t))h̃(ei(t))

+ (D + ∆D(t)) f̃ (ei(t− τ0(t))) +
m

∑
k=1

N

∑
j=1

ckΘ(k)
ij Γkψ̃k(ej(t− τk(t)))

]
+

N

∑
i=1

trace
[
g̃T(t, ei(t), ei(t− τ0(t)))g̃(t, ei(t), ei(t− τ0(t)))

]
. (6)

By Assumption 2, we have

−
N

∑
i=1

2eT
i (t)(A + ∆A(t))ei(t)

=−
N

∑
i=1

2eT
i (t)(A + MAΛ(t)HA)ei(t)

≤−
N

∑
i=1

2eT
i (t)Aei(t) +

N

∑
i=1

eT
i (t)MAMT

Aei(t) +
N

∑
i=1

eT
i (t)HT

AHAei(t). (7)

Utilizing Assumptions 1 and 2 and Lemma 1, one can find positive constants αB, αD, lh
and l f such that

2
N

∑
i=1

eT
i (t)(B + ∆B(t))h̃(ei(t))

=
N

∑
i=1

2eT
i (t)Bh̃(ei(t)) +

N

∑
i=1

2eT
i (t)MBΛ(t)HBh̃(ei(t))

≤
N

∑
i=1

αB
2

eT
i (t)BBTei(t) +

N

∑
i=1

2
αB

h̃T(ei(t))h̃(ei(t))

+
N

∑
i=1

eT
i (t)MBMT

Bei(t) +
N

∑
i=1

h̃T(ei(t))HT
BHBh̃(ei(t))

≤
N

∑
i=1

αB
2

eT
i (t)BBTei(t) +

N

∑
i=1

2
αB

l2
heT

i (t)ei(t)

+
N

∑
i=1

eT
i (t)MBMT

Bei(t) +
N

∑
i=1

λmax(HT
BHB)l2

heT
i (t)ei(t)

=
N

∑
i=1

αB
2

eT
i (t)BBTei(t) +

N

∑
i=1

eT
i (t)MBMT

Bei(t) +
N

∑
i=1

[
2

αB
+ λmax(HT

BHB)]l2
heT

i (t)ei(t) (8)
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and

2
N

∑
i=1

eT
i (t)(D + ∆D(t)) f̃ (ei(t− τ0(t)))

=
N

∑
i=1

2eT
i (t)D f̃ (ei(t− τ0(t))) +

N

∑
i=1

2eT
i (t)MDΛ(t)HD f̃ (ei(t− τ0(t)))

≤
N

∑
i=1

αD
2

eT
i (t)DDTei(t) +

N

∑
i=1

2
αD

f̃ T(ei(t− τ0(t))) f̃ (ei(t− τ0(t)))

+
N

∑
i=1

eT
i (t)MDMT

Dei(t) +
N

∑
i=1

f̃ T(ei(tτ0(t)))HT
DHD f̃ (ei(t− τ0(t)))

≤
N

∑
i=1

αD
2

eT
i (t)DDTei(t) +

N

∑
i=1

eT
i (t)MDMT

Dei(t)

+
N

∑
i=1

[
2

αD
+ λmax(HT

DHD)]l2
f eT

i (t− τ0(t))ei(t− τ0(t)). (9)

In addition, one can obtain

2
N

∑
i=1

m

∑
k=1

N

∑
j=1

ckΘ(k)
ij eT

i (t)Γkψ̃k(ej(t− τk(t)))

= 2
m

∑
k=1

ck

N

∑
i=1

Θ(k)
ii eT

i (t)Γkψ̃k(ei(t− τk(t))) + 2
m

∑
k=1

ck

N

∑
i=1

N

∑
i 6=j

Θ(k)
ij eT

i (t)Γkψ̃k(ej(t− τk(t))). (10)

By Assumption 3 and the decomposition express Θ(k) = Θ̄(k) + Θ̃(k)(k = 1, 2, · · · , m),
we have

2
m

∑
k=1

ck

N

∑
i=1

Θ(k)
ii eT

i (t)Γkψ̃k(ei(t− τk(t)))

= 2
m

∑
k=1

ck

N

∑
i=1

Θ(k)
ii

n

∑
p=1

γk
peip(t)ψ̃kp(eip(t− τk(t)))

≤ 2
m

∑
k=1

ck

N

∑
i=1

Θ(k)
ii

n

∑
p=1

[
α1eip(t)γk

peip(t) + α2eip(t− τk(t))γk
peip(t− τk(t))

]
= 2

m

∑
k=1

ck

N

∑
i=1

[
Θ(k)

ii α1eT
i (t)Γkei(t) + Θ(k)

ii α2eT
i (t− τk(t))Γkei(t− τk(t))

]
= 2

m

∑
k=1

ckα1eT(t)(Θ̄(k) ⊗ Γk)e(t) + 2
m

∑
k=1

ckα2eT(t− τk(t))(Θ̄(k) ⊗ Γk)e(t− τk(t)) (11)

and

2
m

∑
k=1

ck

N

∑
i=1

N

∑
i 6=j

Θ(k)
ij eT

i (t)Γkψ̃k(ej(t− τk(t)))

= 2
m

∑
k=1

ckeT(t)(Θ̃(k) ⊗ Γk)ψ̃k(e(t− τk(t)))

≤
m

∑
k=1

ckeT(t)(Θ̃(k)Θ̃(k)T ⊗ ΓkΓT
k )e(t) +

m

∑
k=1

ck(α1 + α2)
2eT(t− τk(t))e(t− τk(t)) (12)

where ψ̃k(ei(t − τk(t))) =
[
ψ̃k1(ei1(t − τk(t))), ψ̃k2(ei2(t − τk(t))), · · · ,

ψ̃kn(ein(t− τk(t)))
]T .
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By Assumption 4, we have

N

∑
i=1

trace[g̃T(t, ei(t), ei(t− τ0(t)))g̃(t, ei(t), ei(t− τ0(t)))]

≤
N

∑
i=1

[eT
i (t)MT

1 M1ei(t) + eT
i (t− τ0(t))MT

2 M2ei(t− τ0(t))]

= eT(t)(IN ⊗MT
1 M1)e(t) + eT(t− τ0(t))(IN ⊗MT

2 M2)e(t− τ0(t)) (13)

Substituting (7)–(13) into (6), one can obtain

LV(t)

≤− 2eT(t)(IN ⊗ A)e(t) + eT(t)(IN ⊗MAMT
A)e(t) + eT(t)(IN ⊗ HT

AHA)e(t)

+
αB
2

eT(t)(IN ⊗ BBT)e(t) + eT(t)(IN ⊗MBMT
B)e(t)

+ eT(t)(IN ⊗MT
1 M1)e(t) + eT(t− τ0(t))(IN ⊗MT

2 M2)e(t− τ0(t))

+ (
2

αB
+ λmax(HT

BHB))eT(t)(IN ⊗ l2
h In)e(t) +

αD
2

eT(t)(IN ⊗ DDT)e(t)

+ (
2

αD
+ λmax(HT

DHD))eT(t− τ0(t))(IN ⊗ l2
f In)e(t− τ0(t)) + eT(t)(IN ⊗MDMT

D)e(t)

+ 2
m

∑
k=1

ckα1eT(t)(Θ̄(k) ⊗ Γk)e(t) + 2
m

∑
k=1

ckα2eT(t− τk(t))(Θ̄
(k) ⊗ Γk)e(t− τk(t))

+
m

∑
k=1

ckeT(t)(Θ̃(k)Θ̃(k)T ⊗ ΓkΓT
k )e(t) +

m

∑
k=1

ck(α1 + α2)
2eT(t− τk(t))e(t− τk(t))

≤eT(t)
[

IN ⊗
(
− 2A + MAMT

A + MBMT
B + MDMT

D + HT
AHA +

αB
2

BBT +
αD
2

DDT

+ MT
1 M1 + (

2
αB

+ λmax(HT
BHB))l2

h In

)
+ 2

m

∑
k=1

ckα1(Θ̄(k) ⊗ Γk) +
m

∑
k=1

ck(Θ̃
(k)Θ̃(k)T

⊗ ΓkΓT
k )
]
e(t) + eT(t− τ0(t))

[
IN ⊗

(( 2
αD

+ λmax(HT
DHD)

)
l2

f In + MT
2 M2

)]
e(t− τ0(t))

+
m

∑
k=1

ckeT(t− τk(t))
[
2α2(Θ̄(k) ⊗ Γk) + IN ⊗ (α1 + α2)

2 In

]
e(t− τk(t)). (14)

Using conditions (i)–(iii) in Theorem 1, we obtain

ELV(t) ≤ η0EV(t) + β0EV(t− τ0(t)) +
m

∑
k=1

ckβkEV(t− τk(t)). (15)

Next, our goal is to obtain the relation between V(t+σ ) and V(t−σ ) such that the results
conform to the structure of Lemma 2. When t = tσ, σ ∈ N, we can derive

V(t+σ ) = ∑
i∈W(tσ)

eT
i (t

+
σ )ei(t+σ ) + ∑

i/∈W(t+σ )

eT
i (t

+
σ )ei(t+σ )

= ∑
i∈W(tσ)

(1 + ρσ)
2eT

i (t
−
σ )ei(t−σ ) + ∑

i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ ). (16)

First, we study the situation of ρσ ∈ M. By obtaining µ̌σ = N+lρ̌σ(ρ̌σ+2)
N ∈ (0, 1), then

one can gain

(N − l)(1− µ̌σ) = [µ̌σ − (1 + ρσ)
2]l ≥ 0. (17)
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Denote {
Υ1(t−σ ) = min{‖ei(t−σ )‖ : i ∈ W(tσ)},
Υ2(t−σ ) = max{‖ei(t−σ )‖ : i /∈ W(tσ)}.

(18)

Hence, we can obtain

(1− µ̌σ) ∑
i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ ) ≤ (1− µ̌σ)(N − l)Υ2

2(t
−
σ )

≤ (1− µ̌σ)(N − l)Υ2
1(t
−
σ )

= [µ̌σ − (1 + ρσ)
2]lΥ2

1(t
−
σ )

≤ [µ̌σ − (1 + ρσ)
2] ∑

i∈W(tσ)

eT
i (t
−
σ )ei(t−σ ). (19)

From (19), one can future obtain the following inequality

∑
i∈W(tσ)

(1 + ρσ)
2eT

i (t
−
σ )ei(t−σ ) + ∑

i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ )

= ∑
i∈W(tσ)

[(1 + ρσ)
2 − µ̌σ]eT

i (t
−
σ )ei(tσ) + ∑

i∈W(tσ)

µ̌σeT
i (t
−
σ )ei(t−σ ) + ∑

i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ )

≤ (µ̌σ − 1) ∑
i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ ) + ∑

i∈W(tσ)

µ̌σeT
i (t
−
σ )ei(t−σ ) + ∑

i/∈W(t−σ )
eT

i (t
−
σ )ei(t−σ )

= µ̌σ

N

∑
i=1

eT
i (t
−
σ )ei(t−σ ). (20)

Combining (16) and (20) gives that V(t+σ ) ≤ µ̌σV(t−σ ). Similarly, we study the case of
ρσ ∈ B. Obtaining µ̂σ = N+lρ̂σ(ρ̂σ+2)

N ∈ (1,+∞), we can then obtain

[(1 + ρσ)
2 − µ̂σ]l = (µ̂σ − 1)(N − l) ≥ 0. (21)

Denote {
Υ3(t−σ ) = max{‖ei(t−σ )‖ : i ∈ W(tσ)},
Υ4(t−σ ) = min{‖ei(t−σ )‖ : i /∈ W(tσ)}.

(22)

Therefore, we can derive

[(1 + ρσ)
2 − µ̂σ] ∑

i∈W(tσ)

eT
i (t
−
σ )ei(t−σ ) ≤ [(1 + ρσ)

2 − µ̂σ]lΥ2
3(t
−
σ )

≤ [(1 + ρσ)
2 − µ̂σ]lΥ2

4(t
−
σ )

= (µ̂σ − 1)(N − l)Υ2
4(t
−
σ )

≤ (µ̂σ − 1) ∑
i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ ). (23)

From (23), one can future obtain the following inequality:

∑
i∈W(tσ)

(1 + ρσ)
2eT

i (t
−
σ )ei(t−σ ) + ∑

i/∈W(tσ)

eT
i (t
−
σ )ei(t−σ ) ≤ µ̂σ

N

∑
i=1

eT
i (t
−
σ )ei(t−σ ). (24)

Combining (16) and (24) gives that V(t+σ ) ≤ µ̂σV(t−σ ). Thus, we can obtain EV(t+σ ) ≤
µσEV(t−σ ), where

µσ =

{
µ̌σ, if ρσ ∈ M,
µ̂σ, if ρσ ∈ B.

(25)
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For any ε > 0, set v(t) be the only solution for the differential systems below.
v̇(t) = η0v(t) + β0v(t− τ0(t)) +

m
∑

k=1
ckβkv(t− τk(t)) + ε, t 6= tσ,

v(tσ) = µσv(t−σ ), t = tσ, σ ∈ N+,

v(s) = E
N
∑

i=1
‖ ζi(s) ‖2, −τ ≤ s ≤ 0.

(26)

One can easily demonstrate that ∀t ∈ [tσ, tσ+1), D+EV(t) = ELV(t). Based on
Lemma 2, we can derive EV(t) ≤ v(t) for ∀t ≥ 0. Using the technology of parametric
variation, we can obtain

v(t) = W(t, 0)v(0) +
∫ t

0
W(t, s)[β0v(s− τ0(s)) +

m

∑
k=1

ckβkv(s− τk(s)) + ε]ds, (27)

where W(t, s)(t > s ≥ 0) stands for the Cauchy matrix of the equation below:{
v̇(t) = η0v(t), t 6= tσ, σ ∈ N+,
v(tσ) = µσv(t−σ ), t = tσ, σ ∈ N+.

(28)

Let p =
q
∑

i=1
Ňi(t, s) +

r
∑

j=1
N̂j(t, s). Based on Definition 1, one can obtain

W(t, s) = eη0(t−s)
q

∑
i=1

µ̌
Ňi(t,s)
i

r

∑
j=1

µ̂
N̂j(t,s)
j

≤ (
q

∑
i=1

r

∑
j=1

µ̌−1
i µ̂j)

N0exp[(η0 +
q

∑
i=1

lnµ̌i

Ťi
+

r

∑
j=1

lnµ̂j

T̂j
)(t− s)]

= κe−ξ(t−s) (29)

where κ = (
q
∑

i=1

r
∑

j=1
µ̌−1

i µ̂j)
N0 , and ξ = −(η0 +

q
∑

i=1

lnµ̌i
Ťi

+
r
∑

j=1

lnµ̂j

T̂j
).

Let ς = κE
N
∑

i=1
sup−τ≤s≤0{‖ζi(s)‖2}, it follows from (27) that

v(t) ≤ ςe−ξt +
∫ t

0
κe−ξ(t−s)[β0v(s− τ0(s)) +

m

∑
k=1

ckβkv(s− τk(s)) + ε]ds, t ≥ 0. (30)

Let φ(λ) = λ− ξ + κ[β0eλτ0 +
m
∑

k=1
ckβkeλτk ]. Based on condition (iv), one has φ(0) =

−ξ + κγ < 0. It is clear that φ(+∞) = +∞ and φ̇(λ) = 1 + κ[β0τ0eλτ0 +
m
∑

k=1
ckβkτkeλτk ] >

0. Therefore, there exists a sole root λ > 0 satisfying the equation φ(λ) = λ − ξ +

κ[β0eλτ0 +
m
∑

k=1
ckβkeλτk ] = 0. Note condition (iv) and κ ≥ 1, for −τ ≤ t ≤ 0, one has

v(t) = E
N
∑

i=1
{‖ζi(t)‖2} ≤ ς ≤ ςe−λt + κε

ξ−κγ .

Next, we shall demonstrate the following inequality:

v(t) < ςe−λt +
κε

ξ − κγ
, ∀t ≥ 0. (31)
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Assume that (31) does not hold; then there is a t� > 0 satisfying

v(t�) ≥ ςe−λt� + C (32)

and

v(t) < ςe−λt + C, t < t�, (33)

where C = κε
ξ−κγ .

Combining (30) and (33) gives

v(t�) ≤ ςe−ξt� +
∫ t�

0
κe−ξ(t�−s)

[
β0v(s− τ0(s)) +

m

∑
k=1

ckβkv(s− τk(s)) + ε
]

ds

< e−ξt�
{

ς + C+
∫ t�

0
κeξs

[
β0(ςe−λ(s−τ1(s)) + C) +

m

∑
k=1

ckβk(ςe−λ(s−τk(s)) + C)
]
ds
}

= ςe−λt� + C, (34)

which contradicts inequality (32). Hence, inequality (31) is correct. Let ε → 0, then

v(t) < ςe−λt for t ≥ 0. Noting that EV(t) ≤ v(t), one can obtain EV(t) = E
N
∑

i=1
eT

i (t)ei(t) ≤

ςe−λt. Since λ is a positive constant, the controlled multi-link networks (1) can achieve
globally exponential synchronization.

Remark 5. The scale of the pinned node can be obtained from the equation ]W(tσ) = l. Since
desynchronizing impulses and synchronizing impulses are introduced in the controller (3), the
control scheme in this article can be called the hybrid impulsive pinning control.

Remark 6. Discriminating from the existing works in multi-link systems [17–24], the impulse
strength and position change with time evolution. The positive roles and negative roles of im-
pulses are studied simultaneously. Moreover, stochastic noise, hybrid time-varying delays, and
uncertainties are considered in this paper, making our results more generalized than related articles.

Remark 7. In the existing literature, the range of impulsive effects is usually limited, such as
µ ∈ (−2, 0) [38], µ ∈ (−1, 1) [8,39], µ ∈ (0, 1) [40], which means only positive roles for the
synchronization are considered. Unlike these methods, the impulsive gain in this article can be
selected from µ ∈ (−∞,−2)

⋃
(−2, 0)

⋃
(0,+∞), and not only positive roles but also negative

roles are considered. Our impulsive pinning control strategy can effectively reduce the scale of
control nodes and control time, thereby saving control costs.

When uncertain disturbances are not considered, dynamical networks (1) could be
rewritten as

dzi(t) =
[
− Azi(t) + Bh(zi(t)) + D f (zi(t− τ0(t))) + c1

N

∑
j=1

Θ(1)
ij Γ1ψ1(zj(t− τ1(t)))

+ c2

N

∑
j=1

Θ(2)
ij Γ2ψ2(zj(t− τ2(t))) + · · ·+ cm

N

∑
j=1

Θ(m)
ij Γmψm(zj(t− τm(t)))

]
dt

+ g(t, zi(t), zi(t− τ0(t)))dw(t) + ui(t), (35)

where i = 1, 2, . . . , N. Accordingly, the target trajectory s(t) = (s1(t), s2(t), · · · , sn(t))T satisfies

ds(t) =
[
− As(t) + Bh(s(t)) + D f (s(t− τ0(t)))

]
dt + g(t, s(t), s(t− τ0(t)))dw(t). (36)

Then, one can easily get a corollary below.

Corollary 1. Assume that Assumptions 1, 3–5 hold. Under mean square sense, controlled multi-link networks
(1) can be globally exponentially synchronized to the target s(t):
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E
N

∑
i=1
‖ei(t)‖2 ≤ ςe−λt,

if there exist positive scalars αB, αD, α1, α2, lh, l f , η0, β0 and βk(k = 1, 2, . . . , m), such that the following
inequalities hold:

(i) Ω0 ≤ IN ⊗ η0 In,

(ii) Λ0 ≤ IN ⊗ β0 In,

(iii) Λk ≤ IN ⊗ βk In, k = 1, 2, . . . , m,

(iv) ξ − κγ > 0,

where ς = κE∑N
i=1 sup−τ≤s≤0{‖ζi(s)‖2}, κ = (

q
∑

i=1

r
∑

j=1
µ̌−1

i µ̂j)
N0 , ξ = −(η0 +

q
∑

i=1

lnµ̌i

Ťi
+

r
∑

j=1

lnµ̂j

T̂j
),

µ̌i =
N+lρi(ρi+2)

N ∈ (0, 1), µ̂j =
N+lρj(ρj+2)

N ∈ (1,+∞), γ = β0 + ∑m
k=1 ckβk, Ω0 =

[
IN ⊗

(
− 2A +

αB
2 BBT + αD

2 DDT + MT
1 M1 +

2
αB

l2
h In

)
+ 2

m
∑

k=1
ckα1(Θ̄(k) ⊗ Γk) +

m
∑

k=1
ck(Θ̃(k) Θ̃(k)T ⊗ ΓkΓT

k )
]
, Λ0 =[

IN ⊗
(

2
αD

l2
f In + MT

2 M2

)]
,Λk =

[
2α2(Θ̄(k) ⊗ Γk) + IN ⊗ (α1 + α2)

2 In

]
, and λ is a sole root of λ− ξ +

κ[β0eλτ0 +
m
∑

k=1
ckβkeλτk ] = 0.

When stochastic noise is not considered, dynamical networks (1) could be rewritten as

dzi(t) =
[
− (A + ∆A(t))zi(t) + (B + ∆B(t))h(zi(t)) + (D + ∆D(t)) f (zi(t− τ0(t)))

+ c1

N

∑
j=1

Θ(1)
ij Γ1ψ1(zj(t− τ1(t))) + · · ·+ cm

N

∑
j=1

Θ(m)
ij Γmψm(zj(t− τm(t)))

]
dt + ui(t), (37)

where i = 1, 2, . . . , N. Accordingly, the target trajectory s(t) = (s1(t), s2(t), · · · , sn(t))T satisfies

ds(t) =
[
− (A + ∆A(t))s(t) + (B + ∆B(t))h(s(t)) + (D + ∆D(t)) f (s(t− τ0(t)))

]
dt. (38)

Then, one can obtain the corollary below.

Corollary 2. Assume that Assumptions 1–3, 5 hold. Under mean square sense, controlled multi-link networks
(1) can be globally exponentially synchronized to the target s(t):

E
N

∑
i=1
‖ei(t)‖2 ≤ ςe−λt,

if positive scalars αB, αD, α1, α2, lh, l f , η0, β0 and βk(k = 1, 2, . . . , m) exist, such that the following inequalities
hold:

(i) Ω0 ≤ IN ⊗ η0 In,

(ii) Λ0 ≤ IN ⊗ β0 In,

(iii) Λk ≤ IN ⊗ βk In, k = 1, 2, . . . , m,

(iv) ξ − κγ > 0,

where ς = κE∑N
i=1 sup−τ≤s≤0{‖ζi(s)‖2}, κ = (

q
∑

i=1

r
∑

j=1
µ̌−1

i µ̂j)
N0 , ξ = −(η0 +

q
∑

i=1

lnµ̌i

Ťi
+

r
∑

j=1

lnµ̂j

T̂j
), µ̌i =

N+lρi(ρi+2)
N ∈ (0, 1), µ̂j =

N+lρj(ρj+2)
N ∈ (1,+∞), γ = β0 + ∑m

k=1 ckβk,

Ω0 =
[

IN ⊗
(
− 2A + MAMT

A + MBMT
B + MDMT

D + HT
AHA + αB

2 BBT + αD
2 DDT+

( 2
αB

+ λmax(HT
BHB))l2

h In

)
+ 2

m
∑

k=1
ckα1(Θ̄(k) ⊗ Γk) +

m
∑

k=1
ck(Θ̃(k)Θ̃(k)T ⊗ ΓkΓT

k )
]
, Λ0 =

[
IN ⊗

(( 2
αD

+
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λmax(HT
DHD)

)
l2

f In

)]
, Λk =

[
2α2(Θ̄(k) ⊗ Γk) + IN ⊗ (α1 + α2)

2 In

]
, and λ is a sole root of λ − ξ +

κ[β0eλτ0 +
m
∑

k=1
ckβkeλτk ] = 0.

4. Numerical Simulations
To illustrate the theorem in this study from an experimental point of view, a numerical simulation

will be implemented next. First, consider the following isolated node of the network incorporating
stochastic noise, which can be formulated as

ds(t) =
[
− (A + ∆A(t))s(t) + (B + ∆B(t))h(s(t)) + (D + ∆D(t)) f (s(t− τ0(t)))

]
dt

+ g(t, s(t), s(t− τ0(t)))dw(t), (39)

where s(t) = (s1(t), s2(t))T ∈ R2. The non-delayed activation function is h(s(t)) = (cos(s1(t)),
cos(s2(t)))T ∈ R2, while the delayed activation function is f (s(t − τ0(t))) = (cos(s1(t − τ0(t))),
cos(s2(t − τ0(t))))T ∈ R2. A simple calculation shows that Assumption 1 can be satisfied when
lh = l f = 1. Respectively, the diagonal matrix A and the connection weight matrices B, D are
designated as

A =

[
15 0
0 15

]
, B =

[
−2.0 −0.1
−5.0 3.0

]
, D =

[
−0.2 −10
−0.2 −5.0

]
.

The uncertainty matrices and relevant parameters corresponding to the above matrices could
be set as

∆A(t) = MAΛ(t)HA =

[
0.15 0

0 0.15

][
cos(t) 0

0 sin(t)cos(t)

][
0.35 0

0 0.35

]
,

∆B(t) = MBΛ(t)HB =

[
0.20 0

0 0.20

][
cos(t) 0

0 sin(t)cos(t)

][
0.30 0

0 0.30

]
,

∆D(t) = MDΛ(t)HD =

[
0.25 0

0 0.25

][
cos(t) 0

0 sin(t)cos(t)

][
0.05 0

0 0.05

]
.

One can find that the above uncertain matrices make Assumption 2 satisfied. The noise in-
tensity function could be given by g(t, s(t), s(t− τ0(t))) = 0.5s(t) + 0.5s(t− τ0(t)), which satisfies
g(t, 0, 0) = 0. Hence, Assumption 4 holds for M1 = M2 = 0.5I2. The multi-link stochastic complex
dynamical networks including 100 nodes are described as

dzi(t) =
[
− (A + ∆A(t))zi(t) + (B + ∆B(t))h(zi(t)) + (D + ∆D(t)) f (zi(t− τ0(t)))

+
3

∑
k=1

100

∑
j=1

ckΘ(k)
ij Γkψk(zj(t− τk(t)))

]
dt + g(t, zi(t), zi(t− τ0(t)))dw(t), (40)

where ck = 0.1, Γk = 0.1I2, τ1(t) = 0.11et/(1 + et), τ2(t) = 0.12et/(1 + et), and τ3(t) = 0.13et/(1 +
et). The nonlinear coupling function is ψk(zj(t− τk(t))) = (sin(zj1(t− τk(t))), zj2(t− τk(t))) ∈ R2,
α1 = 0.5, α2 = 1.5. One can find Assumption 3 holds based on the characteristic of ψk(.). Assume
that the network topology of these sub-networks (i.e., Θ(1), Θ(2), and Θ(3)) in systems (40) satisfying
the E-R network model, and the connection probabilities are set as 0.2, 0.25, and 0.3, respectively.
For simplicity, let Ťi = 0.001, ρ̌i = −0.2, T̂j = 1, ρ̂i = 1.2, αB = 1, αD = 1; by simple calculation, we

can obtain that −(η0 +
q
∑

i=1

lnµ̌i

Ťi
+

r
∑

j=1

lnµ̂j

T̂j
) = 9.1520, β0 + ∑m

k=1 ckβk = 8.4975. Hence, when we set

N0 = 0, one can derive ξ − κγ > 0, and all the circumstances in Theorem 1 are satisfied.
Utilizing the classical Runge-Kutta algorithm, Figure 2 shows the time evolutions of zi1(t) and

zi2(t) in controlled multi-link complex networks (40) with random initial values. Figure 3 reveals
that synchronization error ei(t) approaches zero rapidly as the system evolves. It is clear that the
synchronization objective of multi-link system (40) can be achieved with a fast convergence under
the hybrid impulsive pinning control technology, and the correctness of the theoretical analysis in
this paper has been verified.
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(a)

(b)

Figure 2. Time evolution of zi(t) in multi-link complex networks (40) under the hybrid impulsive
pinning control. (a) zi1(t); (b) zi2(t).

(a)

(b)

Figure 3. The state of synchronization errors in multi-link complex networks (40) under the hybrid
impulsive pinning control. (a) ei1(t); (b) ei2(t).

5. Conclusions
In this article, the mean square synchronization problem of uncertain multi-link stochastic

dynamical networks incorporating hybrid time-varying delays has been investigated by pinning and
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controlling a small number of network nodes. Unlike the existing impulsive control, synchronization
impulse and desynchronization impulse are considered at the same time, and the impulse strength
and position change with time evolution. Combining coupling matrix decomposition technology
and stability theory, some new synchronization criteria, which are bound up with the uncertain
strengths, coupling strengths, hybrid impulse strengths, delay sizes, impulsive intervals, and network
topologies, are derived to guarantee synchronization for the concerned multi-link model. Ultimately,
a simulation experiment shows the rationality of our theory. In the future, we will continue to
study how to apply the impulsive pinning control techniques in this article to the corresponding
fractional-order multi-link delayed systems. Due to the nonlocality of fractional-order systems and
the delay effect, maybe one can establish new fractional-order impulsive comparison principles to
overcome this difficulty, which is challenging and meaningful work.
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