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ABSTRACT 
There is more and more commercial and research interest in 
location-based web search, i.e. finding web content whose topic is 
related to a particular place or region. In this type of search, location 
information should be indexed as well as text information. However, 
the index of conventional text search engine is set-oriented, while 
location information is two-dimensional and in Euclidean space. 
This brings new research problems on how to efficiently represent 
the location attributes of web pages and how to combine two types 
of indexes. In this paper, we propose to use a hybrid index structure, 
which integrates inverted files and R*-trees, to handle both textual 
and location aware queries. Three different combining schemes are 
studied: (1) inverted file and R*-tree double index, (2) first inverted 
file then R*-tree, (3) first R*-tree then inverted file. To validate the 
performance of proposed index structures, we design and implement 
a complete location-based web search engine which mainly consists 
of four parts: (1) an extractor which detects geographical scopes of 
web pages and represents geographical scopes as multiple MBRs 
based on geographical coordinates; (2) an indexer which builds 
hybrid index structures to integrate text and location information; (3) 
a ranker which ranks results by geographical relevance as well as 
non-geographical relevance; (4) an interface which is friendly for 
users to input location-based search queries and to obtain 
geographical and textual relevant results. Experiments on large real-
world web dataset show that both the second and the third structures 
are superior in query time and the second is slightly better than the 
third. Additionally, indexes based on R*-trees are proven to be more 
efficient than indexes based on grid structures. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval] Content Analysis and 
Indexing –Indexing methods H.3.3 [Information Storage and 
Retrieval]: Information Search and Retrieval –Search process, 
Retrieval models.  

General Terms: Management, Design, Experimentation 

Keywords: Location-based web search, spatial index, textual 
index, geographical ranking, geographical scope 

1. INTRODUCTION 
Location-specific information is common on the Web. According to 
previous studies, nearly one fifth of web search tasks are related to a 
specific place or region [6,14], which is usually called location-
based web search. Recently, more and more commercial search 
engines start to provide location based services, such as local search, 
local advertisements and map services. These services are 
particularly useful for mobile users. 

Most commercial search engines, such as Google Local [5] and 
Yahoo! Local [17], only search business addresses in Yellow Pages 
or other kinds of paid lists. In this paper, we are interested in a more 
general form of local search, that is, to search local content on the 
Web. In our approach, each web page will be first assigned to a few 
geographical locations according to its content and then spatially 
indexed in the search engine. Therefore, it can be later retrieved by 
its locations. 

How to efficiently index and search location-specific information is 
being a key problem for location based search engines. A 
straightforward approach is to treat geographical words which 
represent location information as common keywords, and to retrieve 
web pages with specified location names in the same way to 
keyword matching. However, simple keyword matching neglects 
underlying spatial relationships, therefore, does not support 
advanced spatial queries. To solve the problem, it is necessary to 
design an efficient index structure that considers both spatial and 
textual features of web pages.  

In this paper, we studied and compared the performance of different 
hybrid index structures for location-based web search. In general, 
there are two main design issues: location representation and index 
combination scheme.  

There are many types of location information on the Web. Our 
concern is the geographical scope of a web page, i.e. the 
geographical area that a creator of the page intends to reach [4], also 
can be intuitively explained as people think the page most relevant 
to.  Recently, quite a few researchers have studied this problem 
[1,3,4,13,18]. Most of them use place names to represent the 
geographical scope which can be obtained by analyzing web textual 
content and/or geographical distribution of hyperlinks. In order to 
support spatial semantics, the scope should be, however, treated as a 
two-dimensional spatial object. After considering the trade-off 
between accuracy and computational cost, in this paper we use 
minimum bounding rectangle (MBR) based on longitude/latitude 
coordinates to represent a spatial object (in some applications, points 
may be sufficient for location representation. Our method can be 
easily adapted to support these applications.). The scope of a web 
page may include multiple spatial objects. Therefore, our scope 
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could be represented as multiple MBRs. In order to efficiently 
organize the two-dimensional data, we choose R*-tree [2], a popular 
and efficient spatial index for rectangles and points, to manage the 
scopes. 

Next we consider the scheme for combining index structures of text 
and location information. We propose to use a hybrid index structure, 
which integrates inverted files and R*-trees, to handle both textual 
and location aware queries. Three different combining schemes are 
studied: (1) inverted file and R*-tree double index, (2) first inverted 
file then R*-tree, (3) first R*-tree then inverted file. The first 
structure includes two independent index structures, inverted list and 
R*-tree, to index web pages both textually and spatially. The second 
structure is designed based on the idea of spatially partitioning of 
each page list in the inverted files. The main idea of the third 
structure is, for each spatial object, we create inverted files for the 
web pages whose scope contains the spatial region. Experiments on 
large real-world web dataset show that these three structures have 
almost the same storage cost and both the second and the third 
structures are superior in query time and the second is slightly better 
than the third. Additionally, indexes based on R*-trees are proven to 
be more efficient than indexes based on grid structures. 

Additionally, we design and implement a complete location-based 
web search engine to validate the performance of proposed index 
structures. The engine mainly consists of four parts: (1) an extractor 
which detects geographical scopes of web pages and represents 
geographical scopes as multiple MBRs based on geographical 
coordinates; (2) an indexer which builds hybrid index structures to 
integrate text and location information; (3) a ranker which ranks 
results by geographical relevance as well as non-geographical 
relevance; (4) an interface which is friendly for users to input 
location-based search queries and to obtain geographical and textual 
relevant results.  
Our novel contributions include:  
z We represented geographical scopes of web pages as multiple 

MBRs and discussed the corresponding index/search process; 
z We studied and compared three hybrid index structures based 

on inverted files and R*-trees; 
z We developed and introduced a complete location-based web 

search engine prototype based on proposed hybrid index 
structures; 

z We carried out large-scale experiments based on real dataset to 
validate the performance of our index structures. 

This paper is organized as follows. Section 2 describes related work. 
Section 3 is the introduction of the framework of our location-based 
web search engine and its main components. Section 4 is the 
analysis of the performance of hybrid index structures. Section 5 
provides our experimental results, mainly on the index structures. 
Finally, we conclude the paper and discuss our future work in 
Section 6. 

2. RELATED WORK 
Location-based search has attracted a lot of attention in the research 
community. We will discuss the state of art from three aspects in the 
following subsections. 

2.1 Location Representation 
Generally, location information can be represented as either textual 
keywords (set space) or two-dimensional spatial objects (Euclidean 
space).  

Textual keywords include postal codes, telephone numbers, place 
names, etc.[3,13]. Among them, place name is more convenient to 
express the location hierarchy and can be easily transformed to other 
representations. Place name is very useful for extracting and 
detecting the location information in web content. However, it 
cannot easily describe the detail shape of a place and spatial 
relationships among different places.  

Two-dimensional spatial objects can be represented using vector 
model or raster model. Compared with textual keywords, they are 
more powerful in describing the region shapes. As to the raster 
model, the precision of the representation heavily depends on the 
size of grid cells. In [12], the authors superimposed a grid of 
1024x1024 tiles on the total area of Germany. However, for an area 
like USA or the world which is relatively much larger than Germany, 
it is difficult to balance the storage requirement and the 
representation precision. In vector model, point locations are 
represented as points while region locations are described as 
polygons or minimum bounding rectangles (MBRs). Polygon 
representation is more accurate but the storage cost is large and the 
computation is complex. MBR is a simple approximation to a 
region’s shape. Only two diagonal points are needed to represent the 
location information. Therefore, computation based on MBR is 
much simpler.  

There exists much related work based on MBR in the literature, such 
as [8,9,11]. In this work, the scope of each page has only one MBR 
which is usually calculated as the bounding rectangle of all places 
mentioned in the page. While in our work, the scope of each page 
may have multiple MBRs, where each MBR corresponds to one 
focused region of the web page. As shown in Figure 1, if the scope 
of a web page includes South Dakota and Colorado, the 
representation of the scope is the solid rectangle for [9,11] while two 
dashed rectangles for our work. Apparently our approximation is 
more precise.  

 
Figure 1.  Geographical scope representation as MBRs. 

2.2 Location Index 
Different location representations lead to different index structures. 

Place names can be organized as a flat list, or a hierarchy tree to 
represent the part-of relationships in the administrative hierarchy.  
The hierarchy structure is also very useful in detecting and extracting 
the main geographical scope of web pages, as shown in [4,18]. 

For representations based on spatial objects, using spatial index, for 
example R-tree family, quad-tree, or grid files, is a good choice. In 
[8], Global-Atlas stores the bounding rectangles of all regions in a 
database using Oracle Spatial Cartridge extension. In [9,11], their 
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work is based on an R-tree index of the MBRs of each page. The 
main difference between our work and their work is: their spatial 
index is based on the only MBR in each page and their datasets are 
about several thousands of web pages, while in our work the spatial 
index is based on multiple MBRs in a page and our work is based on 
over one million pages. Since the number of different MBRs 
(corresponding to different geographical scopes) is much smaller 
than the number of pages, the scale of spatial index will not become 
too large. 

2.3  Index Combination Scheme 
Existing work related to index combination schemes can be 
classified into two types.  
The first type of approaches performs post-processing on general 
web search results. In [12], first textual web search is done in a way 
similar to conventional search and a set of pages are returned, then 
the location footprints of these pages are compared with the query 
location. Namely, conventional search is followed by a spatial 
filtering. In [9,11], spatial index is introduced to speed up the 
location filtering process. They build an R-tree dynamically on the 
search results from Google. However, the problem is that search 
engines only return the most relevant pages to users, so for those 
unpopular locations, the search results may contain very few correct 
results. 

Table 1. Comparison of previous work and our work. 

Work Location 
representation Location index Combination scheme 

[12] Raster model Quad-tree Textual index without 
spatial index 

[9,11]  MBR R-tree Textual search followed by 
online spatial indexing 

[15] Place name Hierarchy 
gazetteer  

Textual index with query 
expansion 

[7] MBR/polygon Regular grid Two-stage hybrid index 

Our 
work MBR R*-tree Two-stage hybrid index 

 

The other type of approaches tries to integrate text and location 
information during indexing. In the Global Atlas search engine [8], 
all spatial and textual information query processes are carried out by 
the Oracle database. This approach can not deal with very large scale 
data like the Web. The most relevant work to us is a technical report 
[7] on their preliminary research of spatio-textual index in the 
SPIRIT project [15]. Their analysis is based on a hybrid structure of 
regular grids and inverted files. The conclusion is that the best 
spatial search time can be achieved when the cell size is 5% of the 
total area. In our option, regular grid structure is a coarse spatial 
partitioning method, while in our work R*-tree is used, which is 
more fine granularity. The number of pages related to a typical MBR 
is much smaller than that to a cell of 5% size; therefore the cost for 
merging lists is reduced. Experimental results on large-scale real 
dataset in Section 5 will show that, to obtain the same results, our 
hybrid index structures outperform the structure in [7] in query time.  

Table 1 summarizes the characteristics of previous work and our 
work according to the above three aspects. 

3. A LOCATION-BASED WEB SEARCH 
ENGINE 
In this section, we will introduce the framework and main 
components of our location-based web search engine. 

3.1 Framework 
A complete work flow of our engine comprises offline processing 
and online processing. Offline processing includes extracting 
geographic scopes and indexing web pages according to their scopes, 
while online processing includes retrieving location aware 
information, ranking and presenting the retrieved results. Our search 
engine has four main components: extractor, indexer, ranker and 
search interface, as shown in Figure 2.  

In the following subsections, we will introduce the above 
components in detail except the indexer which we will leave to 
Section 4. 

 
Figure 2.  The system framework.  

3.2 Extractor 
The extractor module extracts geographical scope of pages and 
translates them to MBRs before sending them to the indexer.  
The extraction and detection of scope is based on our previous work 
[18]. In that paper, web locations are divided into three types: 
provider location, content location and serving location. According 
to the type of location, web textual content and/or geographical 
distribution of hyperlinks and/or user logs are analyzed to extract the 
correct scope of web pages. Scope is represented as location names 
and a web page may have multiple location names as its scope. 
A gazetteer is constructed to translate location names to MBRs 
based on geographical coordinates, which will be described in 
Section 5.1 in detail. 

3.3 Search Interface 
We provide users two types of search interfaces to input queries. 
One is based on maps and textual keywords, while the other is based 
on pure text input. For the former, a user can draw a region of 
interest on the map and input keywords in the text box. For the 
latter, a user can describe location names and spatial relationships 
textually. The latter type of interface will automatically detect the 
location information from search queries. Some related work on 
detecting location information in queries can be found in [19].  

3.4 Ranker 
The goal of the ranker is to return those important pages which are 
not only most relevant to text keywords but also most relevant to 

Indexer

Extractor 

Web Pages 

Interface 

Results

Gazetteer 

Hybrid 
indexes 

Ranker 

Location-based 
web query 
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query regions. Currently there is little work on how to combine 
geographical ranking and non-geographical ranking. Here we 
describe our preliminary study on the combination of two rankings 
and the computation of geographical relevance. 

To combine two ranking values, a simple method is that the total 
ranking value of a web page is calculated as a weighted sum of the 
geographical and non-geographical ranking values.  

In some cases, users may only care about whether pages’ 
geographical ranking values are bigger than a threshold but do not 
care about their absolute values. We can first sort pages based on 
their geographical ranking values, then fetch those page whose value 
is bigger and sort them by their non-geographical ranking values.  

Geographical ranking values lie heavily on the spatial query type. 
Our engine supports four spatial query types: contain, overlap, inside, 
and nearby. Their corresponding geographical ranking algorithms 
are described in the following subsections. 

3.4.1 Contain  
This type of queries tries to find pages whose scopes are contained 
by the spatial query region. We defined the geographical rank as: 

( , ) /grank Q R R Q=  

Q is the extent of the spatial query region; R is the extent of the 
scope of a web page. A page is more geographical relevant if it has a 
larger scope. 

3.4.2 Inside  
This type of queries tries to find pages whose scopes contain the 
spatial query region. In this case, a page is less relevant if its scope is 
larger. 

( , ) /grank Q R Q R=  

3.4.3 Overlap 
This type of queries tries to find pages whose scopes overlap the 
query region. A page is more relevant if the overlap region is bigger. 

( , ) ( ) /( )grank Q R Q R Q R Q R= + −I I  

Q∩R is the overlap extent of Q and R. 

Sometimes a user only submit a query for local information while 
does not state his query types. In this case, we will execute three 
queries of type contain, inside and overlap, and the geographical 
ranking value is decided by the following equation:  

( , ) ( ) /( )grank Q R Q R Q R Q R= + −I I  

3.4.4 Nearby 
This type of queries tries to find pages whose scope is close to the 
query region. We transform this query type to an overlap query. The 
query region is a circle whose center is the query point or the center 
of the query region. Users can specify the radius of the circle, i.e. the 
distance between the results and the query region, or specify the 
number of results for dynamically adjusting the radius. The 
relevance of results will lie on the distance between the query region 
and the geographical scopes, nearer means more relevant. 

4. INDEXER 
The indexer aims to build hybrid index structures to integrate text 
and location information of web pages. To textually index web pages, 
inverted files are a good choice as shown in conventional search 
engines. To spatially index web pages, two-dimensional spatial 
indexes are used, for example, R-tree family, quad-tree and grid 
structure. R-tree uses the minimum bounding rectangle (MBR) as an 
approximation to a spatial object, which is similar to our 
approximation of the geographical scope. R*-tree is a variant of R-
tree that can further improve search performance, so we choose R*-
tree as the spatial index. Additionally, considering that the index is 
built while offline processing and the collection of geographical 
scopes is stable with time, we use Sort-Tile-Recursive (STR) 
algorithm [10] as the packing algorithm to pre-process the spatial 
datasets before building R*-trees.  

We study three hybrid methods: (1) inverted file and R*-tree double 
index, (2) first inverted file then R*-tree, (3) first R*-tree then 
inverted file. We will describe the hybrid index structures and 
present cost models for each structure. The symbols used in the cost 
models are listed in Table 2. 

Table 2. The description of symbols. 
Symbol Description 

M The number of MBRs in the gazetteer 

G The number of geo-keywords in the datasets 

K The number of keywords in the lexicon 

g(Q) The number of geo-keywords for a query Q 

PK(k) *The length of the page list of a keyword k 

PM(m) *The length of the page list of an MBR m 

PG(g) *The length of the page list of a geo-keyword g 

BList Storage of page lists 

BR(x) Storage of an R*-tree of x elements 

TI/O The time cost of disk accesses 

Tdisk The time cost of one disk access 

TR(x) The time cost to retrieve an R*-tree of x elements 

Tmg (x) The time cost to merge x elements 

4.1 Inverted File and R*-tree Double Index 
In this structure, web pages are indexed separately twice, once by 
R*-tree and once by inverted files. All MBRs are indexed by an R*-
tree. The difference from conventional R*-tree is that each leaf node 
of the MBR tree points to a page list whose scope includes this 
MBR, as shown in Figure 3. Inverted files are the same to 
conventional search engines. Thus we have two kinds of page lists 
whose entry is either an MBR or a keyword.  

A location-based web search comprises non-spatial keywords and 
query region and/or specified spatial query types. Non-spatial query 
keywords are retrieved similar to conventional inverted files, while 
query region and spatial query type are passed to the R*-tree. The 
final results are the merge of page lists from two indexes. 

The storage in disk comprises the two kinds of page lists and the R*-
tree. Therefore,  

1 1
1 R ListStorage B B= +  
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The storage of an R*-tree that has x leaf nodes [16] is )()( xOxBR =  

The storage of page lists depends on the length of each list, whose 
unit is the identifier of a page Assuming the length of the list whose 
entry is keyword k is PK(k) and the length of the list whose entry is 
MBR m is PM(m), the total length of all lists is ∑∑

==
+

K

k
K

M

m
M kPmP

11
)()( . 

Then  

))()((
11
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+=
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So, the main cost of storage in disk is caused by two kinds of page 
lists above. For the storage of the identifier of pages is about a fixed 
value, the storage is mainly determined by the total length of all page 
lists. 

Assume there is a query including m keywords and a query region. 
The online computation has three parts: (1) the retrieval of the m 
keywords in inverted files and the loading of corresponding page 
lists from the disk; (2) the retrieval of the R*-tree, assuming n MBRs 
are got, and the loading of corresponding page lists of these MBRs 
from the disk; (3) the merge of these (m+n) page lists.  

The retrieval of keywords is implemented by a hashing function, so 
we think the time can be ignored. The time of loading page lists is 
determined mainly by the number and total length of lists. The 
merge processing depends on the total length of these page lists.  

For the R*-tree that in this structure has M leaf nodes, assuming that 
the query time is )(MTR

 

The merge time for x elements in memory is: )(xOTmg =  

The time to read a page list whose length is x from disk is  

)/( sec/ tiondiskOI BxOTT ⋅=  

In the above equation, Bsection is the size of a section of the disk 
which depends on the file system of a computer. In our system it is 
4Kbytes. 

Then,   
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For different queries, there are two factors that effect the query time. 
One is the merge operations of m page lists whose entry is a keyword 
and n page lists whose entry is an MBR, which depends on the total 
length of these (m+n) page lists. The other factor is the time to read 
these (m+n) page lists  from disk. 
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Figure  3. The structure of R*-tree in the hybrid structure of 

inverted file and R*-tree double index. 

4.2 First Inverted File Then R*-tree 
As shown in Figure 4, each keyword points to an R*-tree. For each 
page list whose entry is a keyword in the first hybrid structure, these 
pages in the list are assigned to different MBRs according to their 
geographical scopes, and an R*-tree is built on these MBRs, then we 
can get a set of page lists whose entry is determined by a pair of a 
keyword and an MBR. A pair of a keyword and an MBR is named a 
geo-keyword if there is a page which includes the keyword and 
whose scope includes the MBR. 

Assuming PG(g) is the length of a page list whose entry is a geo-
keyword g.  

The storage in disk includes these page lists and R*-trees pointed by 
K keywords. So  

2 2
2

1

( ) ( ( ))

R List
G

G
g

Storage B B

K O M O P g
=

= +

= ⋅ + ∑
 

In fact, an R*-tree in this structure may not index all M MBRs as in 
the first structure, so the scale of R*-trees is smaller. Thus we can 
see that the cost of storage in disk is mainly caused by the total 
length of page lists whose entry is a geo-keyword. 

Assuming the number of geo-keywords for a query Q of m keywords 
and n MBRs is g(Q). The online computation includes: (1) first to 
retrieve the m query keywords; (2) to search in the corresponding 
R*-trees whose number is m and the average leaf node is M , and to 
find some MBRs and their corresponding page lists, the number of 
lists got from m R*-trees is g(Q); (3) to merge these g(Q) page lists. 
The retrieval for m keywords is implemented by a hashing function, 
and the time is ignored.  So,  
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Besides the retrieval of m R*-trees, there are also two main factors 
for online search. One factor is caused by the total length of the page 
lists whose entry is a geo-keyword, the number of lists is g(Q). The 
other factor is the time to read these g(Q) page lists from disk. The 
pages in a page list whose entry is a geo-keyword is a subset of  
pages in the page list whose entry is the corresponding keyword or 
MBR, so the length of a page list whose entry is a geo-keyword is 
greatly reduced. 
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4.3 First R*-tree Then Inverted File 
As shown in Figure 5, an R*-tree is built on all MBRs included in 
scopes of all web pages. And web pages are assigned to MBRs 
according to their scopes. After all pages of each MBR are textually 
indexed by keywords, we can get a set of page lists whose entry is a 
geo-keyword. 

The main storage in disk includes the page lists whose entry is a geo-
keyword and the R*-tree. 
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The main cost of storage in disk is caused by the total length of page 
lists whose entry is a geo-keyword. 

The online computation includes: (1) first to search the R*-tree and 
get n MBRs, (2) for each MBR, to retrieve which of the m keywords 
are pointed to, then to load corresponding page lists. The number of 
lists in total is g(Q); (3) to merge these page lists. So,           
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Similar to the second structure, besides the retrieval of the R*-tree, 
there are also two main factors, the total length of these g(Q) page 
lists and  the time to read these g(Q) page lists from disk. 
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In summary, the online performance of the first structure depends on 
the total length of page lists of m keywords and n MBR, also on the 
time to read these (m+n) page lists from disk. Besides the retrieval of 
R*-trees, the second and third structure mainly depends on the total 
length of g(Q) page lists, also on the time to read these g(Q) page 
lists from disk, so the two have similar performance. And in real case 
g(Q) is relatively smaller, which can be found on real large-scale 

dataset in Section 5, so the performance of the second and third is 
better than that of the first. Additionally, there are m times of R*-tree 
searching for the second while one time of R*-tree searching for the 
third, but the R*-tree in the second has M =G/K leaf nodes on 
average while the R*-tree in the third has M leaf nodes. In fact, for 
each keyword, the number of MBRs to make a geo-keyword with 
this keyword is limited, i.e. M  is much smaller than M, the 
experiments in Section 5 will prove it. Thus the scale of R*-trees in 
second is much smaller than of the R*-tree in third. Based on the 
analysis of [2], for the same query, the scale of an R*-tree is most 
important factor for query time; in the worst case all leaf nodes have 
to be accessed. So for a query, the query time in any of R*-trees of 
the second is much smaller than in the R*-tree of the third. 
Considering that m is very small too, the second may be slightly 
better than the third in query time. 

5. EXPERIMENTS 
To evaluate the performance of three hybrid index structures, we 
implemented them in our system and compared them with existing 
grid based indexes. In the following we will first describe the 
experimental settings and dataset, then discuss the results of the 
experiments. 

5.1 Settings and Dataset 
We use .GOV data as our benchmark dataset. It is a collection of real 
web resources of major USA government sites whose top domain 
is .gov. These data are mainly crawled in the year 2002 and used by 
TREC2003. The dataset covers a wide geographical range of USA.  

To spatially index web pages, we should first get geographical scope 
of web pages. In the work of [18], geographical scope has been 
extracted as place names, so a gazetteer must be constructed in 
advance to translate place names to MBRs. In the absence of MBR 
representation for each place, we get the standard longitude/latitude 
coordinates of a place through Microsoft MapPoint Service. 
However, the borders of such an MBR are not straight lines. To 
solve the problem, we use Gauss-Kruger reference frame, which has 
little deformation in angle, length and extent, to transform the 
coordinates. Thus, our gazetteer can map location names to MBRs 
based on Gauss-Kruger coordinates. For textual index, the inverted 
files are created based on the work of MSRA’s Web search platform 
for TREC2004. 

Table 3.  Statistics of our dataset. 
Statistics Value  

The number of all pages 1,053,111 

The number of local pages 197,775 

The occurrences of MBRs in local pages 197,988 

The number of MBRs  26,090 

The number of all keywords L 2,684,633 

The number of geo-keywords G 3,535,505 

The number of MBRs included in geo-keywords M 4,246 

The number of keywords included in geo-keywords K 758,717 

 

Our experimental environment is a machine with an Intel Xeon 3.06 
GHz CPU, 2 GB RAM, and running Microsoft Windows Server 
2003. 

Figure 5. The illustration of first R*-tree then inverted 
file index structure. 

Figure 4.  The illustration of first inverted file then R*-
tree index structure. 
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After analyzing the dataset, we found that about 18.78% pages are 
local pages, i.e. have at least one geographical scope. Our 
experiments are mainly carried out on these local pages to emphasize 
the indexing performance for location-based web query. The total 
number of keywords K is 2,684,633; the number of MBRs in the 
gazetteer is 26,090; and the total number of occurrences of MBRs in 
all pages is 197,988; the number of geo-keywords is 3,535,505;the 
number of MBRs included in geo-keywords is 4,246; the number of 
keywords included in geo-keywords is 758,717, as shown in Table 3. 

5.2 Comparison of Three Hybrid Index 
Structures 
We compared the disk storage requirement and the query time of 
hybrid index structures.  
As we can see from Table 4, the storage of the first structure is 
140.00+0.83=140.83 Mbytes, approximately equaling to that of the 
other two which is about 138.95 Mbytes.  
Additionally, the number of lists in the first structure is much smaller 
than that of the other two (758,717 + 4,246 << 3,535,505), while the 
total length of page lists in the first structure is more than the other 
two (One unit of the length of a page list is the identifier of a page). 
So the average length of each list in the first structure is much longer.  
There are K smaller R*-trees in the second structure and only one 
bigger R*-tree in the third structure. However, the storage space for 
R*-trees is relatively small compared with the size of page lists. So 
the difference between the second and the third structures is very 
small.  

Table 4.  Disk storage for three hybrid index structures. 

 Page lists 
The 

number of 
lists 

Total  length 
of page lists 

Average 
length 

Physical 
size 

(Mbytes) 

entry is a 
keyword 758,717 33,481,669 44.13 140.00 

 The 1st 
structure entry is  an 

MBR 4,246 197,988 46.63 0.83 

The 2nd 
and 3rd 

structures 

entry is a  
geo-keyword 3,535,505 27,666,384 7.83 138.95 

 
To test the query time of the three structures, we used a query set 
comprising 2000 queries which were randomly generated. 1000 
queries were input by drawing a query region on the map, and 
another 1000 queries were input by adding location keywords. Four 
spatial query types were randomly assigned to each query.  In the 
test set, there are 551 contain queries, 517 overlap queries, 514 
inside queries and 418 nearby queries. All these queries were 
submitted to three hybrid index structures.  
As discussed in Section 4, the query time has three main parts: the 
time for retrieving relevant MBRs from R*-trees, the time for disk 
access and the time for merging page lists: 

/R I O mgTime T T T= + + . 

The results in Table 5 indicate the second and the third structures 
have obvious advantages over the first. This is because that the first 
spends too much time on TI/O and Tmg. These two factors are both 
determined by the length and number of page lists. We can see from 
Table 4, the average length of page lists in the first structure is much 
longer than that of the other two. The situation is the same for the 

number of lists to read. It is because that more lists are required to 
find the correct results for the first structure. Additionally, there are 
m R*-trees to search in the second while one R*-tree to search in the 
third; but on average each R*-tree in the second has 
3,535,505/758,717=4.6 leaf nodes, while the R*-tree in the third has 
M=4,246 leaf nodes. Considering that there are 2.4 keywords per 
query on average i.e. m=2.4 in our query sets, the second structure 
spends less time in searching in R*-trees than the third. This verifies 
our analysis in Section 4. 

Table 5. Average query time for three hybrid index structures. 

 The 1st 
structure 

The 2nd 
structure 

The 3rd 
structure 

Total length of page 
lists per query 38,868.91 122.42 122.42 

Number of page lists 
per query 72.04 4.36 4.36 

TR(ms) 2.34 0.16 2.34 

TI/O(ms) 30.83 7.91 7.91 

Tmg(ms) 17.01 0.73 0.73 

Query time(ms) 50.18 8.80 10.98 

5.3 Comparison of Hybrid Index Structures 
Based on R*-tree and Grid Structure 
In this subsection, we compared the query time of our second and 
third structures with grid based structures [7]. In [7], their hybrid 
index structures are implemented based on regular grid structures 
and inverted files. The comparison was analyzed on the same query 
set as the previous subsection. 
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Figure 6. Average query time for hybrid index structures based 

on grids of different sizes. 
In Figure 6, Grid-2 and Grid-3 stand for the second and the third 
structures based on grid. The x-axis shows the number of grid cells. 
The results show that grid based structures achieved the best 
performance when the number of cells is 7x7=49.  

The results in Table 6 indicate that our structures based on R*-tree 
are superior to a regular grid with 7x7 cells which are shown to be 
the best parameters. Since the regular grid is a coarse granularity 
spatial division, additional comparisons should be done to judge 
whether the results from searching in the grid structure really match 
the query regions. This can be seen from Table 6, the spatial 
searching time in our structures is much less than that in the grid 
based structures. 
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Table 6. Average query time for hybrid index structures based 
on R*-trees and a 7x7 grid structure. 

The 2nd  structure The 3rd  structure  
 

Grid R*-tree Grid  R*-tree 

Spatial search 
time(ms) 9.63 0.16 28.09 2.34 

TI/O(ms) 7.91 7.91 7.91 7.91 

Tmg(ms) 0.73 0.73 0.73 0.73 

Query time(ms) 18.27 8.80 37.73 10.98 

6. CONCLUSIONS 
In this paper, we have studied the performance of hybrid index 
structures that integrate text indexes and spatial indexes for location 
based web search. In our approach, we represented the geographical 
scopes of web pages as multiple MBRs and compared three hybrid 
index structures based on inverted files and R*-trees. We have also 
developed a complete location based search engine and carried our 
large scale experiments to validate the proposed structures. 
Experiments showed the structure of first inverted file then R*-tree is 
the most efficient in query time. 
In our future work, we will continue to improve the performance for 
location indexing. Geographical ranking is also an important 
problem to study, which is critical for improving the performance of 
location based web search. 
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