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Abstract— Wireless Mesh Networks (WMNs) are the 

evolutionary self-organizing multi-hop wireless 

networks to promise last mile access. Due to the 

emergence of stochastically varying network 

environments, routing in WMNs is critically affected. In 

this paper, we first propose a fuzzy logic based hybrid 

performance metric comprising of link and node 

parameters. Th is Integrated Link Cost (ILC) is 

computed for each link based upon throughput, delay, 

jitter of the link and residual energy of the node and is 

used to compute shortest path between a given source-

terminal node pair. Further to address the optimal 

routing path selection, two soft computing based 

approaches are proposed and analyzed along with a 

conventional approach. Extensive simulations are 

performed for various architectures of WMNs with 

varying network conditions. It was observed that the 

proposed approaches are far superior in dealing with 

dynamic nature of WMNs as compared to Adhoc On-

demand Distance Vector (AODV) algorithm. 

 

Index Terms—  Wireless Mesh Network, Routing, 

Fuzzy Logic, Soft Computing, Ant Colony 

Optimization, Big Bang Big Crunch 

 

I. Introduction 

Self configuring Wireless Mesh Networks (WMNs) 

are easily  deployable, scalable, robust and cost effective 

wireless networks where nodes are having capability to 

automatically create and maintain mesh connectivity 

between them. Broadband home, community, 

neighborhood and enterprise networking are some of 

the applications of WMNs. The data packets, starting 

from the source node, hop from one node to another 

until it reaches the terminal node. Wireless Mesh 

Routers (WMRs) and Wireless Mesh Clients (WMCs) 

are two types of nodes in WMNs. WMRs are capable 

for gateway/repeater functions as well as addit ional 

routing functions to maintain mesh networking. Based 

on the functionality of the nodes, the architecture of 

WMNs can be further categorized into three main 

groups namely: (1) Infrastructure/Backbone WMN: In 

infrastructure type WMNs mesh routers with gateway 

functionality form an infrastructure mesh for client 

nodes. (2) Client WMNs: Client WMNs provide peer-

to-peer networks and client nodes perform routing along 

with self-configurat ion functions. (3) Hybrid  WMNs: 

Hybrid Mesh is the combination of infrastructure and 

client meshing. Client nodes can access the network 

through mesh routers as well as directly meshing with 

other client nodes [1]. 

The parameters to analyze the performance of a 

WMN can be categorized as per flow, per node, per link, 

inter flow and network wide parameters. Co mmonly 

used performance metrics are Hop Count, Per -Hop 

Round Trip Time (RTT) [2] ; Per-Hop Packet Pair 

Delay  and Expected Data Rate (EDR) [3];  Expected 

Transmission Count (ETX) [4], 2003;  Expected 

Transmission on a Path (ETOP) [5]; Expected 

Transmission Time (ETT) and Weighted Cumulative 

ETT (WCETT) [6];  Effective Number of Transmissions 

(ENT) [7]; Bottleneck Link Capacity (BLC) [8]; Low 

Overhead Routing Metric [9]; A irtime Cost Routing 

Metric [10] etc. Hop Count Metric is the simplest one 

however; in most cases the minimum hop-count is not 

enough for a routing protocol to achieve good 

performance. Other routing metrics are crit ically 

affected by high overhead, low performance, high 

complexity or in-appropriate load balancing. The 

impact of performance metrics on a routing algorithm is 

discussed by Draves et al. [6].  

It is required that routing policies must work in a 

decentralized, self-organizing and self configuring way 

while optimizing network resource utilizat ion and 
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fulfilling QoS requirements  [11,12]. Due to 

complexit ies and constraints in exact reasoning based 

routing in dynamic wireless networks, there is a 

paradigm shift towards nature inspired soft computing 

based techniques. A fuzzy link cost based approach to 

achieve Quality of Serv ice (QoS) and Quality of 

Experience (QoE) in WMNs is proposed by Gomes et 

al.[13]. A Genetic Algorithm (GA) based dynamic 

shortest path routing approach was proposed by Yang et 

al.[14]. Soft computing techniques i.e. GA and Neural 

Networks approach was applied to optimize Quality of 

Service (QoS) parameters for channel allocation in 

cellu lar networks[15]. A hybrid combination of Multi 

Objective Particle Swarm Optimization (MOPSO) and 

GA is proposed by Benyamina et al. to optimize the 

performance of WMNs [16]. A detailed description of 

various nature inspired meta-heuristic algorithms 

including ACO, Bee Algorithm, Bat  Algorithm, Cuckoo 

Search, Firefly A lgorithm, Particle Swarm optimization 

(PSO) etc. is presented by Yang [17]. An Ant Colony 

Optimization (ACO) based approach for routing in 

Mobile Ad hoc Networks (MANETS) is shown by Caro 

et al.[18]. An insect society collective behavior based 

routing for next generation  networks was reported by 

Farooq and Di Caro [19]. 

Inspired by the soft computing approaches , this paper 

first proposes a fuzzy logic based hybrid performance 

metric consisting of throughput, delay, jitter of the link 

and residual energy of the node. Based upon these 

parameters this fuzzy module evaluates the Integrated 

Link Cost (ILC) for the corresponding link which is 

considered as the distance between adjacent nodes. 

Secondly two soft computing based routing strategies 

are proposed and implemented to obtain the optimal 

path between a source-terminal pair. Ant Colony 

Optimization (ACO) and Big Bang-Big Crunch (BB-

BC) based routing approaches are applied for different 

scenarios of WMNs and the performance is compared 

with the conventional Adhoc On-demand Distance 

Vector (AODV) algorithm [20]. 

The remainder of the paper is organized as follows. 

Section II exp lains the formulat ion of hybrid 

performance evaluation metric based upon Fuzzy Logic. 

Section III presents the description of proposed soft 

computing based routing approaches. Node architecture 

for the proposed system model is presented in section 

IV. Sect ion V presents the detailed results and discusses 

the performance and applicability of the proposed 

algorithms. Conclusions are drawn in section VI. 

 

II. Hybrid Performance Metric Formulation 

Unpredictable dynamic network conditions critically  

affect the performance of WMNs and provide 

corresponding highly non linear statistics for 

performance evaluation of availab le links. Fuzzy logic 

has emerged as a simple yet potent way to solve such 

non-linear functions of arbitrary complexit ies with 

vague, ambiguous or incomplete informat ion while 

extracting defin ite conclusions. A basic fuzzy system 

comprises of four major modules: Fuzzification module, 

Inference engine, Knowledge Base module and 

Defuzzificat ion module [21]. The fuzzification module 

transforms the crisp input(s) into corresponding fuzzy 

values. These fuzzy  values are then processed in fuzzy 

domain by inference engine based upon the knowledge 

supplied by the field specialists and produce fuzzy sets 

as output. Defuzzification module further translates the 

processed output of inference engine from fuzzy 

domain to crisp domain. Fig. 1 shows the basic fuzzy 

system with throughput, end-to-end delay, jitter of the 

link and the residual energy of the node as inputs and 

integrated link cost as output. 

We prefer fuzzy logic as a suitable faculty to evaluate 

the integrated link cost of WMNs based upon various 

input parameters. The proposed Integrated Link Cost 

(ILC) measure consists of four vital parameters of the 

link and nodes: throughput, end-to-end delay, jitter of 

the link and the residual energy of the node. For a link 

between adjacent nodes high throughput, low end-to-

end delay and low jitter are the requisite conditions. A 

variety of applicat ions in ‗always on‘ dynamic multi-
hop WMNs require most advantageous use of node 

energy. As WMRs deal with more profound traffic load, 

optimization of energy at WMRs is more significant. 

Considering the impact of residual energy of a node we 

have included this parameter to optimize the 

performance of WMNs. The node having less energy 

must be used consequently for hoping or other routing 

purposes. Based upon these four parameters, the hybrid 

fuzzy logic module evaluates the ILC for the 

corresponding adjacent nodes and considered as the 

distance between these particular nodes. 

    

,  ,  
 

,  _

Integrated Link Cost ILC

Throughput Delay
f

Jitter Residual Energy

 
  

 

                              (1) 

Integrated Link Cost is a function of throughput, 

delay, jitter of the link and the residual energy of the 

node. Initially the current measured values of these 

inputs are fuzzified and then processed by the inference 

engine where rule composition takes place. One such 

rule is given as:  

If Throughput is Good and Delay is Small and Jitter 

is Low and Residual_Energy is High then Link_Cost is 

Low.  

Here Throughput, Delay, Jitter and Residual_Energy 
are the inputs; Link_Cost is output, Good, Small, Low 

and High are the linguistic variab les. These rules are 

then implicated by Mamdani implication. The outcome 

of each implicated ru le is a fuzzy set and all these fuzzy 

sets are then aggregated. The consequential lone 

aggregated fuzzy set is then defuzzified to present a 

single crisp output (Integrated Link Cost). Rule base for 

this system consisted of 81 rules. 
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Fig. 1: A basic Fuzzy System with input and output parameters 

 

III. Soft Computing Based Routing Approaches 

Routing in  WMNs is critically influenced by the 

highly dynamic network environments. The objective of 

the routing policies is to maximize probability of data 

delivery, min imize delay, maximize throughput, 

minimize energy consumption, dynamically balancing 

the traffic load etc. Th is paper exp lores the application 

of two  nature inspired soft computing based approaches 

to ensure optimal route selection in appropriate time. 

 

3.1 Ant Colony Optimization (ACO) Based Routing 

Ant Colony Optimization (ACO) is a population 

based probabilistic meta-heuristic approach to solve 

combinatorial optimizat ion problems by offering ‗good 
enough‘ solutions in suitable time  [22, 23]. Social insect 

societies e.g., ant colonies are distributed systems that 

cooperatively exh ibit intelligent behavior. ACO is 

inspired by the food searching behavior (foraging) of 

the real ants. Init ially ants search for food arb itrarily. 

After finding a food source, ants return to their nest 

while depositing a chemical pheromone trail on the path. 

Other ants are guided to the food source by the amount 

of pheromone deposited on various paths. 

The Simple ACO (S-ACO) algorithm for selecting 

the shortest path between source and terminal node in a 

network is as follows: 

An absolutely connected, directed topology graph G 

(N, L) having N nodes and L links between adjacent 

nodes with a positive weight (cost) dij is given. 

Neighborhood of an ant k  at node i is given as Ni
k
 while 

L
k
 is the length of ant k‘s path. Minimizing the 

cumulat ive length of the path (cost) is considered as 

objective function. Initially a constant amount of 

pheromone ij between i
th

 and j
th

 node is assigned to all 

arcs of the graph. At a node i, the probability of 

selecting node j as next node with pheromone trails ij 

by ant k is computed as 
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where α  is a constant. Previous node is not taken as 

next  node to avoid loops. The ant k at node i further 

checks its neighborhood and hops from node to node 

using this stochastic decision criterion until the 

termination node is achieved. After reach ing at terminal 

node, the forward ant k is converted into a backward ant 

to retrace the travelled path. The aim of this path 

retracing is to update the routing information at each 

node while eliminating the loops. Adaptation to new 

routing information is regulated by α. While returning 
to the source node, the ant k updates the pheromone 

value of arc (i, j) as  

kΔτ
ij
τ

ij
τ  ,                                            (3) 

where k
 is the increment in pheromone quantity. 

For shorter paths more pheromone is deposited. The 

deposited pheromone trails at each arc evaporates 

similarly to normal evaporation of real pheromone in 

nature. The objective of the pheromone diffusion 

process is to avoid quick convergence to a sub optimal 

route. At arc (i, j) pheromone trails are updated as 

 
ijij
  1  , ρ  (0, 1]                           (4) 

where ρ is an evaporation constant. The routing 

tables obtained are updated at regular interval or at 

detection of a change in network configuration.  

Pseudo Code of the ACO based proposed routing 

algorithm for WMNs is as given in Fig. 2. 
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Fig. 2: Pseudo Code of the ACO base routing algorithm applied in WMN 

 

3.2 Big Bang Big Crunch (BB-BC) Based 

Optimization 

The Big Bang theory is one of the widely accepted 

theories of the evolution of this universe [24]. BB-BC 

based optimization algorithm is another nature ins pired 

population based soft computing meta-heuristic with 

high convergence speed and low computational time. 

The BB-BC theory states that energy dissipated by the 

init ial exp losion i.e., kinetic energy, is counterbalanced 

by the energy of bodies attraction known as 

gravitational pull. If there is sufficient mass so that the 

later is bigger than the first when a critic  density is 

reached, the expansion will stop and the universe will 

start to contract, leading to an end very similar to its 

beginning, named as the Big Crunch (Great Implosion) 

phase. In the Big Bang phase, energy dissipation 

produces disorder and randomness as the main feature 

of this phase. In the Big Crunch phase, randomly 

distributed particles are drawn into an order. Th is theory 

of repeated big bang followed  by big crunch phases 

forms the basis of an optimizat ion algorithm called the 

Big Bang-Big Crunch optimization algorithm [25].  

 

Shortest path evaluation using BB-BC approach: 

Initially a set of candidate solutions (population) is 

generated randomly  in  the search space. The fitness as 

defined by the objective function, of each solution is 

calculated and ranked accordingly  [26]. After the 

random Big Bang phase contraction is applied in Big 

Crunch phase to compute the centre of mass as: 
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where x
C

 = position of the centre of mass; xi = 

position of i
th

 candidate;  f
  i

 = fitness function value of 

candidate i; N =  population size. 

(Alternatively best fit individual can also be 

considered as the centre of mass instead of using 

Equation (5)).   

Generate new population around the centre of mass 

by adding or subtracting a normal random number 

whose value decreases as the iterations elapse. This can 

be formalized as 

k/lrxx
cnew                                                (6)  

where l is the upper limit of the parameter, r is a 

normal random number and k is the iteration step. Then 

new point x
new

 is upper and lower bounded. Fig. 3 lists 

the Pseudo Code of BB-BC based Algorithm for 

optimal path evaluation in WMNs. 

begin  

/ ACO Parameter Initialization/  

Define Source Node, Terminal Node, Number of ants, Number of Paths, Number of 

 Iterations, Number and location of the nodes  

/ End of ACO Parameter Initialization/ 

while (t < MaxGeneration or Termination Criteria not met)  

for i = 1 : n       / all n Nodes /  

       for j = 1 : n                    / all n Nodes / 

                    if distance (i, j) <= R (radio range of a node)  

                          connectivity_matrix(i, j) = 1     /routing table maintenance/ 

  Integrated_Link_Cost (i, j )= f (Throughput, Delay, Jitter, Residual_Energy)  

  /Integrated Link Cost Evaluation using Fuzzy System/ 

             end if  

        end for j 

 end for i 

                  / Build paths between source and terminal node /  

Randomly generate initial population of k paths 

Compute the ILC of all the candidate solutions  

Compute the shortest path using S-ACO  

Update pheromone trails 

end while  

Postprocess results and visualization;  

end  
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Fig. 3: Pseudo Code of BB-BC based Algorithm for optimal path evaluation in WMNs 

 

IV. Node Architecture 
 

 

 
Fig. 4: Node Architecture of a WMN node 

 

Fig. 4 shows the proposed node architecture for 

WMN nodes. At each node there may be mult i inputs 

(
n21 iii

X,........X,X  arriv ing from n adjacent nodes) and 

multi outputs (
m21 ooo

Y,........Y,Y  forwarded towards m 

begin  

/ BB-BC Parameter Initialization/  

Define Source Node, Terminal Node, Number of Paths, Number of Iterations, Number   

and location of the nodes  

/ End of BB-BC Parameter Initialization/ 

while (true)  

for i = 1 : n       / all n Nodes /  

       for j = 1 : n                    / all n Nodes / 

                    if distance (i, j) <= R (radio range of a node)  

                          connectivity_matrix(i, j) = 1                  /routing table maintenance/ 

  Integrated_Link_Cost (i, j )= f (Throughput, Delay, Jitter, Residual_Energy)  

  /Integrated Link Cost Evaluation using Fuzzy System/ 

             end if  

        end for j 

 end for i 

/ Build paths between source and terminal node  /  

while (t < MaxGeneration or Termination Criteria not met) 

    Randomly generate initial population of k paths                    /Big Bang Phase/ 

     Compute the ILC of all the candidate solutions  

    Sort the population from best to worst based on ILC            /No.1 path is the Optimal path/ 

    Compute the center of mass x
C

                 /Big Crunch Phase/ 

    Generate new candidate solutions around x
C
 by adding or subtracting a normal-    

    -random Number 

 end while 

       wait for stipulated time/ wait for an event 

end while  

Postprocess results and visualization;  

end  
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adjacent nodes). The Node Processing Unit (NPU) 

makes the decision of identifying  the optimal links for 

corresponding communication within the constraints 

imposed by the network dynamics. NPU provides this 

link state informat ion to Parameter Evaluation Module 

(PEM) to record various link parameters e.g. throughput, 

delay, jitter and residual energy of the node. Based upon 

this vital in formation a Fuzzy Logic based system 

evaluates the ILCi for the corresponding i
th

 link. The 

routing tables of all nodes are updated periodically or 

on the occurrence of some event. The  latest information 

from the routing table is used for routing purposes. 

 

4.1 Model Performance 

In order to investigate and optimize the performance 

of routing algorithm of WMNs simulat ions were 

performed for a variety of static and dynamic scenarios 

in MATLAB. We considered 9, 16, 25, 64 and 100 

node networks for infrastructure WMN. These networks 

were p laced within a 500m X 500m, 1000m X 1000m, 

2000m X 2000m area. For Client and Hybrid WMNs. 

10, 20, 30, 50 and 100 node networks were considered 

within  the same area. We varied  transmission range of 

the nodes from 200 meters to 500 meters. In all the 

network models node number 1 acts as source and 

transmits data packets to the last node which is the 

terminal node (e.g 10th node is the terminal node in a 

10 node WMN). The data transmission is made possible 

through multip le hops via various adjoining nodes. In 

this type of wireless communication multip le 

routes/paths are accessible. Decision as regard to which 

path or route is to be used for any type of traffic,  

depends upon the current value of the ILC measure 

(distance).  

The proposed algorithms were implemented in 

MATLAB v 7.6 (R2008a) along with AODV for 

different architectures of WMNs with varying number 

of nodes, iterations as well as with different radio 

ranges and areas. The architectural details are provided 

in Table 1. The minimal path set is computed by these 

three approaches for the same network architecture. 

Table 2 combines the results for Client and Hybrid 

WMNs and Table 3 shows the numerical results for 

Infrastructure WMN respectively. Each table represents 

the integrated link cost and processing time for a 

specific source-terminal node pair for varying number 

of nodes and iterations. 

 

 

Table 1: Architectural details of WMNs 

Infrastructure WMN Client WMN Hybrid WMN 

No. of 
Nodes 

Area 

(mm) 

Radio Range  
of a node (meters) 

No. of 
Nodes 

Area 

(mm) 

Radio Range  
of a node (meters) 

No. of 
Mesh Routers 

9 500  500 200 10 500  500 250 2 

16 500  500 200 20 500  500 250 4 

25 500  500 200 30 1000  1000 350 6 

64 1000  1000 200 50 1000  1000 350 9 

100 2000  2000 200 100 2000  2000 500 20 

In the case of Hybrid WMN the number of nodes, coverage area and radio ranges are same as that of Client WMN.  

 

In an infrastructure WMN the nodes are placed 

uniformly in the specified area constructing a uniform 

mesh. In this case we assume that there can be at the 

most 3 adjacent nodes to a given node whereas in the 

case of Client and Hybrid WMN there can be any 

number of  ad jacent nodes to a given node. In order to 

avoid loops only forward paths are considered in the 

routing tables. Hybrid  WMNs use some fixed WMRs 

and there are dedicated links among them. Radio range 

of these WMRs amongst them is double the range of 

Client nodes.  

 

V. Results and Discussion 

Client, Hybrid and Infrastructure type WMNs were  

simulated and the observations were recorded for 

various network environments. For each of network 

configurations 20 t rials were conducted. The resulting 

observations are placed on Table 2 for Client as well as 

Hybrid WMNs while Table 3 presents simulation 

results for static (Infrastructure) WMNs. 

Fig. 5 presents specific network architecture of 10, 30,  

50 and 100 node Client WMN.  It portrays the random 

behavior of nodes. Fig.  6 showcases network 

architecture of 10, 30, 50 and 100 node Hybrid WMN. 

WMRs are positioned on specific locations and having 

dedicated links amongst them. Figures 7 and 8 submit 

Time v/s ILC plot for 10, 30, 50 and 100 nodes for 

Client and Hybrid WMNs respectively. Fig. 9 draws the 

Time v/s ILC plot for 9, 25, 64 and 100 node 

Infrastructure WMNs. For smaller network 

architectures the proposed algorithms are simulated for 

0.01, 0.02, 0.05, 0.07 and 0.1 seconds while the larger 

networks are simulated for 0.05, 0.1, 0.2, 0.5 and 1.00 

seconds on the same network conditions 

correspondingly. 
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It is observed from all these results that proposed soft 

computing approaches namely ACO and BB-BC 

outperforms AODV in terms of ILC and processing 

time. The observations further ascertained that BB-BC 

performs better than ACO too. In larger networks ACO 

is unable to converge towards optimal solutions in the 

given time frame than BB-BC. BB-BC on the other 

hand converges much easily  and with lesser time. As 

the number of nodes and iterations increase processing 

time also increases accordingly. It is also observed that 

these proposed meta-heuristic approaches improve their 

performance with increasing number of 

iterations/processing time. 
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Fig. 5: Network Architecture (a, b, c, d) for 10, 30, 50 and 100 node Client WMN 
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Fig. 6: Network Architecture (a, b, c, d) for 10, 30, 50 and 100 node Hybrid WMN 

 

Table 2: Results for Client and Hybrid WMNs (20 trials for each set were conducted)  

No. of 
Nodes 

Time 
(seconds) 

Integrated Link Cost 

Client WMN Hybrid WMN 

ACO  BB-BC AO DV/ Computing Time  ACO  BB-BC AO DV/ Computing Time 

10 

0.01 2.7047 2.1978 

2.5474 
(0.163764 seconds) 

2.0120 0.6828 

2.2592 
(0.130426 seconds) 

0.02 2.4851 2.0218 1.7058 0.6828 

0.05 2.1978 1.9700 1.3036 0.6828 

0.07 2.0218 1.8616 0.6828 0.6828 

0.10 1.9700 1.4139 0.6828 0.6828 

20 

0.01 3.0520 1.8942 

4.8827 
(0.175151 seconds) 

3.6441 1.3596 

7.3591 
(0.139861 seconds) 

0.02 2.9108 1.8942 2.4229 1.3596 

0.05 2.6610 1.8445 1.8044 0.4928 

0.07 1.8942 1.4640 1.1678 0.4928 

0.10 1.8445 1.4640 1.0762 0.4928 

30 

0.01 10.1011 4.4127 

16.0153 
(0.203595 seconds) 

6.6121 2.0545 

14.9558 
(0.160448 seconds) 

0.02 4.5485 3.8623 4.3458 2.0545 

0.05 4.4127 3.7073 3.5761 2.0210 

0.07 3.8796 2.5192 2.8328 2.0210 

0.10 3.8623 2.5192 2.1761 1.3794 

50 

0.05 6.4157 5.1492 

11.3544 
(0.376226 seconds) 

5.8640 4.4491 

12.4939 
(0.312940 seconds) 

0.1 3.5586 3.0320 2.9354 4.0093 

0.2 2.2618 1.8399 1.7261 1.7192 

0.5 2.2357 1.3540 1.3016 0.8356 

1.00 2.1373 1.2400 0.9700 0.8356 

100 

0.05 13.0705 6.6234 

17.4170 
(0.486520 seconds) 

12.6959 7.2289 

14.0850 
(0.347388 seconds) 

0.1 7.8583 3.0858 7.3142 7.6650 

0.2 5.8813 2.4780 4.6477 3.0016 

0.5 4.4013 2.3804 3.3216 2.7494 

1.00 2.5261 2.1328 2.4112 2.4112 
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Fig. 7: (a)                                                                                                                               Fig. 7: (b) 
 

 

(c)                                                                                                                                 (d) 

 
Fig. 7: T ime v/s ILC plot (a, b, c, d) for 10, 30, 50 and 100 node Client WMN 

 

 

Fig. 8: (a)                                                                                                                                Fig. 8: (b)  
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(c)                                                                                                                                (d) 

 
Fig. 8: T ime v/s ILC plot (a, b, c, d) for 10, 30, 50 and 100 node Hybrid WMN 

 

Table 3: Results of Static (Infrastructure) WMN (20 trials for each set is conducted)  

No. of Nodes Time (seconds) 
Integrated Link Cost 

ACO  BB-BC AO DV/ Computing Time  

9 

0.01 1.8229 1.5975 

1.9718 

(0.175786 seconds) 

0.02 1.3636 0.6939 

0.05 1.1489 0.4231 

0.07 0.6756 0.3280 

0.10 0.3280 0.3280 

16 

0.01 3.5454 2.0301 

4.4739 

(0.186687 seconds) 

0.02 2.9189 1.8233 

0.05 2.5893 1.6868 

0.07 2.1302 1.0366 

0.10 1.0366 1.0366 

25 

0.01 2.2851 2.2851 

3.5240 

(0.221019 seconds) 

0.02 1.9007 1.5743 

0.05 1.7727 1.5317 

0.07 1.3059 0.9834 

0.10 1.3059 0.9834 

64 

0.05 4.1993 5.2291 

3.5240 

(0.299706 seconds) 

0.1 4.0391 3.1497 

0.2 2.6559 2.5492 

0.5 2.5492 2.2132 

1.00 2.5492 2.0972 

100 

0.05 4.6709 4.2958 

12.0776 

(0.360641 seconds) 

0.1 4.1707 3.7580 

0.2 3.9522 3.6113 

0.5 3.4125 2.5151 

1.00 3.2457 2.5151 
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(a)                                                                                                                                    (b) 
 

 

(c)                                                                                                                                       (d) 

 
Fig. 9: T ime v/s ILC plot (a, b, c, d) for 9, 25, 64 and 100 node Static WMN  

 

VI. Conclusion 

This paper proposed two new nature inspired optimal 

path evaluation algorithms to implement shortest path 

routing in WMNs. This paper presented a new fuzzy 

logic based hybrid integrated link cost metric that took 

into account throughput, delay, jitter of the link and 

residual energy of the node as performance parameters. 

Based upon these parameters the enumerated ILC was 

considered as the distance between two adjacent nodes. 

This ILC was further used to enumerate path costs 

between specific source-terminal node pairs. Based 

upon this effective ILC based performance metric three 

routing algorithms i.e. ACO, BB-BC and AODV have 

been applied to establish the optimized path between a 

specific source-terminal node pairs. The proposed ILC 

measure is scalable and quickly adapts to the stochastic 

behavior of WMNs. All these routing approaches are 

applied to 10, 20, 30, 50 and 100 node client and hybrid 

WMNs while 9, 16, 25, 64 and 100 node network 

architecture is considered for infrastructure (static) 

WMNs with various network topologies. The proposed 

soft computing based routing approaches were 

simulated for 0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.5 and 

1.00 seconds for the same network topology. Effect of 

Time over ILC is recorded for the proposed soft 

computing based meta-heuristic routing policies. 

The extensive simulations conducted, show that BB-

BC based routing strategy quickly adapts to the 

dynamic network conditions of WMNs followed by 

ACO and lastly AODV. It is observed from the results 

obtained that BB-BC based routing approach yields best 

results in terms of ILC however ACO and AODV are 

selecting non-optimal solutions. The ACO based 

routing algorithm is slower in converging to the optimal 

solution. Its performance was observed to be better than 

AODV. For s maller networks, BB-BC based approach 

converges to the optimal solution in very less time 

while ACO was found to improve its performance with 

time. For large WMNs BB-BC based routing approach 

outperforms other routing strategies in terms of ILC. 
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