
Hybrid Index Structures for Location-based Web Search*
Yinghua Zhou1, Xing Xie2, Chuang Wang3, Yuchang Gong1, Wei-Ying Ma2

1Department of Computer Science,
University of Sci. & Tech. of China,
Hefei, Anhui, 230026, P.R. China

yhzhou@mail.ustc.edu.cn
ycgong@ustc.edu.cn

2Microsoft Research Asia,
5F, Sigma Center, No. 49, Zhichun
Road, Beijing, 100080, P.R. China

 {xingx,wyma}@microsoft.com

3Department of Computer Science,
Huazhong University of Sci. & Tech.,

Wuhan, 430074, P.R. China

chwang@mail.hust.edu.cn

ABSTRACT
There is more and more commercial and research interest in
location-based web search, i.e. finding web content whose topic is
related to a particular place or region. In this type of search, location
information should be indexed as well as text information. However,
the index of conventional text search engine is set-oriented, while
location information is two-dimensional and in Euclidean space.
This brings new research problems on how to efficiently represent
the location attributes of web pages and how to combine two types
of indexes. In this paper, we propose to use a hybrid index structure,
which integrates inverted files and R*-trees, to handle both textual
and location aware queries. Three different combining schemes are
studied: (1) inverted file and R*-tree double index, (2) first inverted
file then R*-tree, (3) first R*-tree then inverted file. To validate the
performance of proposed index structures, we design and implement
a complete location-based web search engine which mainly consists
of four parts: (1) an extractor which detects geographical scopes of
web pages and represents geographical scopes as multiple MBRs
based on geographical coordinates; (2) an indexer which builds
hybrid index structures to integrate text and location information; (3)
a ranker which ranks results by geographical relevance as well as
non-geographical relevance; (4) an interface which is friendly for
users to input location-based search queries and to obtain
geographical and textual relevant results. Experiments on large real-
world web dataset show that both the second and the third structures
are superior in query time and the second is slightly better than the
third. Additionally, indexes based on R*-trees are proven to be more
efficient than indexes based on grid structures.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval] Content Analysis and
Indexing –Indexing methods H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval –Search process,
Retrieval models.

General Terms: Management, Design, Experimentation

Keywords: Location-based web search, spatial index, textual
index, geographical ranking, geographical scope

1. INTRODUCTION
Location-specific information is common on the Web. According to
previous studies, nearly one fifth of web search tasks are related to a
specific place or region [6,14], which is usually called location-
based web search. Recently, more and more commercial search
engines start to provide location based services, such as local search,
local advertisements and map services. These services are
particularly useful for mobile users.

Most commercial search engines, such as Google Local [5] and
Yahoo! Local [17], only search business addresses in Yellow Pages
or other kinds of paid lists. In this paper, we are interested in a more
general form of local search, that is, to search local content on the
Web. In our approach, each web page will be first assigned to a few
geographical locations according to its content and then spatially
indexed in the search engine. Therefore, it can be later retrieved by
its locations.

How to efficiently index and search location-specific information is
being a key problem for location based search engines. A
straightforward approach is to treat geographical words which
represent location information as common keywords, and to retrieve
web pages with specified location names in the same way to
keyword matching. However, simple keyword matching neglects
underlying spatial relationships, therefore, does not support
advanced spatial queries. To solve the problem, it is necessary to
design an efficient index structure that considers both spatial and
textual features of web pages.

In this paper, we studied and compared the performance of different
hybrid index structures for location-based web search. In general,
there are two main design issues: location representation and index
combination scheme.

There are many types of location information on the Web. Our
concern is the geographical scope of a web page, i.e. the
geographical area that a creator of the page intends to reach [4], also
can be intuitively explained as people think the page most relevant
to. Recently, quite a few researchers have studied this problem
[1,3,4,13,18]. Most of them use place names to represent the
geographical scope which can be obtained by analyzing web textual
content and/or geographical distribution of hyperlinks. In order to
support spatial semantics, the scope should be, however, treated as a
two-dimensional spatial object. After considering the trade-off
between accuracy and computational cost, in this paper we use
minimum bounding rectangle (MBR) based on longitude/latitude
coordinates to represent a spatial object (in some applications, points
may be sufficient for location representation. Our method can be
easily adapted to support these applications.). The scope of a web
page may include multiple spatial objects. Therefore, our scope

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/0010...$5.00.

* This work was done when the first and the third authors worked as
interns at Microsoft Research Asia

155

could be represented as multiple MBRs. In order to efficiently
organize the two-dimensional data, we choose R*-tree [2], a popular
and efficient spatial index for rectangles and points, to manage the
scopes.

Next we consider the scheme for combining index structures of text
and location information. We propose to use a hybrid index structure,
which integrates inverted files and R*-trees, to handle both textual
and location aware queries. Three different combining schemes are
studied: (1) inverted file and R*-tree double index, (2) first inverted
file then R*-tree, (3) first R*-tree then inverted file. The first
structure includes two independent index structures, inverted list and
R*-tree, to index web pages both textually and spatially. The second
structure is designed based on the idea of spatially partitioning of
each page list in the inverted files. The main idea of the third
structure is, for each spatial object, we create inverted files for the
web pages whose scope contains the spatial region. Experiments on
large real-world web dataset show that these three structures have
almost the same storage cost and both the second and the third
structures are superior in query time and the second is slightly better
than the third. Additionally, indexes based on R*-trees are proven to
be more efficient than indexes based on grid structures.

Additionally, we design and implement a complete location-based
web search engine to validate the performance of proposed index
structures. The engine mainly consists of four parts: (1) an extractor
which detects geographical scopes of web pages and represents
geographical scopes as multiple MBRs based on geographical
coordinates; (2) an indexer which builds hybrid index structures to
integrate text and location information; (3) a ranker which ranks
results by geographical relevance as well as non-geographical
relevance; (4) an interface which is friendly for users to input
location-based search queries and to obtain geographical and textual
relevant results.
Our novel contributions include:
z We represented geographical scopes of web pages as multiple

MBRs and discussed the corresponding index/search process;
z We studied and compared three hybrid index structures based

on inverted files and R*-trees;
z We developed and introduced a complete location-based web

search engine prototype based on proposed hybrid index
structures;

z We carried out large-scale experiments based on real dataset to
validate the performance of our index structures.

This paper is organized as follows. Section 2 describes related work.
Section 3 is the introduction of the framework of our location-based
web search engine and its main components. Section 4 is the
analysis of the performance of hybrid index structures. Section 5
provides our experimental results, mainly on the index structures.
Finally, we conclude the paper and discuss our future work in
Section 6.

2. RELATED WORK
Location-based search has attracted a lot of attention in the research
community. We will discuss the state of art from three aspects in the
following subsections.

2.1 Location Representation
Generally, location information can be represented as either textual
keywords (set space) or two-dimensional spatial objects (Euclidean
space).

Textual keywords include postal codes, telephone numbers, place
names, etc.[3,13]. Among them, place name is more convenient to
express the location hierarchy and can be easily transformed to other
representations. Place name is very useful for extracting and
detecting the location information in web content. However, it
cannot easily describe the detail shape of a place and spatial
relationships among different places.

Two-dimensional spatial objects can be represented using vector
model or raster model. Compared with textual keywords, they are
more powerful in describing the region shapes. As to the raster
model, the precision of the representation heavily depends on the
size of grid cells. In [12], the authors superimposed a grid of
1024x1024 tiles on the total area of Germany. However, for an area
like USA or the world which is relatively much larger than Germany,
it is difficult to balance the storage requirement and the
representation precision. In vector model, point locations are
represented as points while region locations are described as
polygons or minimum bounding rectangles (MBRs). Polygon
representation is more accurate but the storage cost is large and the
computation is complex. MBR is a simple approximation to a
region’s shape. Only two diagonal points are needed to represent the
location information. Therefore, computation based on MBR is
much simpler.

There exists much related work based on MBR in the literature, such
as [8,9,11]. In this work, the scope of each page has only one MBR
which is usually calculated as the bounding rectangle of all places
mentioned in the page. While in our work, the scope of each page
may have multiple MBRs, where each MBR corresponds to one
focused region of the web page. As shown in Figure 1, if the scope
of a web page includes South Dakota and Colorado, the
representation of the scope is the solid rectangle for [9,11] while two
dashed rectangles for our work. Apparently our approximation is
more precise.

Figure 1. Geographical scope representation as MBRs.

2.2 Location Index
Different location representations lead to different index structures.

Place names can be organized as a flat list, or a hierarchy tree to
represent the part-of relationships in the administrative hierarchy.
The hierarchy structure is also very useful in detecting and extracting
the main geographical scope of web pages, as shown in [4,18].

For representations based on spatial objects, using spatial index, for
example R-tree family, quad-tree, or grid files, is a good choice. In
[8], Global-Atlas stores the bounding rectangles of all regions in a
database using Oracle Spatial Cartridge extension. In [9,11], their

156

work is based on an R-tree index of the MBRs of each page. The
main difference between our work and their work is: their spatial
index is based on the only MBR in each page and their datasets are
about several thousands of web pages, while in our work the spatial
index is based on multiple MBRs in a page and our work is based on
over one million pages. Since the number of different MBRs
(corresponding to different geographical scopes) is much smaller
than the number of pages, the scale of spatial index will not become
too large.

2.3 Index Combination Scheme
Existing work related to index combination schemes can be
classified into two types.
The first type of approaches performs post-processing on general
web search results. In [12], first textual web search is done in a way
similar to conventional search and a set of pages are returned, then
the location footprints of these pages are compared with the query
location. Namely, conventional search is followed by a spatial
filtering. In [9,11], spatial index is introduced to speed up the
location filtering process. They build an R-tree dynamically on the
search results from Google. However, the problem is that search
engines only return the most relevant pages to users, so for those
unpopular locations, the search results may contain very few correct
results.

Table 1. Comparison of previous work and our work.

Work Location
representation Location index Combination scheme

[12] Raster model Quad-tree Textual index without
spatial index

[9,11] MBR R-tree Textual search followed by
online spatial indexing

[15] Place name Hierarchy
gazetteer

Textual index with query
expansion

[7] MBR/polygon Regular grid Two-stage hybrid index

Our
work MBR R*-tree Two-stage hybrid index

The other type of approaches tries to integrate text and location
information during indexing. In the Global Atlas search engine [8],
all spatial and textual information query processes are carried out by
the Oracle database. This approach can not deal with very large scale
data like the Web. The most relevant work to us is a technical report
[7] on their preliminary research of spatio-textual index in the
SPIRIT project [15]. Their analysis is based on a hybrid structure of
regular grids and inverted files. The conclusion is that the best
spatial search time can be achieved when the cell size is 5% of the
total area. In our option, regular grid structure is a coarse spatial
partitioning method, while in our work R*-tree is used, which is
more fine granularity. The number of pages related to a typical MBR
is much smaller than that to a cell of 5% size; therefore the cost for
merging lists is reduced. Experimental results on large-scale real
dataset in Section 5 will show that, to obtain the same results, our
hybrid index structures outperform the structure in [7] in query time.

Table 1 summarizes the characteristics of previous work and our
work according to the above three aspects.

3. A LOCATION-BASED WEB SEARCH
ENGINE
In this section, we will introduce the framework and main
components of our location-based web search engine.

3.1 Framework
A complete work flow of our engine comprises offline processing
and online processing. Offline processing includes extracting
geographic scopes and indexing web pages according to their scopes,
while online processing includes retrieving location aware
information, ranking and presenting the retrieved results. Our search
engine has four main components: extractor, indexer, ranker and
search interface, as shown in Figure 2.

In the following subsections, we will introduce the above
components in detail except the indexer which we will leave to
Section 4.

Figure 2. The system framework.

3.2 Extractor
The extractor module extracts geographical scope of pages and
translates them to MBRs before sending them to the indexer.
The extraction and detection of scope is based on our previous work
[18]. In that paper, web locations are divided into three types:
provider location, content location and serving location. According
to the type of location, web textual content and/or geographical
distribution of hyperlinks and/or user logs are analyzed to extract the
correct scope of web pages. Scope is represented as location names
and a web page may have multiple location names as its scope.
A gazetteer is constructed to translate location names to MBRs
based on geographical coordinates, which will be described in
Section 5.1 in detail.

3.3 Search Interface
We provide users two types of search interfaces to input queries.
One is based on maps and textual keywords, while the other is based
on pure text input. For the former, a user can draw a region of
interest on the map and input keywords in the text box. For the
latter, a user can describe location names and spatial relationships
textually. The latter type of interface will automatically detect the
location information from search queries. Some related work on
detecting location information in queries can be found in [19].

3.4 Ranker
The goal of the ranker is to return those important pages which are
not only most relevant to text keywords but also most relevant to

Indexer

Extractor

Web Pages

Interface

Results

Gazetteer

Hybrid
indexes

Ranker

Location-based
web query

157

query regions. Currently there is little work on how to combine
geographical ranking and non-geographical ranking. Here we
describe our preliminary study on the combination of two rankings
and the computation of geographical relevance.

To combine two ranking values, a simple method is that the total
ranking value of a web page is calculated as a weighted sum of the
geographical and non-geographical ranking values.

In some cases, users may only care about whether pages’
geographical ranking values are bigger than a threshold but do not
care about their absolute values. We can first sort pages based on
their geographical ranking values, then fetch those page whose value
is bigger and sort them by their non-geographical ranking values.

Geographical ranking values lie heavily on the spatial query type.
Our engine supports four spatial query types: contain, overlap, inside,
and nearby. Their corresponding geographical ranking algorithms
are described in the following subsections.

3.4.1 Contain
This type of queries tries to find pages whose scopes are contained
by the spatial query region. We defined the geographical rank as:

(,) /grank Q R R Q=

Q is the extent of the spatial query region; R is the extent of the
scope of a web page. A page is more geographical relevant if it has a
larger scope.

3.4.2 Inside
This type of queries tries to find pages whose scopes contain the
spatial query region. In this case, a page is less relevant if its scope is
larger.

(,) /grank Q R Q R=

3.4.3 Overlap
This type of queries tries to find pages whose scopes overlap the
query region. A page is more relevant if the overlap region is bigger.

(,) () /()grank Q R Q R Q R Q R= + −I I

Q∩R is the overlap extent of Q and R.

Sometimes a user only submit a query for local information while
does not state his query types. In this case, we will execute three
queries of type contain, inside and overlap, and the geographical
ranking value is decided by the following equation:

(,) () /()grank Q R Q R Q R Q R= + −I I

3.4.4 Nearby
This type of queries tries to find pages whose scope is close to the
query region. We transform this query type to an overlap query. The
query region is a circle whose center is the query point or the center
of the query region. Users can specify the radius of the circle, i.e. the
distance between the results and the query region, or specify the
number of results for dynamically adjusting the radius. The
relevance of results will lie on the distance between the query region
and the geographical scopes, nearer means more relevant.

4. INDEXER
The indexer aims to build hybrid index structures to integrate text
and location information of web pages. To textually index web pages,
inverted files are a good choice as shown in conventional search
engines. To spatially index web pages, two-dimensional spatial
indexes are used, for example, R-tree family, quad-tree and grid
structure. R-tree uses the minimum bounding rectangle (MBR) as an
approximation to a spatial object, which is similar to our
approximation of the geographical scope. R*-tree is a variant of R-
tree that can further improve search performance, so we choose R*-
tree as the spatial index. Additionally, considering that the index is
built while offline processing and the collection of geographical
scopes is stable with time, we use Sort-Tile-Recursive (STR)
algorithm [10] as the packing algorithm to pre-process the spatial
datasets before building R*-trees.

We study three hybrid methods: (1) inverted file and R*-tree double
index, (2) first inverted file then R*-tree, (3) first R*-tree then
inverted file. We will describe the hybrid index structures and
present cost models for each structure. The symbols used in the cost
models are listed in Table 2.

Table 2. The description of symbols.
Symbol Description

M The number of MBRs in the gazetteer

G The number of geo-keywords in the datasets

K The number of keywords in the lexicon

g(Q) The number of geo-keywords for a query Q

PK(k) *The length of the page list of a keyword k

PM(m) *The length of the page list of an MBR m

PG(g) *The length of the page list of a geo-keyword g

BList Storage of page lists

BR(x) Storage of an R*-tree of x elements

TI/O The time cost of disk accesses

Tdisk The time cost of one disk access

TR(x) The time cost to retrieve an R*-tree of x elements

Tmg (x) The time cost to merge x elements

4.1 Inverted File and R*-tree Double Index
In this structure, web pages are indexed separately twice, once by
R*-tree and once by inverted files. All MBRs are indexed by an R*-
tree. The difference from conventional R*-tree is that each leaf node
of the MBR tree points to a page list whose scope includes this
MBR, as shown in Figure 3. Inverted files are the same to
conventional search engines. Thus we have two kinds of page lists
whose entry is either an MBR or a keyword.

A location-based web search comprises non-spatial keywords and
query region and/or specified spatial query types. Non-spatial query
keywords are retrieved similar to conventional inverted files, while
query region and spatial query type are passed to the R*-tree. The
final results are the merge of page lists from two indexes.

The storage in disk comprises the two kinds of page lists and the R*-
tree. Therefore,

1 1
1 R ListStorage B B= +

158

The storage of an R*-tree that has x leaf nodes [16] is)()(xOxBR =

The storage of page lists depends on the length of each list, whose
unit is the identifier of a page Assuming the length of the list whose
entry is keyword k is PK(k) and the length of the list whose entry is
MBR m is PM(m), the total length of all lists is ∑∑

==
+

K

k
K

M

m
M kPmP

11
)()(.

Then

))()((
11

1 ∑∑
==

+=
K

k
K

M

m
MList kPmPOB

Now, 1 1
1

1 1

1 1

() (() ())

(() ())

R List
M K

M K
m k

M K

M K
m k

Storage B B

O M O P m P k

O P m P k

= =

= =

= +

= + +

= +

∑ ∑

∑ ∑

So, the main cost of storage in disk is caused by two kinds of page
lists above. For the storage of the identifier of pages is about a fixed
value, the storage is mainly determined by the total length of all page
lists.

Assume there is a query including m keywords and a query region.
The online computation has three parts: (1) the retrieval of the m
keywords in inverted files and the loading of corresponding page
lists from the disk; (2) the retrieval of the R*-tree, assuming n MBRs
are got, and the loading of corresponding page lists of these MBRs
from the disk; (3) the merge of these (m+n) page lists.

The retrieval of keywords is implemented by a hashing function, so
we think the time can be ignored. The time of loading page lists is
determined mainly by the number and total length of lists. The
merge processing depends on the total length of these page lists.

For the R*-tree that in this structure has M leaf nodes, assuming that
the query time is)(MTR

The merge time for x elements in memory is:)(xOTmg =

The time to read a page list whose length is x from disk is

)/(sec/ tiondiskOI BxOTT ⋅=

In the above equation, Bsection is the size of a section of the disk
which depends on the file system of a computer. In our system it is
4Kbytes.

Then,

))()(())/)((

)/)((()(

11
sec

1

1
sec

11
/

1
1

∑∑∑

∑

===

=

++⋅+

⋅+=

++=

n

i
iK

m

i
iMtion

n

i
iKdisk

m

i
tioniMdiskR

mgOIR

kPmPOBkPOT

BmPOTMT

TTTTime

For different queries, there are two factors that effect the query time.
One is the merge operations of m page lists whose entry is a keyword
and n page lists whose entry is an MBR, which depends on the total
length of these (m+n) page lists. The other factor is the time to read
these (m+n) page lists from disk.

R1 R2 R3 R4 R5 R6

P23P1

P2

P8

P16

P10

P12

P16

P5

P12

P20

P26

P32

R1

Ra

R2

R3
R4

R5

R6

Rb

Ra Rb

…

…

…

P37…

…P2

Page lists

R1 R2 R3 R4 R5 R6

P23P1

P2

P8

P16

P10

P12

P16

P5

P12

P20

P26

P32

R1

Ra

R2

R3
R4

R5

R6

Rb

Ra Rb

…

…

…

P37…

…P2

Page lists

Figure 3. The structure of R*-tree in the hybrid structure of

inverted file and R*-tree double index.

4.2 First Inverted File Then R*-tree
As shown in Figure 4, each keyword points to an R*-tree. For each
page list whose entry is a keyword in the first hybrid structure, these
pages in the list are assigned to different MBRs according to their
geographical scopes, and an R*-tree is built on these MBRs, then we
can get a set of page lists whose entry is determined by a pair of a
keyword and an MBR. A pair of a keyword and an MBR is named a
geo-keyword if there is a page which includes the keyword and
whose scope includes the MBR.

Assuming PG(g) is the length of a page list whose entry is a geo-
keyword g.

The storage in disk includes these page lists and R*-trees pointed by
K keywords. So

2 2
2

1

() (())

R List
G

G
g

Storage B B

K O M O P g
=

= +

= ⋅ + ∑

In fact, an R*-tree in this structure may not index all M MBRs as in
the first structure, so the scale of R*-trees is smaller. Thus we can
see that the cost of storage in disk is mainly caused by the total
length of page lists whose entry is a geo-keyword.

Assuming the number of geo-keywords for a query Q of m keywords
and n MBRs is g(Q). The online computation includes: (1) first to
retrieve the m query keywords; (2) to search in the corresponding
R*-trees whose number is m and the average leaf node is M , and to
find some MBRs and their corresponding page lists, the number of
lists got from m R*-trees is g(Q); (3) to merge these g(Q) page lists.
The retrieval for m keywords is implemented by a hashing function,
and the time is ignored. So,

))(()/)(()(
)(

1

)(

1
sec

22
/

2
2

∑∑
==

+⋅+⋅=

++=
Qg

i
G

Qg

i
tionGdiskR

mgOIR

iPOBiPOTMTm

TTTTime

Besides the retrieval of m R*-trees, there are also two main factors
for online search. One factor is caused by the total length of the page
lists whose entry is a geo-keyword, the number of lists is g(Q). The
other factor is the time to read these g(Q) page lists from disk. The
pages in a page list whose entry is a geo-keyword is a subset of
pages in the page list whose entry is the corresponding keyword or
MBR, so the length of a page list whose entry is a geo-keyword is
greatly reduced.

159

KeywordID KeywordID KeywordID …….

R*-tree R*-tree R*-tree …….

P3P2

P6

P3

P5

P8

P12

P28…

… P7…

…P11

Page lists

…

KeywordID KeywordID KeywordID …….

R*-tree R*-tree R*-tree …….

P3P2

P6

P3

P5

P8

P12

P28…

… P7…

…P11

Page lists

…

4.3 First R*-tree Then Inverted File
As shown in Figure 5, an R*-tree is built on all MBRs included in
scopes of all web pages. And web pages are assigned to MBRs
according to their scopes. After all pages of each MBR are textually
indexed by keywords, we can get a set of page lists whose entry is a
geo-keyword.

The main storage in disk includes the page lists whose entry is a geo-
keyword and the R*-tree.

))(())(()(
11

33
3

∑∑
==

=+=

+=
G

g
G

G

g
G

ListR

gPOgPOMO

BBstorage

The main cost of storage in disk is caused by the total length of page
lists whose entry is a geo-keyword.

The online computation includes: (1) first to search the R*-tree and
get n MBRs, (2) for each MBR, to retrieve which of the m keywords
are pointed to, then to load corresponding page lists. The number of
lists in total is g(Q); (3) to merge these page lists. So,

))(()/)(()(
)(

1

)(

1
sec

33
/

3
3

∑∑
==

+⋅+=

++=
Qg

i
G

Qg

i
tionGdiskR

mgOIR

iPOBiPOTMT

TTTTime

Similar to the second structure, besides the retrieval of the R*-tree,
there are also two main factors, the total length of these g(Q) page
lists and the time to read these g(Q) page lists from disk.

P19P4

P2

P1 P5

…

…

P36…

…P20

…

Page lists

KeywordID

R*-tree … …

…
…

…

In summary, the online performance of the first structure depends on
the total length of page lists of m keywords and n MBR, also on the
time to read these (m+n) page lists from disk. Besides the retrieval of
R*-trees, the second and third structure mainly depends on the total
length of g(Q) page lists, also on the time to read these g(Q) page
lists from disk, so the two have similar performance. And in real case
g(Q) is relatively smaller, which can be found on real large-scale

dataset in Section 5, so the performance of the second and third is
better than that of the first. Additionally, there are m times of R*-tree
searching for the second while one time of R*-tree searching for the
third, but the R*-tree in the second has M =G/K leaf nodes on
average while the R*-tree in the third has M leaf nodes. In fact, for
each keyword, the number of MBRs to make a geo-keyword with
this keyword is limited, i.e. M is much smaller than M, the
experiments in Section 5 will prove it. Thus the scale of R*-trees in
second is much smaller than of the R*-tree in third. Based on the
analysis of [2], for the same query, the scale of an R*-tree is most
important factor for query time; in the worst case all leaf nodes have
to be accessed. So for a query, the query time in any of R*-trees of
the second is much smaller than in the R*-tree of the third.
Considering that m is very small too, the second may be slightly
better than the third in query time.

5. EXPERIMENTS
To evaluate the performance of three hybrid index structures, we
implemented them in our system and compared them with existing
grid based indexes. In the following we will first describe the
experimental settings and dataset, then discuss the results of the
experiments.

5.1 Settings and Dataset
We use .GOV data as our benchmark dataset. It is a collection of real
web resources of major USA government sites whose top domain
is .gov. These data are mainly crawled in the year 2002 and used by
TREC2003. The dataset covers a wide geographical range of USA.

To spatially index web pages, we should first get geographical scope
of web pages. In the work of [18], geographical scope has been
extracted as place names, so a gazetteer must be constructed in
advance to translate place names to MBRs. In the absence of MBR
representation for each place, we get the standard longitude/latitude
coordinates of a place through Microsoft MapPoint Service.
However, the borders of such an MBR are not straight lines. To
solve the problem, we use Gauss-Kruger reference frame, which has
little deformation in angle, length and extent, to transform the
coordinates. Thus, our gazetteer can map location names to MBRs
based on Gauss-Kruger coordinates. For textual index, the inverted
files are created based on the work of MSRA’s Web search platform
for TREC2004.

Table 3. Statistics of our dataset.
Statistics Value

The number of all pages 1,053,111

The number of local pages 197,775

The occurrences of MBRs in local pages 197,988

The number of MBRs 26,090

The number of all keywords L 2,684,633

The number of geo-keywords G 3,535,505

The number of MBRs included in geo-keywords M 4,246

The number of keywords included in geo-keywords K 758,717

Our experimental environment is a machine with an Intel Xeon 3.06
GHz CPU, 2 GB RAM, and running Microsoft Windows Server
2003.

Figure 5. The illustration of first R*-tree then inverted
file index structure.

Figure 4. The illustration of first inverted file then R*-
tree index structure.

160

After analyzing the dataset, we found that about 18.78% pages are
local pages, i.e. have at least one geographical scope. Our
experiments are mainly carried out on these local pages to emphasize
the indexing performance for location-based web query. The total
number of keywords K is 2,684,633; the number of MBRs in the
gazetteer is 26,090; and the total number of occurrences of MBRs in
all pages is 197,988; the number of geo-keywords is 3,535,505;the
number of MBRs included in geo-keywords is 4,246; the number of
keywords included in geo-keywords is 758,717, as shown in Table 3.

5.2 Comparison of Three Hybrid Index
Structures
We compared the disk storage requirement and the query time of
hybrid index structures.
As we can see from Table 4, the storage of the first structure is
140.00+0.83=140.83 Mbytes, approximately equaling to that of the
other two which is about 138.95 Mbytes.
Additionally, the number of lists in the first structure is much smaller
than that of the other two (758,717 + 4,246 << 3,535,505), while the
total length of page lists in the first structure is more than the other
two (One unit of the length of a page list is the identifier of a page).
So the average length of each list in the first structure is much longer.
There are K smaller R*-trees in the second structure and only one
bigger R*-tree in the third structure. However, the storage space for
R*-trees is relatively small compared with the size of page lists. So
the difference between the second and the third structures is very
small.

Table 4. Disk storage for three hybrid index structures.

 Page lists
The

number of
lists

Total length
of page lists

Average
length

Physical
size

(Mbytes)

entry is a
keyword 758,717 33,481,669 44.13 140.00

 The 1st
structure entry is an

MBR 4,246 197,988 46.63 0.83

The 2nd
and 3rd

structures

entry is a
geo-keyword 3,535,505 27,666,384 7.83 138.95

To test the query time of the three structures, we used a query set
comprising 2000 queries which were randomly generated. 1000
queries were input by drawing a query region on the map, and
another 1000 queries were input by adding location keywords. Four
spatial query types were randomly assigned to each query. In the
test set, there are 551 contain queries, 517 overlap queries, 514
inside queries and 418 nearby queries. All these queries were
submitted to three hybrid index structures.
As discussed in Section 4, the query time has three main parts: the
time for retrieving relevant MBRs from R*-trees, the time for disk
access and the time for merging page lists:

/R I O mgTime T T T= + + .

The results in Table 5 indicate the second and the third structures
have obvious advantages over the first. This is because that the first
spends too much time on TI/O and Tmg. These two factors are both
determined by the length and number of page lists. We can see from
Table 4, the average length of page lists in the first structure is much
longer than that of the other two. The situation is the same for the

number of lists to read. It is because that more lists are required to
find the correct results for the first structure. Additionally, there are
m R*-trees to search in the second while one R*-tree to search in the
third; but on average each R*-tree in the second has
3,535,505/758,717=4.6 leaf nodes, while the R*-tree in the third has
M=4,246 leaf nodes. Considering that there are 2.4 keywords per
query on average i.e. m=2.4 in our query sets, the second structure
spends less time in searching in R*-trees than the third. This verifies
our analysis in Section 4.

Table 5. Average query time for three hybrid index structures.

 The 1st
structure

The 2nd
structure

The 3rd
structure

Total length of page
lists per query 38,868.91 122.42 122.42

Number of page lists
per query 72.04 4.36 4.36

TR(ms) 2.34 0.16 2.34

TI/O(ms) 30.83 7.91 7.91

Tmg(ms) 17.01 0.73 0.73

Query time(ms) 50.18 8.80 10.98

5.3 Comparison of Hybrid Index Structures
Based on R*-tree and Grid Structure
In this subsection, we compared the query time of our second and
third structures with grid based structures [7]. In [7], their hybrid
index structures are implemented based on regular grid structures
and inverted files. The comparison was analyzed on the same query
set as the previous subsection.

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13
N(Number of grid cells is NxN)

Q
u
e
r
y

T
i
m
e

(
m
s
)

Grid-2

Grid-3

Figure 6. Average query time for hybrid index structures based

on grids of different sizes.
In Figure 6, Grid-2 and Grid-3 stand for the second and the third
structures based on grid. The x-axis shows the number of grid cells.
The results show that grid based structures achieved the best
performance when the number of cells is 7x7=49.

The results in Table 6 indicate that our structures based on R*-tree
are superior to a regular grid with 7x7 cells which are shown to be
the best parameters. Since the regular grid is a coarse granularity
spatial division, additional comparisons should be done to judge
whether the results from searching in the grid structure really match
the query regions. This can be seen from Table 6, the spatial
searching time in our structures is much less than that in the grid
based structures.

161

Table 6. Average query time for hybrid index structures based
on R*-trees and a 7x7 grid structure.

The 2nd structure The 3rd structure

Grid R*-tree Grid R*-tree

Spatial search
time(ms) 9.63 0.16 28.09 2.34

TI/O(ms) 7.91 7.91 7.91 7.91

Tmg(ms) 0.73 0.73 0.73 0.73

Query time(ms) 18.27 8.80 37.73 10.98

6. CONCLUSIONS
In this paper, we have studied the performance of hybrid index
structures that integrate text indexes and spatial indexes for location
based web search. In our approach, we represented the geographical
scopes of web pages as multiple MBRs and compared three hybrid
index structures based on inverted files and R*-trees. We have also
developed a complete location based search engine and carried our
large scale experiments to validate the proposed structures.
Experiments showed the structure of first inverted file then R*-tree is
the most efficient in query time.
In our future work, we will continue to improve the performance for
location indexing. Geographical ranking is also an important
problem to study, which is critical for improving the performance of
location based web search.

7. REFERENCES
[1] Amitay, E., Har'El, N., Sivan, R., and Soffer, A. Web-a-where:

geotagging web content. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM 2004), ACM
Press, Sheffield, UK, 2004, 273-280

[2] Beckmann, N., Kriegel, H., Schneider, R. and Seeger B. The
R*-tree: an efficient and robust access method for points and
rectangles. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data (SIGMOD
1990), Atlantic City, NJ, USA, 1990, 322-331

[3] Buyukkokten, O., Cho, J., Garcia-Molina, H., and Shivakumar,
N. Exploiting geographical location information of web pages.
In ACM SIGMOD Workshop on The Web and Databases
(WebDB 1999), Philadelphia, Pennsylvania, USA, 1999, 91-96

[4] Ding, J., Gravano L., and Shivakumar N. Computing
geographical scopes of web resources, In Proceedings of 26th
International Conference on Very Large Data Bases (VLDB
2000), Cairo, Egypt., 2000, 545-556

[5] Google Local http://local.google.com
[6] Gravano, L., Hatzivassiloglou, V., and Lichtenstein, R.

Categorizing web queries according to geographical locality. In
Proceedings of the 2003 ACM CIKM International Conference
on Information and Knowledge Management (CIKM 2003),
ACM Press, New Orleans, Louisiana, USA, 2003, 325-333

[7] Jones., C.B. and Vaid., S. Report on spatial indexing methods.
Technical report D12 2201, SPIRIT Project, 2004

[8] Lee, F., Bressan, S., and Ooi, B.C. Global atlas: calibrating and
indexing documents from the internet in the cartographical
paradigm. In Proceedings of the 1st International Conference
on Web Information Systems Engineering(WISE 2000), IEEE
Computer Society 2000, Hong Kong, China, 2000, 125-132

[9] Lee, R.,et al. Optimization of geographic area to a web page for
two-dimensional range query processing. In Proceedings of
Fourth International Conference on Web Information Systems
Engineering Workshops(WISEW 2003), IEEE Computer
Society 2003, Roma, Italy, 2003,9-17

[10] Leutenegger, S.T., Edgington, J.M., and Lopez, M.A. STR: a
simple and efficient algorithm for R-tree packing. In
Proceedings of the Thirteenth International Conference on
Data Engineering (ICDE 1997), IEEE Computer Society 1997,
Birmingham, U.K., 1997, 497-506

[11] Ma, Q. and Tanaka, K. Retrieving regional information from
web by contents localness and user location. In Asia
Information Retrieval Symposium (AIRS 2004), Lecture Notes
in Computer Science, Beijing, China, 2004, 301-312

[12] Markowetz, A., Chen, Y., Suel, T., Long, X. and Seeger, B.
Design and implementation of a geographic search engine.
Technical Report TR-CIS-2005-03, Polytechnic University,
Brooklyn, New York, 2005. http://cis.poly.edu/tr/tr-cis-2005-
03.shtml

[13] McCurley, K.S. Geospatial mapping and navigation of the web,
In Proceedings of the Tenth International World Wide Web
Conference (WWW 10), ACM Press, Hong Kong, China, 2001,
221-229

[14] Sanderson, M. and Kohler, J. Analyzing geographic queries, In
Proceedings of SIGIR 2004 Workshop on Geographic
Information Retrieval, ACM Press, Sheffield, UK, 2004

[15] SPIRIT project. http://www.geo-spirit.org
[16] Theodoridis, Y., Stefanakis, E. and Sellis, T. Efficient cost

models for spatial queries using R-Trees. IEEE Transactions on
Knowledge and Data Engineering, Volume 12, Issue 1, 2000,
19-32

[17] Yahoo Local http://local.yahoo.com
[18] Wang, C., Xie, X., Wang, L., Lu, Y., and Ma, W.Y. Web

resource geographic location classification and detection. In
Proceedings of the 14th International World Wide Web
Conference(WWW2005), Chiba, Japan, 2005, poster, 1138-
1139

[19] Wang, L., Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W.Y. and
Li, Y. Detecting dominant locations from search queries, In
Proceedings of the 28th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (SIGIR 2005), ACM Press, Salvador, Brazil, 2005

162

