
Hybrid Inter-Domain QoS Routing with

Crankback Mechanisms

Ahmed Frikha, Samer Lahoud, and Bernard Cousin

University of Rennes 1, IRISA,
35042 Rennes Cedex, France

{ahmed.frikha,samer.lahoud,bernard.cousin}@irisa.fr

Abstract. In this paper we tackle the challenging problem of Qual-
ity of Service (QoS) routing in multiple domains. We propose a novel
inter-domain QoS routing algorithm named HID-MCP. HID-MCP ben-
efits from two major concepts that ensure high performance in terms
of success rate and computational complexity. First, HID-MCP is a hy-
brid algorithm that combines the advantages of pre-computation and
on-demand computation to obtain end-to-end QoS paths. Second, HID-
MCP integrates crankback mechanisms for improving the path compu-
tation results in a single domain or in multiple domains. Extensive sim-
ulations confirm the efficiency of our algorithm on randomly generated
topologies.

Keywords: QoS routing, inter-domain routing, crankback mechanisms,
pre-computation, on-demand computation

1 Introduction

Nowadays, diverse advanced applications are provided over IP-based networks
(e.g. IPTV, video-on-demand, and VoIP). Guaranteeing the Quality of Service
(QoS) to such applications is a difficult problem, especially when service delivery
requires crossing heterogeneous domains under the responsibility of different op-
erators. Inter-domain QoS routing, also known as Inter-Domain Multi-Constraint
Path (ID-MCP) computation problem is one of the primary mechanisms for pro-
viding QoS. It consists of computing a path subject to multiple QoS constraints
between a source and a destination node of a multi-domain network. Let us in-
troduce some notations to formally define the ID-MCP problem. Let G(N, E, D)
denote a network of D domains, N is the set of nodes and E the set of links.
Let m be the number of QoS constraints. In our study, we consider only additive
metrics, such as cost and delay, without loss of generality [1]. An m-dimensional
weight vector is associated with each link e ∈ E. This vector consists of m non-
negative QoS weights wi(e), i = 1..m. Let p be a path in the graph G(N, E, D)
and wi(p) be the weight of p corresponding to the metric i. As metrics are addi-
tive, wi(p) is given by the sum of the weights of the ith metric of the links of the

path p: wi(p) =
∑

ej∈p(wi(ej)). Let
→

W (p) = (w1(p), w2(p), ..., wm(p)) denote
the weight vector of the path p.



2 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

Definition 1

Given a source node s, a destination node d and a set of constraints given

by the constraint vector
→

C= (c1, c2, .., cm), the Inter-Domain Multi-Constraint
Path (ID-MCP) computation problem consists in finding a path p which satisfies
wi(p) ≤ ci, ∀i ∈ 1..m. Such a path p is called a feasible path.

The ID-MCP problem is NP-hard [2] and may have zero, one or multiple solu-
tions (feasible paths). Computing such a path requires knowledge of the topology
of each domain in the network, as well as the QoS metrics on network links. As
the operators can be in competition, information about the internal topology
or the available resources in the network is confidential. Hence, computing such
a path using a centralized method is a hard task. Currently, the inter-domain
routing protocol is BGP. This protocol cannot solve the ID-MCP problem since
it does not take into account QoS constraints. Many extensions for BGP are
proposed to support QoS routing [4]-[5]. However, the QoS capabilities of these
propositions remain limited. Furthermore, solving the ID-MCP problem using
a centralized method is a very complex problem. Therefore, the research com-
munity has recently been exploring the use of distributed architectures to solve
this problem, such as the PCE (Path Computation Element) architecture [6].
Distributing the computation over domains preserves confidentiality of each do-
main and solves the scaling problem. To our knowledge, few works have been
proposed to solve the ID-MCP problem using distributed methods. The algo-
rithm proposed in [7] extends the exact algorithm SAMCRA [3] to an inter-
domain level to solve the ID-MCP problem. The drawback of this algorithm
is its high complexity. Work in [8] proposes also a promising distributed solu-
tion with crankback mechanisms for inter-domain routing. However this solution
cannot take into account several QoS metrics.

In this paper, we propose a novel inter-domain QoS routing algorithm, named
HID-MCP. HID-MCP is based on a hybrid computation scheme that combines
path pre-computation and on-demand path computation. HID-MCP consists of
two phases: An offline phase and an online phase. In the offline phase, HID-
MCP pre-computes a set of QoS paths. In the online phase, HID-MCP com-
bines the pre-computed paths to obtain an end-to-end path that fulfills the QoS
constraints. Combining the pre-computed paths does not lead always to an end-
to-end path. In such a case, a crankback mechanism is executed to perform on
demand computations. Combining pre-computation and on-demand computa-
tion using crankback mechanisms improves the computation results and allows
computational complexity to be reduced. Besides, our solution relies on a dis-
tributed architecture to overcome the limitations related to inter-domain routing.
Extensive simulations confirm the efficiency of our algorithm in terms of success
rate and computational complexity.

The rest of this paper is organized as follows. In Section 2, we present the
concept of the HID-MCP algorithm and its operations. Simulation results are
presented in detail in Section 3 and a conclusion is given in Section 4.



Hybrid Inter-Domain QoS Routing with Crankback Mechanisms 3

2 The HID-MCP Algorithm

In this paper, we propose a novel inter-domain QoS routing algorithm based
on a hybrid computation scheme and named HID-MCP (Hybrid ID-MCP).
The HID-MCP algorithm consists of two phases. In the first phase, named the
offline path computation phase, the algorithm executes an intra-domain pre-
computation algorithm and computes look-ahead information for each domain.
The pre-computed intra-domain paths and the look-ahead information are stored
in a database for later use. The second phase, named online path computation
phase, is triggered upon the reception of a QoS request. In this phase, HID-
MCP computes an end-to-end path that spans multiple domains and fulfills the
QoS constraints. The end-to-end path computation benefits from the stored pre-
computed intra-domain paths and the look-ahead information to speed up the
computational time of the algorithm.

2.1 The Offline Path Computation Phase

The offline computation phase consists of computing in advance a set of intra-
domain paths subject to multiple predetermined QoS constraints. It also com-
putes look-ahead information at the level of each entry border node of the cor-
responding domain. In the following, we detail the operations involved in these
two computations.

The Path Segment Computation Procedure This procedure pre-computes
a set of paths from each entry border node of the domain toward the other nodes
of this domain as well as the entry border nodes of the neighbor domains. These
paths satisfy a set of predetermined additive QoS constraints. In practice, some
QoS metrics are more critical for certain applications, such as the delay for the
VoIP-based applications. Therefore, our procedure pre-computes for each single
QoS metric the path which minimizes the weight corresponding to this metric.
For example, it pre-computes the path which minimizes the delay; this path can
be useful for the VoIP-based applications.

Let Dq be the considered domain, n1 be a border node of Dq, n2 be a node
of Dq or an entry border node of a neighbor domain, and m be the number of
the QoS metrics, our procedure computes m shortest paths from n1 to n2. Each
shortest path minimizes a single QoS metric. Hence, from each entry border node
n1 of Dq, this procedure computes m shortest path trees. Each shortest path
tree is computed using the Dijkstra algorithm and considering a single metric.
Therefore, our procedure executes Dijkstra m times per border node.

Theorem 1

The complexity of the path segment computation procedure is in O(B ∗ m(N
log(N) + E)), where B is the number of the entry border nodes of the domain.

Proof: The complexity of this procedure depends on the number of constraints
m. For one border node, this procedure is in O (m(N log(N) + E)) corresponding
to m times the complexity of Dijkstra, which is O((N log(N)+E)). Considering
the B entry border nodes of the domain, the global complexity is then given by:
O(B ∗ m(N log(N) + E)).



4 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

Look-Ahead Information Computation Procedure During the offline phase
of HID-MCP, we propose the computation of look-ahead information in each do-
main. This information gives a measure of the best QoS performance that can be
provided by the domain. Particularly, it allows the computation search space of
a potential on-demand path computation procedure to be reduced. For instance,
this information allows infeasible paths to be discarded from the search space of
the procedure before exploring these paths. Therefore, look-ahead information
reduces the computational complexity of the online phase and contributes to
maintain a reasonable response time. Look-ahead information is inferred from the
result of the pre-computation algorithm. Let n1 be a border node of the domain,
and n2 be a node of the domain or an entry border node of a neighbor domain,
and p∗n1 7→n2;i denotes the pre-computed shortest path between node n1 and node
n2 considering the metric i. The weight wi(p

∗

n1 7→n2;i) is the lowest possible path

weight between n1 and n2. Similarly, let us denote by
→

W ∗
n1 7→n2

= (w∗

1 , .., w∗

m) the

vector where w∗

i = wi(p
∗

n1 7→n2;i). Then,
→

W ∗
n1 7→n2

represents the lowest weights
to reach n2 from n1 for each single metric. We note that a path does not neces-
sarily exist with this lowest weights for all the metrics simultaneously. However,
this vector can be used in the online path computation phase to discard infeasible
paths from the search space.

Theorem 2

The complexity of the look-ahead information computation procedure is in O(m∗
N ∗ B).

Proof: Look-ahead information is inferred from the result of the path segment
computation. At each entry border node of the domain, there are at most m∗N

stored pre-computed paths. Hence, at the level of an entry border node n the

complexity of computing the N vectors
→

W ∗
n7→nj

, where nj ∈ N , is in O(m∗N).
Therefore, the complexity of computing the look-ahead information for all the
entry border nodes of the domain is in O(m ∗ N ∗ B).

2.2 The Online Path Computation Phase

The online path computation consists in finding a feasible end-to-end path using
the pre-computed paths and taking advantage of the look-ahead information.
Upon the reception of a QoS request, the source and the destination domains are
determined. According to the cooperation policy, the service provider computes
the best domain sequence that links the source and the destination domain
[6]. The path computation is triggered in the destination domain toward the
source domain following the selected domain sequence. Note that, without loss of
generality, we rely on backward computation according to the PCE architecture.
Let Seq = {D1, D2, .., Dr} denote the selected domain sequence, where D1 is the
destination domain and Dr the source domain. Let d be the destination node
and s be the source node. Algorithm 1 illustrates the operations performed in
the online phase of HID-MCP. First, our algorithm attempts to compute an
inter-domain path by combining the pre-computed paths in each domain Dq in
Seq starting from the destination domain D1: the path combination procedure



Hybrid Inter-Domain QoS Routing with Crankback Mechanisms 5

Algorithm 1 Online Phase of HID-MCP (Seq,s,d)

1: q ← 1; H ← φ; reject request← false;
2: while (q ≤ r) and not(reject request) do

3: H ← Path combination procedure(Dq , H, s, d);
4: if H 6= φ then

5: q ← q + 1;
6: else if intra domain crankback then

7: H ← On demand computation(Dq, H, s, d);
8: if H 6= φ then

9: q ← q + 1;
10: else

11: reject request← true;
12: end if

13: else

14: H ← φ; q ← 1;
15: while (q ≤ r) and not (reject request) do

16: H ← On demand computation(Dq , H, s, d);
17: if H 6= φ then

18: q ← q + 1;
19: else

20: reject request← true;
21: end if

22: end while

23: end if

24: end while

25: Return reject request == false

is called (line 3). Operations performed by this procedure are detailed in section
2.2. The result of the combination procedure in each domain Dq is a set of sub-
paths linking the destination node to the entry border nodes of the up-stream
domain Dq+1. These sub-paths are sent to domain Dq+1 to combine them with
the pre-computed segments in domain Dq+1. To preserve domain confidentiality,
sub-paths are communicated between domain under a novel compact structure
named VSPH (Virtual Shortest Path Hierarchy1) [1]. This structure contains
only the end nodes of the paths (the destination node and the entry border
nodes of the up-stream domain) as well as the weight vector of each path. The
VSPH is denoted by H in algorithm 1. A virtual path pd→n is represented in

the VSPH by
[

d, n,
→

W (pd→n)
]

, where d is the destination node, n is an entry

border node of the upstream domain Dq+1, and
→

W (pd→n) is the weight vector
of pd→n.

Combining the pre-computed paths in each domain can lead to an end-to-
end path, as detailed in section 2.2. However in some cases, no feasible path is
found, i.e. the returned VSPH is empty. We introduce in the following two novel

1 The hierarchy is a structure which enables the storage of multiple paths between
any two nodes [9].



6 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

approaches using crankback mechanisms in order to overcome this limitation.
The first approach executes an intra-domain crankback while the second ap-
proach executes an inter-domain crankback. Both of these approaches perform
an on-demand path computation. The aim of the on-demand path computation
procedure is to provide better results than the pre-computed ones. Operations
performed by this procedure are detailed in section 2.2.

The intra-domain crankback approach (lines 6-12) executes the on-demand
path computation procedure in the current domain, i.e. where the combination
has failed. Then, if a feasible path is found in the current domain, this path is
sent to the up-stream domain which will resume the path combination procedure.
Otherwise, if the algorithm does not find a solution in the current domain, i.e.
H = φ, the request is rejected.

The inter-domain crankback approach (lines 13-23) executes the on-demand
path computation procedure starting from the destination node d. Each domain
executes the on-demand path computation procedure and sends the computed
VSPH to the up-stream domain. The computation stops when an end-to-end
path is found or when the on-demand path computation procedure does not find
a solution, i.e. the returned VSPH is empty. In the latter case, the request is
rejected.

Path Combination Procedure The aim of this procedure is to combine the
paths in the received VSPH with the internally pre-computed one. Algorithm 2
illustrates the operations performed by the path combination procedure. First,
the combination procedure selects the pre-computed paths linking nodes in the
set I to nodes in the set E, where I is the ingress node set and E the egress
node set (lines 1-13). Then, these paths are combined with the aggregated paths
received in the VSPH (line 17). Finally, feasible paths are aggregated and added
to the new VSPH which will be sent to the upstream domain. Notes that at
the level of the destination domain D1 there is no received VSPH (H = φ), the
procedure selects the feasible pre-computed paths linking the destination d to
the entry border nodes of domain D2, and aggregates them in a VSPH to be
sent to domain D2. Figure 1 illustrates an example of path combination with
two constraints (m = 2) in an intermediate domain Dq.

Theorem 3

The complexity of the pre-computed path combination procedure at the level of
an intermediate domain Dq ∈ {D2, .., Dr−1} is in O(mq ∗ B2

max), where Bmax

denotes the maximum number of border nodes between two domains.

Proof: There are at most mq−1 paths from the destination to each entry border
node of the domain Dq. In addition, at each entry border node, there are at most
m∗Bmax stored pre-computed paths to reach the upstream domain Dq+1. Hence,
the complexity of combining the pre-computed paths and the received paths at
the level of an entry border node is in O(mq ∗Bmax). This operation is performed
at each entry border node between the domain Dq and the downstream domain
Dq−1. Therefore, the global complexity of this procedure at each domain is in
O(mq ∗ B2

max).



Hybrid Inter-Domain QoS Routing with Crankback Mechanisms 7

Domain Dq

VSPH: H

Domain Dq+1

s d

Domain D1Domain Dq-1Domain Dr

5

4

3

7

Pre-computed paths

2

3

5

2

IE

d

8

9

7

7 The new VSPH: H'

Fig. 1. Combining the pre-computed paths in domain Dq with the VSPH

The On-demand Path Computation Procedure When the pre-computed
path combination procedure does not lead to a feasible path, the on-demand
path computation procedure is called in the current domain or starting from
the destination domain according to the two aforementioned approaches. We
propose a modified version of the TAMCRA algorithm to perform the on-demand
computation. Work in [10] shows that TAMCRA is an efficient tunable heuristic
for the MCP problem. TAMCRA introduces a new parameter k that limits the
maximum number of stored paths at each intermediate node when searching for
a feasible path. This parameter allows TAMCRA’s performance to be tuned:
the success rate can be improved by increasing k at the expense of increased
computational complexity. Algorithm 3 illustrates the operations performed by
the on-demand path computation procedure. First of all, our proposed procedure
computes a prediction for the lowest weight vector to reach domain Dq+1 through
each path in the received VSPH (lines 11-19). We define for each aggregated

path
[

d, n,
→

W (pd→n)
]

in the VSPH and for each node nk in E, a weight vector
→

W ∗ (d 7→ nj 7→ nk) that represents the sum of the weight vector of the computed
segment pd 7→nj

and the lowest weight vector to reach nk from nj (line 13).

Therefore,
→

W ∗ (d 7→ nj 7→ nk) =
→

W (pd 7→nj
)+

→

W ∗
nj 7→nk

, where
→

W ∗
nj 7→nk

is

given by the look-ahead information. Note that the weight vector
→

W ∗ (d 7→ nj 7→
nk) is not necessarily associated to an existing path. Next, we discard infeasible
paths from the VSPH. For that, we define a new score for each path p given

by: S(pd 7→nj
) = minnk∈E

{

maxi∈1..m

(

w∗

i (d 7→nj 7→nk)
ci

)}

. This score represents

the lowest score to reach d through pd 7→nj
. A path p, that has a score S(p) >

1, is infeasible since it cannot lead to any node in E while meeting the QoS
constraints. Then, we classify the remaining paths in VSPH according to the
score S. We select the l shortest paths having the l lowest scores, where l is
a parameter of HID-MCP. The parameter l of HID-MCP is very important to



8 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

Algorithm 2 Path combination procedure (Dq,H ,s,d)

1: P ← {p/p pre-computed path in domain Dq};
2: H ′ ← φ;
3: if Dq == D1 then

4: I ← {d};
5: else

6: I ← {nj/nj leaf node in H};
7: end if

8: if Dq == Dr then

9: E ← {s};
10: else

11: E ← {nk/nk entry border node of domain Dq+1};
12: end if

13: Selected paths←
{

pnj→nk
/pnj→nk

∈ P, nj ∈ I, nk ∈ E
}

;
14: if Dq 6= D1 then

15: for pd→nj
∈ H do

16: for pnj→nk
∈ Selected paths do

17:
→

W (pd→nk
)←

→

W (pd→nj
)+

→

W (pnj→nk
);

18: if pd→nk
is feasible then

19: Add
[

d, nk,
→

W (pd→nk
)
]

to H ′;

20: end if

21: end for

22: end for

23: else

24: for pd→nk
∈ Selected paths do

25: if pd→nk
is feasible then

26: Add
[

d, nk,
→

W (pd→nk
)
]

to H ′;

27: end if

28: end for

29: end if

30: Return H ′;

reduce the computational complexity of the on-demand computation procedure
and to decrease the number of paths exchanged between domains. After that, for
each selected shortest path pd 7→nj

, we initialize the node nj by the corresponding

weight vectors
→

W (pd 7→nj
) and we execute the TAMCRA algorithm starting from

node nj to reach the nodes in E. We note that at the destination domain, i.e.

where the computations start, there is no received VSPH. Hence, the on-demand
procedure executes TAMCRA starting from the destination node. Finally, we
aggregate the feasible paths computed by TAMCRA in a new VSPH.

Theorem 4

The complexity of the on-demand path computation procedure at the level of
an intermediate domain is in O(l(k ∗ N log(k ∗ N) + k3 ∗ m ∗ E)).



Hybrid Inter-Domain QoS Routing with Crankback Mechanisms 9

Algorithm 3 On demand computation procedure (Dq,H ,s,d)

1: temp paths← φ; feasible paths← φ;

2: Ψ ←
{

→

W ∗ /
→

W ∗ look-ahead information in domain Dq

}

;

3: if Dq 6= D1 then

4: I ← {nj/nj leaf node in H};
5: if Dq == Dr then

6: E ← {s};
7: else

8: E ← {nk/nk entry border node of domain Dq+1};
9: end if

10: L←
{

→

W ∗
nj→nk

∈ Ψ, nj ∈ I, nk ∈ E
}

;

11: for

[

d, nj ,
→

W (pd→nj
)
]

∈ H do

12: for
→

W ∗
nj→nk

∈ L do

13:
→

W ∗ (d→ nj → nk)←
→

W (pd→nj
)+

→

W ∗
nj→nk

;
14: end for

15: S(pd→nj
)← minnk∈E

{

maxi∈1..m

(

w∗

i
(d 7→nj 7→nk)

ci

)}

;

16: if S(pd→nj
) ≤ 1 then

17: Add [nj ,
→

W (pd→nj
), S(pd→nj

)] to temp paths;
18: end if

19: end for

20: if temp paths 6= φ then

21: Selected paths← l shortest paths having the lowest S in temp paths
22: else

23: H ′ ← φ;
24: Return H ′

25: end if

26: for
→

W (pd→nj
) ∈ Selected paths do

27: Initialize nj with the weight vector
→

W (pd→nj
)

28: Execute TAMCRA in Dq starting from nj toward evry border node of domain
Dq+1

29: Add the obtained feasible paths to feasible paths
30: end for

31: else

32: Execute TAMCRA in D1 starting from d
33: Add the obtained feasible paths to feasible paths
34: end if

35: Extract H ′ from feasible paths
36: Return H ′

Proof The most significant point that determines the complexity of the on-
demand path computation procedure is the number of executions of the TAM-
CRA algorithm. Knowing that the number of initialized node is less or equal
to l, the complexity of this operation is in O(l(k ∗ N log(k ∗ N) + k3m ∗ E)),
corresponding to l times the complexity of TAMCRA.



10 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

3 Simulation and analysis

In this section, we evaluate the performance of our novel algorithm HID-MCP
by comparasion with the exact on-demand algorithm ID-MCP introduced in
[7]. This algorithm has the best success rate, i.e. no other algorithm can have
a success rate higher than that of ID-MCP, because ID-MCP finds a feasi-
ble path whenever a such path exists. However, the complexity of executing
ID-MCP in each domain corresponds to the complexity of the SAMCRA algo-
rithm given by: O((Kmax ∗ N log(Kmax ∗ N) + K3

maxm ∗ E)), where Kmax =

min(exp(N−2)!,

∏

m

i=1
ci

maxj cj
) [10]. This complexity is very high comparing with that

of our proposed algorithm. The simulations are performed using a network of
three domains where each domain is built based on Waxman’s model with 50
nodes in each domain. The probability that two nodes of the network are con-
nected by an edge is expressed in [11]. We associate with each link two additive
weights generated independently following a uniform distribution [10, 1023]. The
QoS constraints are also randomly generated according to the following: Let p1

and p2 denote the two shortest paths which minimize the first and the second
metric, respectively. Let Z = [w1(p1), w1(p2)]×[w2(p2), w2(p1)] be the constraint
generation space. The problem is not NP-Hard outside Z, i.e. either infeasible
or trivial. As shown in figure 2, we divide this space into ten zones Zi, i = 1..10
and we browse the space from the strictest constraint zone Z1 to the loosest con-
straint zone Z10. Then, we assess the performance of the algorithms according
to these zones. We evaluate the algorithms based on the following performance

p1

p2

w1(p1) w1(p2)

w2(p2)

w2(p1)

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z10

Fig. 2. Constraint generation zones for m = 2

criteria:

– GSR: the global success rate given by the ratio of the number of the requests
for which a feasible path is found and the total number of QoS requests.

– CSR: the efficiency of the combination procedure at a specific domain given
by the ratio of the number of requests where the combination procedure is
successful (e.g. leading to at least one feasible segment between the destina-
tion and the border nodes of the upstream domain) and the total number of
received requests.



Hybrid Inter-Domain QoS Routing with Crankback Mechanisms 11

In the following, each figure measures the variation of one performance metric
according to the constraint generation zones Zi, i ∈ 1..10, with a 95% confidence
interval. We focus on the success rate of the combination procedure (CSR) in a

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Constraint generation zones

C
S

R

 

 

Destination domain
Intermediate domain
Source domain

Fig. 3. Success rate of the combination
procedure in each domain.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Constraint generation zones

G
S

R

 

 

ID−MCP

HID−MCP: Inter−domain crankback (k=2,l=2)

HID−MCP: Intra−domain crankback (k=2,l=2)

Fig. 4. Comparison of the global suc-
cess rate of the algorithms.

given domain. The complement of CSR corresponds to the percentage of execu-
tions of the on-demand computation procedure. Figure 3 illustrates the variation
of the CSR in each domain according to strictness of the QoS constraints. In
the destination domain, the combination procedure is always successful. In the
intermediate domain the success rate of this procedure is high and equals 100%
when constraints are not very strict. However, we note that the CSR in the
source domain is low, specifically when the constraints are strict. Nonetheless,
this procedure performs well when the constraints are less strict. From this fig-
ure, we deduce that the probability of executing the on-demand computation is
high only in the source domain when the constraints are very strict. This proves
that the global empirical complexity of HID-MCP remains reasonable.

Figure 4 illustrates the variation of the global success rate (GSR) of HID-
MCP with intra-domain crankback mechanism, HID-MCP with inter-domain
crankback mechanism, and the exact algorithm ID-MCP, according to the strict-
ness of the QoS constraints. We remark that the success rate of HID-MCP with
inter-domain crankback when l = 2 and k = 2 is very close to the success rate of
ID-MCP. As explained in section 2, k is a parameter of TAMCRA and l is the
maximum number of paths selected from the VSPH. As expected, the success
rate of HID-MCP with intra-domain crankback when l = 2 and k = 2 is lower
than that of HID-MCP with inter-domain crankback with the same parameters,
especially in the middle of the constraint generation space. In fact, when the com-
bination procedure fails, HID-MCP with inter-domain crankback executes the
on-demand computation procedure starting from the destination domain, while
HID-MCP with intra-domain crankback executes it only in the current domain.
Consequently, the quality of the paths computed by the inter-domain crankback
approach in each domain is better than the ones computed by the intra-domain
crankback approach. Thus, the probability that a feasible path is found using



12 Ahmed Frikha, Samer Lahoud, and Bernard Cousin

HID-MCP with inter-domain crankback is higher. However, its computational
complexity is high compared to HID-MCP with intra-domain crankback, but re-
mains acceptable compared to ID-MCP. The fundamental result deduced from
this figure is that HID-MCP has a slightly lower global success rate compared
to the exact algorithm, while having a very low complexity.

4 Conclusion

In this paper, we studied the inter-domain QoS routing problem. We proposed
a novel inter-domain QoS routing algorithm based on a hybrid computation
scheme, named HID-MCP. We introduced two different mechanisms for improv-
ing the success rate. The first mechanism performs local improvement using an
intra-domain crankback, while the second mechanism executes a global improve-
ment using an inter-domain crankback. Extensive simulations showed that HID-
MCP with both of the aforementioned approaches provides a high success rate
and maintains a low complexity time. In particular, the inter-domain crankback
improvement-based HID-MCP has a success rate very close to that of the exact
solution, while the intra-domain crankback improvement-based HID-MCP pro-
vides lower computational complexity. This gives operators the choice to execute
either of the approaches, depending on the computation policy and the priority
of the request.

References

1. A. Frikha, and S. Lahoud, Hybrid Inter-Domain QoS Routing based on Look-Ahead
Information, IRISA, Tech. Rep. 1946, 2010.

2. Z. Wang and J. Crowcroft, Quality-of-Service Routing for Supporting Multimedia
Applications, IEEE Journal on Selected Areas in Communications, vol. 14, no. 7,
pp. 1228-1234, 1996.

3. P. Van Mieghem and F.A Kuipers, Concepts of exact QoS routing algorithms,
IEEE/ACM Transactions on Networking, vol. 12, no. 5, pp. 851-864, October 2004.

4. T. Knoll, BGP Extended Community Attribute for QoS Marking, draft-knoll-idr-
qos-attribute-02, work in progress, IETF, 2009.

5. D. Griffin, J. Spencer, J. Griem, M. Boucadair, P. Morand, M. Howarth, N. Wang,
G. Pavlou, A. Asgari, and P. Georgatsos, Interdomain routing through QoS-class
planes, IEEE Commun. Mag., vol. 45, no. 2, pp. 88-95, February 2007.

6. A. Farrel, J.P. Vasseur, J.A Ash, Path Computation Element (PCE)-Based Archi-
tecture, IETF RFC 4655, August 2006.

7. G. Bertrand, S. Lahoud, G. Texier, and M. Molnar, A Distributed Exact Solution to
Compute Inter-domain Multi-constrained Paths, The Internet of the Future, Lecture
Notes in Computer Science, vol. 5733, pp. 21-30, 2009.

8. M. Esmaeili, F. Xu, M. Peng, N. Ghani, A. Gumaste and J. Finochietto, Enhanced
Crankback Signaling for Multi-Domain IP/MPLS Networks, Computer Communi-
cations, vol. 33, no. 18, pp. 2215-2223, 2010.

9. M. Molnar, Hierarchies for Constrained Partial Spanning Problems in Graphs,
IRISA, Tech. Rep. 1900, 2008.

10. P. Van Mieghem, H. De Neve, and F. A. Kuipers, Hop-by-hop quality of service
routing, Computer Networks, 37, 407–423, 2001.

11. K. I. Calvert, M.B. Doar, and E.W. Zegura, Modelling Internet Topology. IEEE
Communications Magazine, vol. 35, no. 6, pp. 160–163, 1997.


