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Abstract

Property prediction models have been developed for several decades with varying degrees of perfor-

mance and complexity, from the group contribution-based methods to molecular simulations-based

methods. An interesting issue in this area is finding an appropriate representation of molecules

inherently suited for the property modeling problem. Here, we propose Grammar2vec, a SMILES

grammar-based framework for generating dense, numeric molecular representations. Grammar2vec

embeds molecular structural information contained in the grammar rules underlying SMILES string

representations of molecules. We use Grammar2vec representations to build machine learning-based

models for estimating normal boiling point (Tb) and critical temperature (Tc) and benchmark their

performance against the popularly used group contribution (GC)-based methods. To ensure in-

terpretability of the developed ML model, we perform a Shapley values-based analysis to estimate

feature importance and simplify (or prune) the trained model.

1. Introduction

Thermodynamic properties are crucial for efficient process design, optimization, control, and

monitoring, the latter two being extremely important in safety-critical conditions. A reliable (and

often preferable) means of acquiring properties is measuring them through controlled experimenta-

tion that achieves the desired level of accuracy and precision. However, with increasing complexity

and number of compounds synthesized at a rapid pace, along with a combinatorially large number

of possible mixtures, it is nearly impractical to perform costly and time-consuming experiments for
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all of them. An alternative solution for mitigating this issue is to build fairly accurate data-driven

models that could be used to estimate such properties. As argued by Venkatasubramanian[1], the

most useful data-driven methods are those that combine domain knowledge (in the form of symbolic

information) with numeric machine learning.

Quantitative structure-activity/property relationships (QSAR/QSPR) methods utilize the cor-

relations between molecular properties and their structural descriptors for data-driven property

estimation. Although, these methods are statistical in nature and are characterized by difficult

mathematical formulations and property-specific nature that limited their wider generalization ca-

pabilities [2], the commonly used Group Contribution (GC)-based methods, which could be regarded

as a special class of QSAR/QSPR methods, are simple, easy to use and predictive in nature because

the same contributions of a group can be used in any molecule they represent. The limitations of the

GC-based methods, however, in terms of accuracy, applicability to complex molecular structures,

isomer distinction, etc., are also well known [3]. The underlying assumption in group contribution

methods is that the property of a compound is a function of its molecular structure and the prop-

erty can be determined by summing the contributions of the groups representing the molecule for a

specific property. Well known GC methods for pure component properties prediction include those

of Lydersen [4], Joback and Reid [5], Constantinou and Gani [6], Benson et al. [7], Marrero and

Gani [8], Hukkerikar et al. [9], to name a few. GC methods related to phase equilibrium com-

putations include excess Gibbs energy based methods such as UNIFAC [10], DISQUAC [11] and

MOSCED [12], and equations of state-based methods, such as predictive simple PC-SAFT [13]. A

more complete list of GC methods for different properties can be found in review papers such as

Katritzky et al. [14], Gmehling [15] and Gani [3].

Recently, machine learning (ML) methods have emerged as powerful alternative for tackling

the thermodynamic property estimation problem. These methods generally use artificial neural

networks, support vector regression, or deep learning approaches involving autoencoders, variational

autoencoders, graph neural networks, and so on. Such methods have been reportedly used for

predicting CO2 solubility, density and viscosity of potassium lysinate and the mixed solutions with

monoethanolamine [16], predicting standard enthalpies of formation for hydrocarbons [17], density

and viscosity of biofuel compounds [18], and and, GC-based machine learning modeling of 25 pure

component properties of organic compounds [19].
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One of the important steps in building such data-driven ML models is using an appropriate

representation for molecules that captures their underlying structural and chemical characteristics.

This task could either be performed manually based on domain knowledge by using expert-curated

features for each property individually, or performed automatically in a latent space, referred to

as representation learning [20]. Such representations (or molecular features) are fed to the data-

driven models with the target variable as the property of interest for a molecule. In the area of

chemistry and drug discovery, the common representations for molecules are Morgan fingerprints

[21], SMILES strings [22], molecular graphs [23], and SMILES grammar [24]. Recently, SMILES

grammar-based representations [25, 26] were proposed for the forward reaction prediction and the

retrosynthetic analysis problems. These representations were shown to incorporate rich molecular-

structure information, overcome overfitting in ML models, and are superior from an information-

theoretic standpoint [26]. A similar analysis on property estimation is presented in this paper

(see Section 5.1). At the present, there is no consensus on which molecular representation is most

suited for machine learning-based property prediction problems, making this an interesting field of

research.

In this paper, we evaluate the use of the Grammar2vec framework, which generates dense vector

representations of molecules using the grammar rules defining SMILES representations to develop

ML-based property estimation models. We evaluate the performance of these models in terms of

SMILES and SMILES grammar-based representation of molecules. We benchmark their perfor-

mance on two thermodynamic properties – normal boiling point (Tb) and critical temperature (Tc).

To ensure a fair comparison (fixing the number of features in each representation), we invoke the

natural language analogy and look at molecules as sentences and the underlying atomic units as

words to generate their fixed-size vector representations. These vector representations are the same

for each molecule (irrespective of the property being predicted), which are then used to build sepa-

rate ML-based regression models. In addition, we perform a systematic study using Shapley values

[27] to understand the feature importance and prune the model further, giving rise to a simpler and

relatively interpretable model. We refer to this approach of generating dense vector representations

of molecules using the grammar rules underlying the SMILES representation as the Grammar2vec

framework.

The rest of the paper is organized as follows – in Section 2, we formally define the property
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estimation problem along with an algorithmic overview of the proposed approach; Section 3 provides

an overview of the various methods including SMILES and SMILES grammar-based molecular

representations in Section 3.1, the proposed Grammar2vec framework in Section 3.2,details on the

modeling framework using kernel SVR in Section 3.3, and the Shapley values formulation for model

interpretability in Section 3.4. A description of the dataset and model training aspects including

hyperparameter tuning and feature visualization is provided in Section 4. The detailed results are

presented in Section 5 with an information-theoretic analysis for comparing the representations in a

machine learning-independent manner in Section 5.1, regression statistics for the property prediction

task and comparison with GC-based methods in Section 5.2, and feature importance and model

pruning obtained using Shapley values in Section 5.3 and 5.4, respectively. Finally, the conclusions

from this study and future outlook for this problem appear in Section 6.

2. Problem statement and objectives

We formulate the thermodynamic property estimation problem as a regression task where the

objective is to build a machine learning-based regression model between the regressors and the

target variable as,

ŷi = f(xi,β) + ei (1)

where (for the ith molecule) the target variable ŷi is the predicted thermodynamic property of

interest; xi is the vector representation of the molecule and is of dimension m× 1; β is a vector of

regression coefficients (with appropriate dimensions depending on the model-form) that is estimated;

and ei is the noise in the prediction that could be attributed to the measurement errors in the

training data and/or the modeling inaccuracies. The former could be inferred by performing an

uncertainty analysis as demonstrated for GC-models in [9].

Based on Equation 1 above, the two important aspects for estimating the target value yi ac-

curately are – choosing an appropriate functional transformation f(.) and a using rich molecular

representation xi. For modeling the former, we use a support vector regression (SVR) model with

radial basis function (RBF) kernel and for the latter, generate a rich, property-agnostic molecular

representation xi using the proposed Grammar2vec framework. In addition, since our objective is

to build interpretable machine learning models, we analyze the feature importance and contribu-
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tion towards the predictions by computing Shapley values. This information is used to prune the

model and simplify it as much as possible while retaining a similar performance, thus giving rise

to a relatively simpler yet powerful model architecture. The kernel SVR model, the Grammar2vec

framework, and Shapley values are described in detail in Sections 3.3, 3.2, and 3.4 respectively. An

overview of the proposed algorithmic framework is presented in Figure 1.

Figure 1: An overview of our algorithmic framework used for the property prediction problem. The details on various
components are presented in Section 3.

For the example molecule 2-Napthyl methylcarbamate, the two different representations based on

the SMILES and SMILES grammar representations are indicated in Figure 1. These representations

are tokenized (split into individual characters) and passed to two separate Grammar2vec models

as ‘words’ that learns their respective 32-dimensional (dense) vector representations which are then

transformed to a single 32-dimensional dense vector representing the entire molecule by performing

element-wise averaging. These 32 features are then used in the kernel SVR model to estimate the

property of interest (say Tc). While this model could directly be used for property prediction, we
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simplify the model by first computing the Shapley values to understand the relative importance

of the 32 features towards the regression task and then prune the model to drop the relatively

unimportant features. The final, simplified model is then used for the property prediction task.

The equations and transformations required at each stage are indicated in Figure 1. The following

sections provide details on each of these modules.

3. Methods underlying grammar2vec-based property estimation

In this section, we provide a brief overview of the various methods used in our work at different

stages in the algorithmic framework described in Figure 1 above, including the different molecular

representations, the natural language analogy and the proposed Grammar2vec framework, the kernel

SVR model used for estimating the properties, and the Shapley values approach used for computing

feature importance and performing model pruning.

3.1. Molecular representations: SMILES and SMILES grammar

The SMILES representation [22] is commonly used in deep-learning approaches including drug

discovery, because of their ability to encode molecular structural information as text using short

ASCII strings. Several approaches that have utilized this representations in frameworks adapted

from natural language process include the SMILES transformer [28], Mol2vec [29] for generating

molecular representations inspired from [30], and SMILES2vec [31] for chemical property estimation

using deep recurrent neural networks, and several other works on property estimation [32–35]. The

major shortcoming of the SMILES representation, however, is their lack of explicit incorporation of

the entire molecular structure of the molecule (including the 3D structure and stereochemistry). It

is often assumed (incorrectly) that the machine learning model would discover the underlying rela-

tionships between the SMILES characters, resultig in information loss and consequently suboptimal

model performance. This issue is addressed to a large extent by utilizing the underlying SMILES

grammar production rules.

The SMILES grammar specifies the underlying production rules that are required to generate

the SMILES string of a given molecule. These productions rules are much more detailed and richer

when compared to individual, purely character-based SMILES characters (or tokens). The SMILES

grammar is similar to the context-free grammar (CFG) commonly used in the area of natural
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Table 1: A subset of the SMILES grammar produc-
tions. The complete SMILES grammar used in this
work is presented in the Appendix A.

S.No Production rules

1 SMILES −→ CHAIN

2 CHAIN −→ CHAIN BRANCHED ATOM

3 CHAIN −→ CHAIN BOND BRANCHED ATOM

4 CHAIN −→ BRANCHED ATOM

5 BRANCHED ATOM −→ ATOM RINGBOND

6 BRANCHED ATOM −→ ATOM

7 BRANCHED ATOM −→ ATOM BB

8 BRANCHED ATOM −→ ATOM RB

9 BB −→ BRANCH

10 RB −→ RINGBOND

11 BRANCH −→ ( CHAIN )

12 RINGBOND −→ DIGIT

13 BOND −→ =

14 ATOM −→ AROMATIC ORGANIC

15 ATOM −→ ALIPHATIC ORGANIC

16 AROMATIC ORGANIC −→ c

17 ALIPHATIC ORGANIC −→ C

18 ALIPHATIC ORGANIC −→ O

Figure 2: The parse-tree obtained for propene (SMILES
representation: CC=C) using SMILES grammar produc-
tions in Table 1. The productions are extracted from the
parse tree in a depth-first manner, resulting in the gram-
mar representation for propene to be 1, 3, 2, 4, 6, 15, 17,
6, 15, 17, 13, 6, 15, 17 (figure from Mann and Venkata-
subramanian [25]).

language processing, first formalized by Chomsky [36]. A CFG is a finite collection of recursive

rules (or productions) that defines the set of all well-formed sentences in a language. Formally, a

CFG is a 4-tuple G = (V,Σ, R, S), where V is a finite non-empty set of non-terminal symbols, Σ

is a finite set of terminal symbols, R is a finite non-empty set of rules, and S is a designated start

symbol. Each rule has a left-hand side (a single non-terminal) and a right-hand side (a sequence of

one or more non-terminal or terminal symbols). A CFG can also be deduced for SMILES strings

and was used for molecule optimization in [24] in which the parse tree is used as a representation

for the molecules [25]. A representative subset of the SMILES grammar is shown in Figure 1 and

the set of rules required to generate the SMILES string for propene (CC=C) is shown in Figure 2

in the form of a parse tree. A SMILES grammar-based representation could be constructed from

the grammar parse tree by extracting the sequence of production rules in a depth-first strategy as

indicated in the caption of Figure 2. Recently, Mann and Venkatasubramanian [25, 26] showed that

the SMILES grammar-based representations could be adapted for the forward reaction prediction

involving multiple reactants, agents, and product molecules, and showed that this approach perform

well even for single-step retrosynthesis prediction.

The SMILES grammar-based representations incorporate chemical and structural information

about molecules, which cannot be done with purely character-based SMILES strings, and are shown

to be superior from an information-theoretic standpoint [26]. The grammar rules, that often cor-
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respond to underlying structural chemistry of molecules, explicit encode that information in the

representation making them much more richer as compared to SMILES strings. The complete

SMILES grammar used in our work is presented in the Appendix. We transform these grammar

rules into dense, numeric vectors using the Grammar2vec framework as described in the next section.

3.2. Grammar2vec framework

Natural language processing techniques involve transforming text into its equivalent numeric

representation that preserves the underlying properties (context, meaning, structure) to the max-

imum possible extent. One approach to achieve this is generating word embeddings that learn

dense vector representations of text (or words) using neural networks by preserving the contextual

information of words in a corpus. Word2vec [30] is one of the most commonly used methods used

to generate word embeddings and is at the core of the Grammar2vec framework. It encodes words

in a high dimensional vector space such that words with higher semantic similarity are closer in

the vector space. The Word2vec model can be trained using two different approaches – skip-gram

and a continuous bag of words (CBOW). The skip-gram approach involves using the current word

to predict its contextual words, whereas the CBOW approach involves predicting the current word

based on the context words. In our work, we work with the CBOW approach because of its better

performance and faster computation.
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Figure 3: An overview of the proposed Grammar2vec framework for generating dense, numeric vector representation
of molecules utilizing the underlying structural information in the form of SMILES grammar productions. The
grammar-based descriptors are fed to machine learning models as features (or regressors). The other alternatives are
using group representations with GC-based methods, or as features for ML models [19].

The steps involving the Grammar2vec framework are highlighted in Figure 3. Grammar2vec

generates vector embeddings of molecules by considering grammar-representations of molecules as

sentences and the individual grammar rules as separate words. For instance, consider the compound

2-Naphthyl methylcarbamate with SMILES string ‘CNC(=O)Oc1ccc2ccccc2c1’. The ‘molecular

sentence’ based on the grammar representation is generated by using the SMILES grammar repre-

sentation as

‘1’ ‘75’ ‘75’ ‘75’ . . . ‘74’ ‘64’ ‘3’ . . . ‘3’ ‘7’ ‘66’ ‘3’ ‘6’ ‘71’ . . . ‘39’ ‘81’

where each production rule is equivalent to the ‘molecular word’. Treating these representations as

sentences and the individual constituent units as words, we train the Word2Vec model using the

gensim package in Python [37] and learn the vector representations of each of these molecular words.

The vector representation for the entire molecule (molecular sentence) is obtained by averaging out
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the word embeddings learned across all the constituent words, a standard approach for learning

sentence embeddings in natural language processing. A similar approach involving purely character-

based SMILES strings (without grammar) is the idea behind SMILES2vec [31]. Similarly, [38] used

Word2Vec model with bond-strings as input to generate molecular descriptors that were used for

property estimation in a deep learning framework.

Since we compare the performance of Gramamr2vec representation against SMILES strings-

based dense representation, we train two separate Word2vec models on a corpus of nearly ∼ 15, 000

molecules for 10, 000 iterations to learn dense vector representations of size 32 from molecular

sentences.

Remark 1: Note that the actual characters in the molecular sentences do not matter; instead

their relative position and the context words are important while learning their word embeddings.

Therefore, we could replace the individual tokens to any arbitrary string as long as they map to the

same word uniquely.

Remark 2: Just like the group contribution (GC)-based approaches, if a molecule is not present

in the dataset, we can still generate its vector representation since the dense vectors are obtained

using models trained on the individual bits in the molecular sentences comprising SMILES grammar

rules or the SMILES characters. Therefore, any new molecule could be represented as long as these

individual bits that it is composed of are seen by the model during training (a fair assumption of

fixed vocabulary size, as in natural language). In fact, in our test set, we have molecules that were

never seen by the model during the training stage.

3.3. Support vector regression for property estimation

To estimate the thermodynamic properties of molecules, we use a kernel support vector re-

gression (SVR) model [39] to build a regression model between the molecular descriptors and the

correspond property values. We chose the kernel SVR framework due to its ability to model complex,

non-linear interactions between features even under small sample conditions and generalizability to

out-of-sample datasets. The general idea behind the kernel SVR method is to first map the origi-

nal data into a high dimensional space using kernels, and then find an optimal decision boundary

or separating hyperplane by minimizing the error or the distance between the observed and the

predicted values by formulating this as a constrained optimization problem.
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For the simple linear SVR case (we use non linear SVR described in subsequent paragraphs),

the regression function f(.) in Equation 1 is assumed to be linear and is defined as,

f(xi,β) = xi
Tβ + b (2)

where b is an additional coefficient that corresponds to the bias in the predictions, xi is a numeric

vector representing a molecule, and β is a vector of unknowns that need to be estimated. The

objective is to minimize the norm of the coefficients β such that the residuals are within a given

limit ϵ. Slack variables are introduced for each point in the constraints equation to ensure the

constraints are satisfied and a solution exists for the constrained optimization problem (known as

soft-margin SVR). The primal formulation of the optimization problem is thus given by,

min
β

||β||2 + C
N∑
i

(ζi + ζ∗i ) (3)

subject to,

yi − (xi
Tβ + b) ≤ ϵ+ ζi, (xi

Tβ + b)− yi ≤ ϵ+ ζ∗i

where, C is a parameter that controls the penalty imposed on points that lie outside the ϵ margin,

and ζi and ζ∗i are non-negative slack variables that define the maximum tolerable error without

imposing a penalty on the regression errors. The Lagrange dual formulation for this problem, that

is computationally easier to solve, is given by,

min
λ

1

2

N∑
j=1

N∑
k=1

(λj − λ∗
j )(λk − λ∗

k)(xj
Txk) + ϵ(λj + λ∗

j )−
N∑
j=1

yj(λj − λ∗
j ) (4)

subject to,

N∑
j=1

(λj − λ∗
j ) = 0, 0 ≤ λj ≤ C, 0 ≤ λ∗

j ≤ C

where λj and λk are non-negative Lagrange multipliers. The regressed (predicted) values, ŷi, for an
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input xi, is given by

ŷi =

N∑
j=1

(λj − λ∗
j )(xj

Txi) + b (5)

Instead of using the linear assumption for the regression function f(.) in Equation 1, we use a

kernel function that transforms the data into higher dimensions to learn a non-linear function in

the original space. This is done by replacing the inner products or dot products in the linear SVR

formulation above with kernels. We use the radial basis function (RBF) kernel which is given by,

K(xj , xk) = exp(−γ||xj − xk||2) (6)

where the parameter γ controls the width of the kernel. The Kernel matrix is an n×n matrix where

each element corresponds to the inner product of the transformed data points in higher dimensions.

Replacing the inner products with the RBF kernel function, the dual problem thus becomes,

min
λ

1

2

N∑
j=1

N∑
k=1

(λj − λ∗
j )(λk − λ∗

k)K(xj , xk) + ϵ(λj + λ∗
j )−

N∑
j=1

yj(λj − λ∗
j ) (7)

subject to,

N∑
i=1

(λj − λ∗
j ) = 0, 0 ≤ λj ≤ C, 0 ≤ λ∗

j ≤ C

The regressed (predicted) values, ŷi, for an input xi, is given by

ŷi =
N∑
j=1

(λj − λ∗
j ) exp(−γ||xj − xi||2) + b (8)

Therefore, Equations 7 and 8 characterize our trained non-parametric regression model, and the

regressed values for thermodynamic properties of a give molecule could be estimated using Equation

8 for a given molecule represented as xi.
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3.4. Interpretable ML using Shapley values

To improve the interpretability of the kernel SVR model that we use in the regression task, we are

interested in understanding the feature importances and their contribution towards the estimated

values. Such analysis is necessitated due to the inherent complexity of the kernel SVR model,

primarily due to the high-dimensional feature transformation using the radial basis function (RBF)

kernel. This renders the straightforward evaluation of the support vectors for understanding the

feature importance nearly impossible. We, therefore, use Shapley values, a concept from cooperative

game theory used to compute the contribution of each player to the final payout, to understand the

feature importances for the property estimation task [40].

Shapley values are a measure of the average marginal contribution of a feature across all possible

coalitions (or feature combinations). To quantify the importance of a given feature, different feature

coalitions are simulated and the predicted value for the different contributions are averaged and

subtracted from the predicted value with the given feature in the coalition. This computation

is performed for all possible coalitions, and the Shapley value is the average of all the marginal

contributions to all possible coalitions. Formally, the Shapley value for a feature j is defined as,

ϕ̂j =
1

M

M∑
m=1

(f̂(xm+j)− f̂(xm−j)) (9)

where f̂(xm+j) is the prediction for x with a random number of feature values replaced by feature

values from a random data point z except for the respective value of feature j; xm+j is identical to

xm−j except that the value xmj is taken from the random sample z in xm−j ; features on the left of

xj have values from the original observations and those on the right of xj take their values from a

random instance; and M is the number of instances generated. This procedure is repeated M times

for all the features and feature importances are computed.

These concepts have been applied in various areas including machine learning for understanding

ML models [41–44]. Following a similar approach, we compute the Shapley values for our model and

also use the inferences to prune the model by retaining only the important features contributing the

most to the model performance as depicted in the algorithmic framework in Figure 1. The Shapley

values were computed using the SHAP package in Python [40] and the results on this are presented

in Section 5.3.
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4. Dataset and model training

In this section, we provide a detailed overview of the dataset and the model training aspects.

Specifically, we first provide a description of the dataset for the two properties of interest, the model

training, and hyperparameter tuning aspects for the kernel SVR models, and a visual comparison of

the learned feature vectors for the dense vector embeddings of the molecular words obtained using

Grammar2vec.

4.1. Dataset description

The dataset that we used in our work is based on data used in the recent work by Alshehri et

al. [19] for predicting normal boiling point (Tb) and critical temperature (Tc). The dataset contains

experimentally measured values of these properties with molecules represented as SMILES strings

along with their groups-based representations indicating the various first-order, second-order, and

third-order functional groups and the number of times they are present in each molecule. There

are 200 first-order groups, 150 second-order groups, and 74 third-order groups, and hence, a total

of 424 different functional groups. The data on normal boiling point for molecules consists of 3510

different pure compounds (molecules) whereas the data for critical temperature is much smaller

with just 858 molecules. These molecules were further preprocessed to remove molecules that either

could not be processed by RDKit or were not parsed by the SMILES grammar. The resulting final

data had 3488 and 800 molecules for Tb and Tc, respectively.

Though the framework that we present in our work is applicable for predicting any thermody-

namic property of a molecule as long as there is enough training data available, we build models

only for predicting Tb and Tc because these two properties provide enough variety of challenges

that are generally encountered – modeling difficulty, limited data availability, and performance on

out-of-sample examples. Moreover, limiting ourselves to just two (but important) properties would

help in performing a detailed analysis of the underlying models and the molecular representations

trained to make them more interpretable.

4.2. Gramamr2vec and regression model hyperparameters

As explained in Section 3.2, the Grammar2vec model was used to learn dense vector represen-

tations for molecules using SMILES grammar and Word2vec using SMILES strings. We trained
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vector embeddings of molecules with different sizes, namely 8, 16, 32, and 64 (resulting in the molec-

ular representations x8×1,x16×1,x32×1, and x64×1, respectively), and evaluated the performance of

learned representation of various sizes on a validation set in the property prediction task. The best

model performance was achieved using an embedding of size 32, and hence, we fixed the size of

the vector representations at 32 for performing final model training and detailed model analysis.

These 32-dimensional dense feature vectors x32×1 were used in the support vector regression (SVR)

framework for training separate regression models for estimating Tb and Tc.

To perform modeling, we split our dataset into training and test sets using a 95/5 split where the

training set is used for model building and the test set is used only for reporting model performance

statistics. The training set is further subdivided to perform 5-fold cross-validation to search for

optimal hyperparameter values using a randomized search in the following range: C : 500−50000, γ :

0.01 − 0.2, and ϵ : 0.1 − 1. The hyperparameters are tuned separately for all the 4 models (using

models trained on two separate representations each for Tb and Tc estimation). Therefore, each

property prediction model is characterized by three hyperparameters that need to be tuned using

the given dataset.

Remark 3: Since Grammar2vec is an unsupervised learning technique, we trained the word

embedding models on the entire dataset containing nearly ∼ 15k molecules. One may choose to

train this model on an even bigger dataset with millions of molecules such as the Zinc dataset or

the USPTO reactions dataset.

4.3. Learned molecular representations

Since we are using a machine learning model for the regression task and using a 32-dimensional

dense vector representation for molecules as input to the regression model, each individual feature

should capture different aspects of a molecule. In other words, each feature should ideally focus

on distinct aspects of a molecule, and that should be unique to a given feature. While there must

be some overlap between what each feature captures, an ideal, rich representation would minimize

this overlap (or similarities) across features. We qualitatively measure the similarity or dissimilarity

across features by looking at their distribution plots (histograms). Higher the difference between

the feature distributions, higher would be the richness of the representation. A rich representation,

we hypothesize, would be the one that has the most condensed information in each feature.
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(a) Tb grammar (b) Tc grammar

(c) Tb SMILES (d) Tc SMILES

Figure 4: Histograms for the 32 features based on the SMILES grammar and SMILES representations for molecules
in the Tb and Tc datasets. The vertical axis corresponds to the frequency and the horizontal axis represents the actual
numeric values of the feature vector elements.

The histograms for the dense vector-based representations for molecules learned using the Gram-

mar2vec and Word2vec model (for SMILES) are shown in Figure 4. We plot the histograms for

32-dimensional molecular representations obtained using SMILES grammar and SMILES. There

are 32 shades of colors in each sub-figure and each of them corresponds to a different feature.

5. Results

We present detailed results obtained using our algorithmic framework in this section. We first

present an information-theoretic analysis in Section 5.1 for comparing the various learned represen-

tations in an ML-independent manner that is rooted in fundamental analysis of uncertainty and

conditional information gain associated with the representations. The detailed regression statistics,

error analysis, and benchmarking the performance againts group contributions (GC)-based methods

are presented in Section 5.2. The feature importance and subsequent model pruning results and

analysis based on Shapley values are in Section 5.3 and Section 5.4, respectively.

16



5.1. Information theory

In representation learning, it is important to preserve as much information about the underlying

entity as possible, and typically, the representations that are richer and have higher information

perform well when used in machine learning frameworks [26]. Representations are important because

they guide ML models in discovering the underlying, hidden patterns much more easily if a richer

representation is used, as opposed to an obscure, difficult to interpret representation. We, therefore,

turn to information theory since it offers a quantitative approach for quantifying the amount of

information associated with a given communication channel [45] that could be adapted for chemical

representations [26].

Two central concepts in information theory are the Shannon entropy and the conditional en-

tropy (or information gain). Shannon entropy measures the amount of uncertainty associated with

a given signal in terms of bits of information and by definition, a higher uncertainty translates

to higher Shannon entropy or information capacity. Higher Shannon entropy points towards the

higher information-carrying capacity of a communication channel. On the other hand, conditional

information gain or conditional entropy is a measure of the amount of uncertainty associated with

a signal when a part of it is known (hence, conditional). Typically, a lower conditional information

gain is desirable since it translates to a lower reconstruction error or loss. Figure 5 depicts these

two concepts schematically along with the mathematical equations for their computation.

Figure 5: Shannon entropy and conditional entropy depicted schematically on the SMILES string representation for
2-Naphthyl methylcarbamate.

To utilize these concepts from information theory and analyze chemical representations from this

perspective, we look at the individual tokens (or characters) in various representations as random

variables, and therefore, the molecular representation becomes a sequence of random variables,

X1, X2, . . . , Xn, where n is the length of the representation for a given molecule and Xi could

take any of the M possible tokens defined in the vocabulary of the representation. Tokens are the
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individual production rules for the SMILES grammar representation, or characters for the SMILES

representation. For instance, consider the same compound 2-Naphthyl methylcarbamate. The

different representations for this compound along with the associated random variables or tokens

are as follows:

• SMILES (‘C’ ‘N ’ ‘C’ ‘(’ ‘ = ’ ‘O’ ‘)’ ‘O’ ‘c’ ‘1’ ‘c’ . . . ‘c’ ‘2’ ‘c’ ‘1’):

XSMILES
i ∈ {‘C’, ‘N ’, ‘(’, ‘ = ’, ‘O’, ‘)’, ‘c’, ‘1’, ‘2’}, where M = 9, n = 22

• Grammar (‘1’ ‘75’ ‘75’ ‘75’ . . . ‘3’ ‘7’ ‘66’ ‘3’ ‘6’ ‘71’ . . . ‘39’ ‘81’):

XGrammar
i ∈ {‘1’, ‘3’, ‘4’, ‘6’, ‘7’, ‘8’, ‘16’, ‘39’, ‘40’, ‘58’, ‘62’, ‘64’, ‘65’, ‘66’, ‘69’, ‘71’, ‘73’, ‘74’, ‘75’, ‘81’},

where M = 20, n = 77

We compute the Shannon entropy and conditional information gain using the entire set of

nearly 15k molecules in the dataset since this is an unsupervised approach and does not require the

target property values. We estimate the required (conditional) probability distributions for the two

representations (SMILES, and grammar) based on the co-occurrence matrices at different orders of

conditioning (up to an order η = 5). An order η = 1 corresponds to the Shannon entropy, order

η = 0 corresponds to Shannon entropy when the random variables follow a uniform distribution

(theoretical limit of information capacity), and orders η > 1 correspond to conditional entropy when

η−1 preceding random variables are known and is computed using the conditional entropy formula

in Figure 5.

Figure 6: Information theoretic analysis results for the SMILES and grammar representations.

These results are presented in Figure 6 and we observe that even though the theoretical and
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observed Shannon entropy is higher for the grammar representation, the conditional information

gain drop significantly for the grammar representations for orders η ≥ 2 and remains much lower

than that of the SMILES representations even at increasingly higher orders. This points towards

an important property of the grammar representations – when prior information (about preceding

tokens) is known for the grammar representations, the amount of uncertainty associated with the

other tokens for a molecular representation is reduced significantly which is not so much the case

with SMILES representations. This could be attributed to the hierarchical structure (as shown

in Figure 2) and the underlying grammar that is much more efficient in eliminating the infeasible

tokens than the other representations.

This property is extremely useful for methods like Word2vec (and consequently for Gram-

mar2vec) because they attempt to encode a given word based on the contextual/neighboring words,

and owing to the lower conditional information gain in the grammar representation, the contextual

words are much more easier to infer. This property results in a lower reconstruction loss in the

Word2vec model at the training stage and therefore, better representations. This richness and su-

periority of the grammar-based features should translate to better performance on the regression

task.

5.2. Property model development and application

Now that we have compared the representations and established their relative richness using an

ML-independent manner, we present the results on the regression task based on the kernel-SVR

models (using equation 7) for each of the representations. Based on a random 95/5 split, the Tb

dataset had 3313 data points in the training set and 175 data points in the test set. On the other

hand, the Tc dataset had 760 data points in the training set and 40 data points in the test set. The

scatter plots between the true values and the experimental values for normal boiling points (Tb) for

molecules in the test set (unseen at the training stage) are presented in Figure 7. The R2 values

indicating the goodness of the predictions on the training and the test set are indicated in the inset

of each sub-figure.

We observe that the grammar representations-based models have the highest R2 values on the

test set (comprising molecules unseen during the training stage), pointing towards their better gen-

eralization capabilities. In addition, their predictive accuracy is higher even when the number of
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training samples is reduced by nearly an order of 4 (3488 for Tb vs 800 for Tc). The SMILES

representations-based model is seen to perform poorly under small-sample conditions. The groups

representations-based models though have a near-perfect accuracy on the training set, the perfor-

mance on the test set in both the cases is significantly lower, and therefore, the models overfit the

training set.

(a) Grammar (b) Grammar

(c) SMILES (d) SMILES

Figure 7: Regression results on the normal boiling point (Tb) and critical temperature (Tc) prediction tasks on the
test set containing molecules unseen at the model training stage.

To gain a better understanding of the model performance for various molecules, we study the

prediction errors (ŷ−y) as a function of the complexity of the molecule. We define the complexity of

molecules inspired by the chemical scoring functions (CSF) defined in [46] for scoring the chemical

and synthetic complexity of a reaction pathways as,

CSF = SMILES LEN3/2 + αRINGS + βSTEREO (10)

where SMILES LEN is the length of the SMILES string of the molecule which is related to its mass
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and overall complexity, RINGS is the total number of rings in the molecule and STEREO is the

number of stereocenters in the molecule. The parameters α and β could be tuned but for simplicity,

we fix their values to the average value for the SMILES LEN3/2 across all molecules to ensure the

three terms contribute roughly equally to the CSF score. The plot of the CSF and the prediction

errors for Tb and Tc using different representations for molecules in the test set are presented in

Figure 8.

(a) Tb vs CSF; grammar model (b) Tc vs CSF; grammar model

(c) Tb vs CSF; SMILES model (d) Tc vs CSF; SMILES model

Figure 8: Prediction error vs molecular complexity analysis using chemical scoring functions (CSF) for Tb and Tc on
the test set containing molecules unseen at the model training stage.

Based on these results, we draw the following inferences:

• For the grammar representations, both for Tb and Tc, the relationship between the prediction

error and CSF is either non-existent or very weak, pointing towards the complexity-agnostic

nature and hence, wider generalizability/applicability of the fitted model. This is established

by the slope and the intercept of the regression line along with their confidence bounds indi-

cated in Figure 8(a) and (b) for Tb and Tc, respectively.
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• The models fitted using the SMILES representations seem to underpredict the properties

(negative ŷ − y) for complex molecules. This points towards their inability to capture the

complex interactions between various functional groups in complex molecules and erroneously

treats them as relatively simpler molecules. The grammar-based models do not suffer from

this bias, possibly due to their richer features.

• Across both the models, the absolute values of the prediction errors are relatively high for

smaller or simpler molecules. However, even in this case, the errors for the grammar-based

models are much smaller than the errors in the other model.

We hypothesize that the nearly non-existent correlation between the prediction errors and the

molecular complexity for the SMILES grammar model could be attributed to the higher structural

information in-built in these representations. The sources of error in a machine learning models

could be attributed to two factors – first, the structure-based errors and model inadequacies, and

second, the errors in the parameter estimates. The latter is often due to limitations of the model

in mapping the transformations between the features and the target variable including sub-optimal

parameter estimates. The former, however, depends on the ability of the representation (features)

in capturing the molecular chemistry. The grammar representations, therefore, do not seem to suffer

from the structure-based limitations but only the model-based errors.

In order to asses the performance of our model better, we compute the percentage deviation of

the predicted values from the measured property values, we compute the relative absolute percentage

errors, for both Tb and Tc, defined as

RAE (%) = 100× (ypred − ytrue)/ytrue (11)

In addition, we also perform the same exercise end-to-end (representation learning, model training,

RAE computation) for a subset of the entire dataset containing only hydrocarbon molecules. This

dataset contained 1134 molecules that were used for learning molecular representations, 628 and

34 data points respectively for training and testing the Tb,hydrocarbons estimation model, and 251

and 14 data points respectively for training and testing the Tc,hydrocarbons estimation model. We

present the error distribution plots for our models in Figure 9 and compare the results against those

presented in Alshehri et al. [19] on various metrics in Table 2.
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(a) Error distribution for the entire dataset

(b) Error distribution only for the hydrocarbons dataset

Figure 9: The relative absolute percentage error plots obtained using the grammar representation-based model for Tb

and Tc on the entire dataset (training set + test set).

Table 2: Comparison with a previous work on property estimation that worked with the same dataset. The numbers
indicate the percentage of molecules below the given percentage relative error threshold except the last column that
provides values for the maximum percentage relative error observed in the predictions.

1% error 5% error 10% error 15% error Max. error

Alshehri et al. [19]
Tb 79.1 87.8 92.7 - >50%
Tc 84.4 91.4 94.2 - >40%

Our model
Tb 42.0 82.3 94.9 98.8 30.2%
Tc 51.8 82.1 94.9 98.9 25.3%

Tb,hydrocarbons 65.8 98.9 100 100 8.2%
Tc,hydrocarbons 72.9 98.0 100 100 6.3%

We observe that even though our model predicts relatively fewer number of molecules within the

1% error threshold, the model quickly catches-up and outperforms the model by Alshehri et al. for

an error threshold of 10% and above, with ∼ 99% of all the predictions falling within a 15% error

threshold. Moreover, the maximum prediction error for Tb and Tc at ∼ 30% and ∼ 25%, respectively,
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is much lower than the maximum error reported by Alshehri et al. for their best performing model.

The performance on the hydrocarbons dataset is significantly better with nearly 98−99% of all the

molecules within an error-threshold of less than 5%, both for Tb and Tc estimation. The gradually

increasing trend in the relative errors (as opposed to a steep increase beyond a certain number of

molecules), highlights a smooth functional mapping from the features to the property values learned

by the ML-based regression model. As a consequence of this, the model has better generalizability.

Therefore, we infer that our model is robust towards encountering new molecules or the presence

of outliers in the dataset. The latter is a major issue because new molecules are being synthesized

at a much faster pace and the experimentally measured properties dataset often have errors and

outliers.

5.3. Feature importance and model interpretability

To further bolster the interpretability of our model, we perform an analysis using Shapley

values to understand the contribution of the individual features towards the model predictions.

The Shapley values were computed using a weighted kmeans approach using 10 samples weighted

by the number of points they represent. We perform the analysis for the two models each for Tb

and Tc properties, separately.

The feature contribution charts for the Tb and Tc predictions are presented as stacked bar plots

in Figures 10 (a) and (b), respectively. In order to allow for an easy comparison on a relative scale,

we have scaled the feature contributions in the range 0 to 1 by performing a min-max scaling for

each model separately. We observe that the most important features (out of the 32 features) for

the grammar model are Tb : {22, 25, 2, 6, 20, 3, 1, 12, 24, 8, 27, 5, 30, 15, 29, 16, 18, 28, 0, 7}, Tc :

{22, 24, 17, 3, 6, 20, 5, 1, 15, 9, 7, 27, 13, 8, 29, 16, 2, 28, 23, 21} and for the SMILES mod-

els are Tb : {13, 25, 12, 10, 3, 11, 8, 23, 26, 28, 18, 15, 7, 16, 29, 24, 0, 5, 27, 30}, Tc :

{13, 10, 22, 23, 28, 25, 31, 24, 7, 2, 26, 11, 18, 17, 16, 6, 27, 3, 12, 15}.
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(a) Tb (b) Tc

Figure 10: Feature importance charts (scaled) for the Tb and Tc predictions for all the three representations. The
feature importance are relative and indicate the contribution of each feature towards predicting the properties of
interest. We see that not all features are equally important and the unimportant ones could be dropped without much
impact on the model performance.

An interesting observation based on the above model is that the feature importance for a given

molecular representation (grammar, SMILES) is very similar for both Tb and Tc predictions. For

instance, of the 20 most important features for the grammar-based representations for Tb and Tc

prediction, 15 out of 20 features are common. For the SMILES-based representations too 15 out of

20 features are common. This observation is rooted in chemistry since it is known that the normal

boiling point (Tb) and critical temperature (Tc) of a given molecule are correlated. A side-by-side

plot of the relative feature contributions for Tb and Tc models for grammar-based representations

is shown in Figure 11 (a). In order to ensure this chemistry-correlation is indeed captured by the

developed model and it is not just an artifact of the example considered, we train an additional

grammar representation-based model following the same approach for predicting critical pressure

(Pc) which has nearly the same number of training data points a Tc. A side-by-side plot of the

relative feature contributions for Tb and Pc is shown in Figure 11 (b). As expected from chemistry,

we see that the correlation between feature importance is much weaker between these properties

when compared to the feature correlation between Tb adn Tc. Thus, we conclude that the grammar-

based features preserve the underlying chemistry correlations between molecules that consequently

in the model analysis.
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(a) Tb vs Tc

(b) Tb vs Pc

Figure 11: Comparison of feature importance (contributions) for regression models for Tb, Tc, and Pc. Based on the
underlying chemistry-based correlations, it is expected that Tb and Tc would have similar feature importance, whereas
Tb and Pc would have relatively higher differences in feature importance. This behavior is observed in the above
comparison plots between Tb vs Tc and Tb vs Pc.

5.4. Model pruning

Now that we have information on the importance of various features for estimating molecular

properties of interest, we leverage this information to further simplify our model by pruning the

features. To do this, for each representation, we build models starting with a model with just the

top-most important feature and compute the R2
test value, then build another model with this feature

and the next most important feature and again compute the R2
test value, and do this sequentially

until a sufficiently good performance is observed for the mode. The plot of the R2
test values for

sequentially developed models (from 1 to top-20 features) for both the representation vs the number

of features is presented in Figures 12 (a) and (b) for Tb and Tc model.
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(a) Tb (b) Tc

Figure 12: The R2
test as a function of the number of features for the different models.

Table 3: Comparison of model performance (test-R2) with different number of features.

# Features Grammar SMILES

Tb
32 0.91 0.79
20 0.90 0.77

Tc
32 0.90 0.48
20 0.90 0.49

We observe that both the models require just 20 features or fewer to achieve nearly the same

level of performance as obtained by using all the 32 features. The comparison of the performance on

the test set using 32 and 20 features for Tb and Tc predictions are presented in Table 3. Therefore,

the final pruned model is much simpler and is characterized by just 20 features that are dense, rich,

and capture the molecular structural information efficiently. Moreover, we observe from the trend

in Figure 12 that in both the cases, the grammar-based models achieve a significantly higher R2

by using fewer features to attain the same accuracy both for Tb and Tc predictions. For example,

the grammar model achieves an R2 of nearly 0.8 for both Tb and Tc using just 7 features whereas

it requires at least 20 features for the SMILES-based models to achieve a similar R2. These again

point toward the richness of the grammar features and its better generalization, as demonstrated

earlier in the section information-theoretic analysis and complexity-agnostic nature of the model

shown through the error vs. CSF analysis. In addition, fewer features would translate to better

computational efficiency and a smoother decision boundary – both of which result in better gener-

alizability of the model on unseen data points. In other words, the model predictions would have

smaller variance and hence lower possibility of overfitting (or memorizing) the training data.
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6. Conclusions

Thermodynamic property prediction is an important problem that requires a systematic ap-

proach to ensure the data-driven models are rooted properly in fundamental principles of physics

and chemistry. Engineering the molecular representations that are input to such models in a way

that maximizes the amount of physics/chemistry captured is one possible approach. Here, we have

identified the SMILES grammar-based, dense vector representations obtained using the Gram-

mar2vec framework to be one such promising possibility. These representations were obtained by

invoking the natural language analogy to generate vector representations for ‘molecular sentences’

constructed by combining the SMILES string with their underlying SMILES grammar production

rules.

The results demonstrate the superiority of the Grammar2vec molecular representations. They

are shown to be associated with richer features that capture different chemistry, lower conditional

uncertainty, better regression statistics both for data-rich (Tb) and data-limited (Tc) scenarios,

higher efficiency in capturing molecular complexity indicated by the error analysis, and relatively

simpler models with fewer features when compared to models using other representations. We have

established that data alone is not sufficient to make better predictions – as is often assumed in the

current era of deep learning – at least in chemistry. Instead, data along with richer representations

that capture the intricacies of the underlying entities is of equal importance. The Grammar2vec

framework could be used for estimating several other thermodynamic properties (in addition to Tb,

Tc) using relatively simple and interpretable machine learning models.

We envision that such representations that are rooted in chemistry would be of significant

value not only for the thermodynamic property prediction task but also for other chemistry prob-

lems requiring data-driven modeling. In future, we plan to extend this approach to incorporate

additional molecular structure descriptors, utilize the grammar2vec framework to perform compre-

hensive property estimation on other thermodynamic properties with larger datasets, and perform

molecule design and optimization in combination with retrosynthesis planning.
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Appendix A

The SMILES grammar used in our work comprises 80 production rules with 24 non-terminals

symbols specifying the different structural components of a SMILES string and are summarized in

Table 4. The first and the last production rules, SMILES −→ CHAIN and NOTHING −→ NONE, are

additional rules included signifying the start and end of a SMILES string, which is analogous to

the <START> and <END> tokens in natural language processing marking the beginning and the end

of sentences, respectively.

Table 4: SMILES grammar used in this work for generating molecular representations.

S.No Production rules

1 SMILES −→ CHAIN

2 ATOM −→ BRACKET ATOM | ALIPHATIC ORGANIC | AROMATIC ORGANIC

3 ALIPHATIC ORGANIC −→ B | C | N | O | S | P | F | I | Cl | Br

4 AROMATIC ORGANIC −→ c | n | o | s | p

5 BRACKET ATOM −→ [ BAI ]

6 BAI −→ ISOTOPE SYMBOL BAC | SYMBOL BAC | ISOTOPE SYMBOL | SYMBOL

7 BAC −→ CHIRAL BAH | BAH | CHIRAL

8 BAH −→ HCOUNT BACH | BACH | HCOUNT

9 BACH −→ CHARGECLASS | CHARGE | CLASS

10 SYMBOL −→ ALIPHATIC ORGANIC | AROMATIC ORGANIC | ELEMENT SYMBOLS

11 ISOTOPE −→ DIGIT | DIGIT DIGIT | DIGIT DIGIT DIGIT

12 DIGIT −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

13 CHIRAL −→ @ | @@

14 HCOUNT −→ H | H DIGIT

15 CHARGE −→ - | - DIGIT | - DIGIT DIGIT | + | + DIGIT | + DIGIT DIGIT

16 BOND −→ - | = | # | / | \\

17 RINGBOND −→ DIGIT | BOND DIGIT

18 BRANCHED ATOM −→ ATOM | ATOM RB | ATOM RB BB

19 RB −→ RB RINGBOND | RINGBOND

20 BB −→ BB BRANCH | BRANCH

21 BRANCH −→ ( CHAIN ) | ( BOND CHAIN )

22 CHAIN −→ BRANCHED ATOM | CHAIN BRANCHED ATOM | CHAIN BOND BRANCHED ATOM

29



Table 4: SMILES grammar used in this work for generating molecular representations.

S.No Production rules

23 CLASS −→ DIGIT

24 ELEMENT SYMBOLS −→ H

25 NOTHING −→ NONE

Appendix B

Figure 13: The parse-tree obtained for propane (CCC) using SMILES grammar productions in Table 1. The produc-
tions when extracted from the parse tree in a depth-first manner result in the grammar representation as 1, 2, 2,
4, 6, 15, 17, 6, 15, 17, 6, 15, 17

Figure 14: The parse-tree obtained for propene (CC=C) using SMILES grammar productions in Table 1. The
productions when extracted from the parse tree in a depth-first manner result in the grammar representation as
1, 3, 2, 4, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17
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Figure 15: The parse-tree obtained for propanol (CCCO) using SMILES grammar productions in Table 1. The
productions when extracted from the parse tree in a depth-first manner result in the grammar representation as
1, 2, 2, 2, 4, 6, 15, 17, 6, 15, 17, 6, 15, 17, 6, 15, 18

CCC C=CC OCCC

-0.491271 -0.698095 -0.434662

1.936522 2.444691 1.986346

2.12129 1.94433 2.406679

-1.778707 -2.328862 -1.935335

-0.91106 -0.799948 -0.95961

-2.156449 -1.863728 -1.858846

-2.249398 -2.12342 -1.562154

-0.147146 -0.343379 0.058143

-1.313123 -2.304307 -0.96131

-1.504984 -1.391153 -1.358496

-0.049938 0.295251 0.097997

0.576202 0.379481 0.391373

1.272612 1.822762 0.908829

1.422946 0.920623 1.252951

-2.824167 -2.334167 -2.607435

-0.862446 -0.855732 -0.668328

0.995295 0.973911 0.960458

1.48523 1.793601 1.430849

1.632852 2.427182 1.698906

-0.765502 -0.656052 -0.617677

-0.742146 -0.692423 -0.589372
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0.835875 0.500569 0.396088

-4.488621 -4.736897 -4.288099

4.207507 4.423007 4.052883

-1.884889 -2.153435 -1.684574

-4.196161 -4.157901 -4.124537

2.292979 2.165808 2.419326

0.904267 0.696876 0.868011

1.223593 0.593412 1.06907

1.318167 1.215398 1.270406

-1.128037 -1.048277 -0.730391

0.08552 -0.223942 0.119815

Table 5: The dense, 32-dimensional representations obtained using the Grammar2vec framework on the grammar
representation obtained using the complete grammar (provided in Appendix A) to parse the molecules’ SMILES.
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