
Hybrid Key Establishment for Multiphase Self-Organized Sensor Networks

Panayiotis Kotzanikolaou
University of Piraeus

Department of Informatics
80 Karaoli & Dimitriou, Piraeus 185 34, Greece

pkotzani@unipi.gr

Emmanouil Magkos
Department of Archiving and Library Studies,

Ionian University, Old Palace
Corfu, 49100, Greece

emagos@ionio.gr

Christos Douligeris
University of Piraeus

Department of Informatics
80 Karaoli & Dimitriou, Piraeus 185 34, Greece

cdoulig@unipi.gr

Vassilios Chrissikopoulos
Department of Archiving and Library Studies,

Ionian University, Old Palace
Corfu, 49100, Greece

vchris@ionio.gr

Abstract

Recent work on key establishment for sensor networks
has shown that it is feasible to employ limited Elliptic Curve
Cryptography in sensor networks through hybrid protocols.
In this paper, we propose a hybrid key establishment pro-
tocol for uniform self-organized sensor networks. The pro-
posed protocol combines the Elliptic Curve Diffie-Hellmann
key establishment with implicit certificates and symmetric-
key cryptographic techniques. The protocol can be imple-
mented on uniform networks comprised of restricted func-
tional devices. Furthermore, due to its public-key nature,
the protocol is resilient to a wide range of passive and ac-
tive attacks such as known-key attacks, as well as attacks
against the confidentiality, integrity and authenticity of the
communication. The protocol is scalable and efficient for
low-capability devices in terms of storage, communication
and computational complexity: the cost per node for a key
establishment is reduced to one scalar multiplication with a
random point plus one with a fixed point.

1 Introduction

Distributed Sensor Networks (DSN) are becoming in-
creasingly popular as they can be used in a variety of civil
applications [9]. Of special interest is the usage of DSNs
in secure-critical domains: thousands of such nodes could
be deployed in unattended and/or adversarial environments
to collect information such as tracking hostile troop move-
ments, or detecting chemical and biological weapons.

Wireless networks are in general more vulnerable to se-

curity threats than wired networks [4]. Depending on the
environment where nodes are deployed, appropriate protec-
tion measures should be taken for data confidentiality, in-
tegrity and authentication between communicating entities,
while taking into account the cost, storage, energy and com-
munication efficiency requirements. To support such secu-
rity services one needs key management techniques that are
resilient to both external and internal attacks. The required
trade-off, makes it an important challenge to design secure
and efficient key establishment techniques for DSNs.

An on-going research area is establishing secure
communication channels between pairs of sensor nodes,
especially in DSNs that do not rely on any fixed infras-
tructure or central administrator. This infrastructureless
model is known as theself-organizingmodel [6]. The
self-organizing model can be further divided into two cases.
In thenon-uniformself-organizing model the network may
contain two types of nodes; the full functional devices
(FFD) with high energy, power and storage capabilities,
and the restricted functional devices (RFD), which are
the typical low-capability sensor nodes. In theuniform
self-organizing model, all the nodes are assumed to be
restricted functional devices. Obviously, achieving the
required security level is more difficult in the uniform
model, since one can only rely on low-capability devices.
In this paper, we are concerned with key management in
uniform self-organizing DSNs.

Multiphase deployment. In highly dynamic and decen-
tralized environments, it may be required that the network
is updated with other nodes in future time periods, in order
to extend the network or replace erroneous nodes. Each set
of incoming nodes that will join the network in a future time



consist anode generation. The nodes of a particular genera-
tion are pre-deployed with the appropriate keys, which will
enable them to perform key bootstrapping with each other,
as well as with nodes of a previous generation. The pro-
tocols which allow multiple key bootstrapping phases be-
tween nodes of different generations are known asmulti-
phasedeployment protocols [5].

Due to the constrained environment, symmetric cryptog-
raphy seems to be the most efficient choice for multiphase
key establishment in DSNs. In [5, 14], two symmetric-
key approaches were proposed. In these schemes all nodes
of a certain node generationi are pre-deployed with a
generation-wide symmetric keyKi, which they will use
during theith pairwise key bootstrapping period. Each node
A belonging to theith generation is also pre-deployed with
a different “instance” of the future generation keys, linked
to its unique identityIDA, i.e. Ki+1(IDA) = fKi+1 [IDA],
..., Km(IDA) = fKm

[IDA], wheref is a one-way keyed
hash function, andm is the total number of generations.
Each of these keys will be used by the node to participate in
the corresponding future bootstrapping phase. At the end of
each bootstrapping period, all nodes delete their generation
key (or their instance of the generation key respectively).

In the protocols of [5, 14], it is assumed that the nodes
cannot be attacked during the bootstrapping period. This is
a strong assumption, since the sensors cannot be tamper-
resistant due to their physical limitations. Moreover, if a
node is compromised during the bootstrapping period, then
the corrupted node may use the generation-wide key to
impersonate any other node, an attack also known assybil
attack. Finally, since only symmetric encryption techniques
are employed, the nodes cannot prove their participation in
a specific node generation. This could be useful in some
circumstances,e.g.when a fresh node must be programmed
to cooperate with sensors of a specific generation, or when
inter-generation communication shall be given higher
priority. In such cases, the above protocols may be subject
to fake generationattacks: corrupted nodes could pretend
to belong to another node generation than the authentic one.

Public-key cryptography for DSNs. Although the
costs of public key encryption are prohibitive for sensor
nodes, recent research has shown that it is possible to
construct sensors capable of performing (limited) public
key cryptography [7], mainly through Elliptic Curve (EC)
cryptography [3] – see [11, 8]. Huanget al [8] proposed a
hybrid protocol for pairwise key establishment in DSNs, by
combining EC and symmetric techniques. To minimize the
number of the expensive scalar multiplications, the authors
in [8] propose the employment of some full-functional
devices that take most of the cryptographic burden. The
cost for each restricted sensor node is then reduced to one
scalar multiplication with a random point and one with a

static point, per key establishment. This cost is tolerable
for security-critical DSNs. Although the use of EC cryp-
tography may overcome the security issues of symmetric
techniques for multiphase deployment, the scheme of [8] is
not appropriate for uniform self-organized DSNs, since it
assumes the existence of full-functional devices. Moreover,
this protocol is designed for single phase node deployment.

Our contribution. We propose a hybrid key establish-
ment protocol, for multiphase deployment in uniform self-
organizing sensor networks. The protocol combines stan-
dard Elliptic Curve Diffie-Hellmann (ECDH) [3] with sym-
metric encryption techniques. The authentication of the EC
keys is based on Implicit Certificates [13], issued by an off-
line Certification Authority. The computation cost of the EC
cryptographic actions for each sensor is reduced to a scalar
multiplication over a static point and a scalar multiplica-
tion over a random point. The cost reduction is due to the
combination of symmetric encryption in the randomization
process and the use of EC-Schnorr signatures [12] in the Im-
plicit Certificate verification. The protocol is scalable, with
sensors being pre-deployed with a constant number and size
of keys, regardless of the size of the network.

The proposed protocol improves over the symmetric-key
based schemes of [5, 14], as it does not allow a compro-
mised node to impersonate other nodes, belonging to the
same or a different generation. Furthermore, it provides
forward secrecy both in respect to a particular node and a
generation of nodes. Moreover, it does not require the as-
sumption of a protected bootstrapping period, although if
such a protection exists the security of the protocol is further
increased. Finally, our protocol improves over the hybrid
scheme of [8], since it supports multiphase deployment, and
does not require the existence of full-functional devices.

2 A Hybrid Key Establishment Protocol for
Self-Organized DSNs

We propose a key establishment protocol for sensor net-
works, which combines EC with symmetric cryptographic
techniques to support secure multiphase deployment in the
uniform self-organizing model. Before initialization of the
network a trusted authorityCA pre-deploys each sensor
with the appropriate EC and symmetric keys. After the key
pre-deployment theCA stays off-line and it is no further
involved in the protocol. The nodes are randomly deployed
(e.g. via aerial scattering) and are not aware of their neigh-
bors until their deployment. In the sequel, the nodes partici-
pate in a bootstrapping phase in order to exchange keys with
their neighboring nodes. After the initialization of the net-
work, it is possible for sensor nodes to join the network in
future time periods, provided they have been pre-deployed
(by theCA) with the corresponding generation keys.

2



2.1 Notation

Let q denote the order of the underlying finite fieldFq

and letE be a suitably chosen elliptic curve defined over
Fq. LetP denote a base point inE, the generator point, and
n be the order ofP , wheren is prime. ThusnP = O and
P 6= O whereO is the point at infinity. We assume that the
discrete logarithm problem in the group< P > of points
generated byP is intractable. LetqCA ∈ [2, n − 2] be a
random integer selected by the Certification AuthorityCA
andQCA = qCA × P . The pair of the static secret/public
key pair of theCA is qCA, QCA.

The CA generates a network-wide symmetric keyK,
which will be used by all nodes as an initial authentica-
tor in order to avoid processing of fake “hello” messages
and prevent trivial DoS attacks. Furthermore, theCA also
generates a set of independent symmetric encryption keys,
K1,K2, ..., Km, one key for each of them node genera-
tions. These keys are similar to the generation keys of the
LEAP protocol [14]; however, in our protocol these keys
will only be used to create a temporary channel for exchang-
ing randomness for the key establishment, to mitigate the
consequences of a static key being compromised and to es-
tablish forward secrecy for exchanged session keys.

2.2 Key pre-deployment phase

The CA generates and pre-deploys each node with the
appropriate keying information (see Figure 1). We describe
the key generation and key pre-deployment phase for a node
X of generationi, denoted asX(i). When no further clar-
ification is required, we will denote the nodeX(i) asX.
The CA selects a random numbergX ∈ [2, n − 2] and
computesGX = gX × P . Then, theCA computes the
Implicit Certificate for the nodeX as ICX = (GX , M),
with M = {i, IDX , tX}, wherei is the generation of the
node,IDX is a unique identifier for the nodeX and tX
is the expiration time of the certificate. TheCA applies a
cryptographic hash functionh overICX and from the octet
h(ICX) it obtains an integereX , by using the conversion
routine1 described in [3]. Then, theCA computes the static
secret key of nodeX asqX = gX +eX ·qCA. The valuegX

is not given to the nodeX and is deleted after the key gen-
eration process. Otherwise, a compromised node would be
able to extract the secret key of theCA from valuesqX and
gX . Observe that the pair (eX , qX ) is an EC-Schnorr sig-
nature [12], created by theCA, over the messageM of the
Implicit CertificateICX of the nodeX. The correspond-
ing public keyQX is not stored at nodeX ’s memory. Any
other node, will be able to recoverQX from the implicit
certificateICX and the public keyQCA of theCA.

1Informally, the idea is simply to view the octet string as the base 256
representation of the integer (Section 2.3.8 of [3])

CA

Static public key pair: PqQq CACACA ,

Initial network authentication key: K

Node generation keys: mKKK ,...,, 21

For each node X
 ( i )

1. Select: 

XX IDRg ,

2. Compute: 

][)(

...

][)(

][)(

)(

),(

,,

2

1

2

1

XKXm

XKXi

XKXi

XX

CAXXX

XX

XX

XX

XX

IDfIDK

IDfIDK

IDfIDK

PqQ

qegq

eICh

MGIC

tIDiM

PgG

m

i

i

3. Predeploy each node X
 ( i )

of generation i with:

X
( i )

(Secure channel)

)(...,),(,,,,,, 1 XmXiiCAXX IDKIDKKKPQICq

Figure 1. The key pre-deployment phase

After computation of the public/secret key pair of the
nodeX, theCA computes the secret symmetric key values
of the node. Since the nodeX belongs to theith genera-
tion (1 ≤ i ≤ m), the node will be given the corresponding
generation-wide keyKi. Furthermore, for all future gener-
ation keys, theCA will compute for each nodeX the in-
stance keysKi+1(IDX) = fKi+1 [IDX ], ...,Km(IDX) =
fKm [IDX ], wheref is a one-way keyed hash function. Fi-
nally, theCA pre-deploys the nodeX with its secret key
qX , the implicit certificateICX , the public key of the Cer-
tificate AuthorityQCA, the pointP , the initial authentica-
tion keyK, the key of theith generationKi and the instance
keysKi+1(IDX),Ki+2(IDX), ..., Km(IDX).

The role of theCA is different from the traditional PKI
model. TheCA acts as a trusted authority that generates
and pre-deploys off-line the appropriate keys to each node.
The nodes do not compute or verify the validity of their
keys. This eliminates the communication and computation
costs for the sensor nodes, during the key pre-deployment
phase. After the initialization of the network theCA will
have a passive role, and will not further participate in key
establishment. TheCA will only be allowed to generate and
pre-deploy the keys for nodes of forthcoming generations.

3



2.3 Key establishment phase

In this phase, two nodes will use their pre-deployed keys
to perform an authenticated pairwise key establishment.
There are two cases to be considered: key establishment be-
tween nodes of the same generation and key establishment
between nodes of different generations.

LetA(j), B(i) be two nodes belonging to the generations
j, i respectively, such that1 ≤ j ≤ i ≤ m. Thus, the
nodes may belong to the same(j = i) or different(j < i)
generation. We describe the key establishment phase of the
ith period (see Figure 2).

1. Choose: RNB

)(),...,(

),()(OR)(

,,,,,

1 AmAi

Aii

CAAA

IDKIDK

ijIDKijK

KPQICq

],[

,,

BBK

BB

ICNMAC

ICN

2. Verify MAC

3. Choose RrA

4. Compute: 

)(

],[)(

AABk

BIDKAB

rE

IDfk
Ai

12. Decrypt: )( Bk
rE

AB

13. Compute:

),(

,

)(

SharedInfo

SharedInfo

ABAB

BA

BAAB

CABBB

BB

ZkdfK

rr

QqZ

QeGQ

IChe

14. Verify MAC

15. Delete ABABBA Zkrr ,,,

(at the end of the i-th bootstrapping)

Delete )( Aii IDKK AND/OR

],,[

),(,

)( BAAIDK

AkA

NrICMAC

rEIC

Ai

AB

5. Compute: 

][)( AKAi IDfIDK
i

,

6. Verify MAC

7. Compute  

][)( BIDKAB IDfk
Ai

8. Decrypt )( Ak
rE

AB

9. Choose Br

10.Compute )( BABk
rE

11. Compute:

),(

,

)(

SharedInfo

SharedInfo

ABAB

BA

ABAB

CAAAA

AA

ZkdfK

rr

QqZ

QeGQ

IChe

16. Verify MAC

17. Delete ABABBA Zkrr ,,,

(at the end of the i-th bootstrapping)

Delete )( Aii IDKK AND

],[

),(

BAK

Bk

rrMAC

rE

AB

AB

],[

,

BK rACKMAC

ACK

AB

A
( j )

B
( i )

)(),...,(

,

,,,,,

1 BmBi

i

CABB

IDKIDK

K

KPQICq

Figure 2. Key bootstrapping phase

Both nodes will possess, among others, theith genera-
tion key or an instance of that key: Ifj = i, thenKj = Ki

and both nodes will possess the keyKi. Otherwise, ifj < i,
the node of the preceding generationA(j) will not possess
the keyKi of the ith generation. Instead, it will have al-
ready been pre-deployed with the instanceKi(IDA) of the
ith generation keyKi.

The nodeB(i) initiates key establishment, by choosing a
random nonceNB and broadcasting this along with its Im-
plicit CertificateICB . For the initial authentication of the

key establishment, the nodeB also broadcasts a Message
Authentication Code (MAC) of the above values, generated
with the initial authentication keyK. The neighboring node
A receives and verifies the MAC and if the verification suc-
ceeds, it chooses a random numberrA, which will be used
in the randomization of the ECDH key exchange.

In order to protect the random value from eavesdrop-
pers, the nodeA will generate a temporary keȳkAB and
encryptrA with that key. The temporary keȳkAB is gener-
ated as follows. If both nodes belong to the same generation
(j = i) then both nodes possess the generation keyKi. In
that case, both nodes can generate the keyKi(IDA). If A
is a node of a previous generation(j < i), then the node
A will have been pre-deployed with the keyKi(IDA). In
both cases, from the keyKi(IDA), the nodeA can com-
pute the temporary key as̄kAB = fKi(IDA)[IDB ]. Then,
the nodeA sends the encryptionEk̄AB

[rA] to B, along with
its Implicit CertificateICA and a MAC onICA, rA, NB

generated with the keyKi(IDA).
On receiving this message, the nodeB computes the

key Ki(IDA), by using its generation keyKi. Then,B
checks the received MAC and if it verifies correctly, the
nodeB computes the temporary keȳkAB by using the al-
ready computed keyKi(IDA). The nodeB will then de-
crypt Ek̄AB

[rA] and obtainrA. The nodeB also chooses a
random valuerB that will be used in the pairwise key es-
tablishment and encrypts it with the temporary keyk̄AB .

At this time, the nodeB will use the received Implicit
CertificateICA and the public keyQCA of theCA, in order
to compute the public key of nodeA asQA = GA + eA ×
QCA. Observe that at this pointB cannot yet establish that
QA is authentic: as soon asA proves knowledge ofqA, the
nodeB will have implicit [13] assurance that it is talking
to A and that all information included in the certificate is
genuine (i.e. signed by theCA).

The nodeB computes the static pair keyZAB =
qB × QA. The final pairwise keyKAB is computed
by applying a key derivation functionkdf over ZAB and
SharedInfo, where2 SharedInfo = rA, rB . Thus,
KAB = kdf(ZAB , SharedInfo). The functionkdf is
implemented through an one-way cryptographic hash func-
tion, such as SHA-1. Then, the nodeB computes a MAC
onrA, rB with the pairwise keyKAB and sendsEk̄AB

[rB ],
MACKAB [rA, rB ] to the nodeA. The MAC will provide
key confirmation to nodeA, since it will prove that the cor-
responding secret keyqB was used.

The nodeA decryptsEk̄AB
[rB ] and obtainsrB . Then,

the nodeA will use the Implicit CertificateICB and the
public keyQCA, in order to compute the public key of node
B asQB = GB + eB × QCA. At this point nodeA is not
assured about the authenticity ofQB . The authenticity of

2In standardECDH [3], SharedInfo is an optional string including
some mutually known private information (specified assuppPrivInfo).

4



this key will be assured only after nodeA establishesB’s
knowledge of the corresponding secret keyqB .

The nodeA computes the static pair keyZAB = qA ×
QB . The pairwise key is again computed asKAB =
kdf(ZAB , SharedInfo), whereSharedInfo = rA, rB .
Now the nodeA will verify the received MAC in order to
confirm that the appropriate secret key of nodeB was used
in the computation ofKAB .

In order to provide key confirmation regarding its own
secret keyqA, the nodeA will also compute a MAC with
the keyKAB and send it to nodeB. After this verification,
both nodes will delete the random valuesrA, rB , the tempo-
rary keyk̄AB and the static keyZAB . The nodes will then
use the pairwise keyKAB for the actual communication.
Note that from the keyKAB the two nodes can derive two
different keys, one for encryption and one for authentication
[3]. For key freshness, the nodes can periodically update the
pairwise key with an one-way hash function. The time in-
terval between subsequent renewals may depend on the data
traffic volume, as well as on the strength of the underlying
cryptographic primitives.

At the end of theith bootstrapping phase and after the
nodes have performed a key establishment with each of their
neighbors, they will delete the generation keyKi and/or the
keysKi(IDA), Ki(IDB) they possess. In the next boot-
strapping phase the nodeA (respectivelyB) will use its
secret static keyqA (resp. qB) as well as its instance of
the next generation’s keyKi+1(IDA) (resp.Ki+1(IDB))
in order to participate in the bootstrapping phase with the
nodes of the generationi + 1.

3 Security Analysis

The proposed protocol extends standard ECDH key
agreement [3], by randomizing the key generation in order
to protect from known-key security attacks. Our protocol
is hybrid. Its “symmetric” part is a four-pass challenge-
response variation of AKEP2 [1] to support authenticated
key agreement with explicit key confirmation using initial
trust between sensors nodes. During bootstrapping sensor
nodes use this initial trust to exchange randomness, which
will be used together with the static ECDH key, as an in-
put to a key derivation function. The “symmetric” part of
the proposed protocol can be proven secure by using the
models and techniques described in [1]. We make use of
random nonces for message freshness, symmetric encryp-
tion for data confidentiality and MACs for data integrity.
We assume that the underlying primitives are secure.

The “public” part of the protocol involves the standard
ECDH key agreement [3] combined with implicit certifi-
cates for mutual authentication. The authenticity of the im-
plicit certificates is based on EC-Schnorr [12] signatures,
which are provably secure under therandom oraclemodel

given that the discrete logarithm problem over a subgroup
< G > is untractable [2].

3.1 Known-key security

By using a private off-line interface between each sensor
node and theCA, during the pre-deployment phase, both
active and passive attacks against the key generation process
(such as unknown key share attacks and small subgroup at-
tacks [10]) are thwarted, provided that theCA is honest and
takes all reasonable measures in the key generation process.

In the following, we examine the security of the key
establishment and consequently the secrecy and integrity of
the exchanged communication between two nodes against
key compromisation by an active adversary who also
eavesdrops on communication channels. Clearly, if botha)
the generation keyKi (or the instanceKi(IDA) used in the
temporary key generation) andb) the secret keyqA of node
A are compromised, then the generated pairwise keyKAB

is compromised. Moreover, if the adversary has recorded
all previous communication of nodeA, then the adversary
will be able to compute all former pairwise keys of that
node. We will examine the security of the exchanged keys
in the cases where either the generation key or the static
secret key of a node is compromised.

Security against compromisation of the generation
key. If a generation keyKi, is compromised, then all the
temporary keys̄kAB = fKi(IDA)[IDB ] between any pair
of nodesA andB will be compromised, and consequently
the random valuesrA andrB will be revealed. However,
the pairwise key also relies on the static ECDH keyZAB .
Note that the static pairwise keyZAB is generated only
once during the key establishment phase between the two
nodes and after the key establishmentZAB is deleted. The
key ZAB is never used for encryption, thus even if the
adversary has recorded previous communication, cannot
obtain ciphertexts with that key to cryptanalyse and obtain
the static ECDH key. The best the adversary can do is
to attempt to obtain the keyKAB = kdf(Z, rA, rB) for
random valuesZ. Furthermore, the nodeA participates
in key establishment with any other node only once. Thus
the adversary will not be able to cryptanalyse ciphertexts
produced with keys of the formKAB = kdf(ZAB , rA, rB),
K ′

AB = kdf(ZAB , r′A, r′B), ..., for known random values
with the same static keyZAB and in this way obtain
ZAB . Consequently, the adversary will not be able to
obtain the pairwise keyKAB , provided that the length of
the static keyZAB is sufficiently large and that the static
secret EC keys of the two nodesA andB have not been
compromised. This implies that our protocol can resist
compromisation of the generation-wide key, since this
will not automatically compromise the keys established

5



by nodes of this generation. Of course, by preserving the
secrecy of the generation-wide key (as assumed in [5, 14]),
the security of the protocol is further increased, since one
would also have to obtain the random values exchanged by
the nodes in the key establishment.

Security against compromisation of the static secret key.
If only the static keyqA of a nodeA is compromised, while
the generation keyKi is secure, then the adversary will
be able to obtain any static pairwise key of that node, say
ZAB . However, the adversary will not be able to obtain the
random valuesrA, rB used in the key derivation process,
provided that the random values are sufficiently large. Thus
the pairwise keyKAB cannot be obtained, provided that the
random noncesrA andrB are sufficiently large to withstand
cryptanalytic attacks againstKAB = kdf(ZAB , rA, rB).

Forward secrecy (per node).Stealing the keys of a node
at a given time does not reveal past communications of the
attacked node. Indeed, the computation of a session key
KAB is based on both the static ECDH keyZAB and the
random valuesrA, rB . Thus, even if the static ECDH key is
revealed, the past session keys cannot be computed without
knowledge of the particular random values used for each
past session key. Recall that at the end of the bootstrapping
phase, both nodes delete the random valuesrA, rB , as well
as the temporary encrypting keysKi(IDA), k̄AB which are
used to exchangerA andrB . Thus all past communications
of the compromised node are secure.

Forward and backward secrecy (per generation).Steal-
ing all the keys of a node (including the generation-wide
key) does not compromise past or future communications
of any other node of the same generation. Computation
of a session key for each pair of nodes relies on both the
generation-wide key and the static secret key of each par-
ticular node. Thus, the compromization of the generation-
wide key will not reveal past of future communication keys
of any other node belonging to the same node generation.
Obviously, this also holds for nodes belonging to different
node generations.

3.2 Node authentication

Security against impersonation attacks. To prevent
impersonation attacks we make use of implicit certifi-
cates [13]. During the bootstrapping phase, the nodeA uses
the implicit certificate ofB and the public key of theCA to
reconstruct the public keyQB of nodeB. At the end of the
bootstrapping phase, whenB uses its private keyqB for the
construction of the ECDH keyKAB and returns a MAC
created withKAB , the nodeA will have implicit assurance
that it is talking toB and that all information included in

the certificate is genuine (i.e. signed by theCA).

Security against fake generation attacks.A compromised
node cannot present itself as a node of an earlier or future
generation. Each node’s generation is included in its im-
plicit certificate. If fake generation informationj′ is in-
jected inICA for a corrupted nodeA(j), then in step 11
(see figure 2) nodeB will construct an incorrect public key
Q′A and key confirmation will fail in step 16.

4 Performance Evaluation

We evaluate the performance of the proposed protocol
in terms of computation and communication cost, as well
as the storage requirements regarding the pre-deployed EC
and symmetric keys required.

Computational complexity. In order to produce com-
parable results with related work, we use the metrics
of [8] regarding the costs of each cryptographic action.
Their computations were performed on Mitsubishi’s 16-bit
single-chip microprocessors M16C with 10MHz clock.
The costs per action are shown in Figure 3. For symmetric
encryption/decryption the AES block cipher in CBC mode
is assumed, for text blocks of 256-bit length. AES can also
be used for the construction of the keyed-hash function.
The keyed-hash function is used both for the computa-
tion/verification of MACs, as well as for the computation
of the symmetric keys (i.e. the functionf used in the pro-
tocol.) The SHA-1 algorithm is used for the evaluation of
hash values, for the generation of random values and as the
key derivation functionkdf . The computation evaluation of
our protocol shows a total cost per node of about 645 msec.
This cost is about 20% lower than the cost of the hybrid
protocol of [8] (760 msec) computed with the same metrics.

Number of actions per nodeCryptographic Action Cost/action 

(msec) Node A Node B 

Scalar multiplication 

(random point) 
480 1 1 

Scalar multiplication 

(fixed point) 
130 1 1 

EC addition 3 1 1 

Symmetric

Encryption / Decryption 
3 2 2 

Key Hash Function 

evaluation
3 5 6 

Hash Function 

Evaluation
2 2 2 

Random number 

evaluation
2 1 2 

Total Computation 

Cost per node 
 640 645 

Figure 3. Computational Costs per Node

6



Communication complexity. The proposed protocol
requires a total of 4 message exchanges for key estab-
lishment, including the protocol initiation, exchange of
randomness, exchange of MACs and key confirmation.
Assuming a node ID is 64 bits, a generation ID is 8 bits,
the Elliptic Curve modulus is 160 bits, the cipher-blocks
and MACs are 128 bits, and the random nonces are 64 bits,
then the communication cost of the protocol is 1488 bits or
186 bytes, almost equal to the 180 bytes required in [8].

Storage requirements. Assuming that the nodes are pre-
deployed with keys that allow communication with nodes
of k generations (including their own generation), then the
total storage requirements during key pre-deployment are
1032 + k ∗ 128 bits. For example, for a network of five
node generations, each node is pre-deployed with 1544 bits
or 193 bytes. Our protocol is scalable: for a fixed number
of generations, the per-node storage and energy resources
do not limit the size of the network.

5 Concluding Remarks

In this paper we propose a hybrid key establishment pro-
tocol, suitable for uniform self-organized sensor networks.
The proposed protocol is based on the standard ECDH key
establishment protocol. In order to minimize the cost of
scalar multiplications, the protocol uses a temporary en-
crypted channel to protect the randomization of the estab-
lished pairwise keys. To eliminate the costs of key gener-
ation for the sensor nodes, we use an off-line trusted Cer-
tification Authority CA, which is responsible to generate
and pre-deploy the keys and certificates in a secure way.
The authenticity of the EC keys of sensor nodes is based
on implicit certificates, which are signed by theCA with
EC-Schnorr signatures. Knowledge of the secret EC keys is
implicitly confirmed during the key establishment.

The protocol is more secure to known-key security at-
tacks than symmetric-key based protocols [14, 5] since it
does not assume protection of the nodes during the key
bootstrapping periods. The protocol provides forward se-
crecy per node and per generation. Moreover, corrupted
or captured nodes cannot perform impersonation, sybil or
fake generation attacks to any node, other than the corrupted
one. The proposed protocol improves on the hybrid pro-
tocol of [8], since it supports multiphase node deployment
and does not require the existence of full-functional devices.
The computation, cost per node for a key establishment is
slightly less than the protocol of [8], while the communica-
tion and storage costs are comparable.

References

[1] M. Bellare, and P. Rogaway. Entity Authentication and
Key Distribution. Proc. of Crypto ’93, LNCS Vol. 773,
Springer-Verlag, pp. 232-249, 1994.

[2] D. R. L. Brown, R. P. Gallant, and S. A. Vanstone.
Provably Secure Implicit Certificate Schemes. Proc. of
FC’02, LNCS, Vol. 2339, pp. 156–165, 2002.

[3] Certicom Research, Standard for efficient cryptogra-
phy, SEC 1: EC Cryptography. Ver. 1.0, 2000.

[4] H. Chan and A. Perrig. Security and Privacy in Sensor
Networks. In: IEEE Computer, Vol. 36(10), pp. 103-
105, October 2003.

[5] B. Dutertre, S. Cheung, and J. Levy. Lightweight Key
Management in Wireless Sensor Networks by Leverag-
ing Initial Trust. TR SRI-SDL-04-02, April 2004.

[6] L. Eschenauer, and V. D. Gligor. A key-management
scheme for distributed sensor networks. Proc. of 9th
CCS ACM conference, pp.41-47, 2002.

[7] G. Gaubatz, J. P. Kaps, and B. Sunar. Public key cryp-
tography in sensor networks –revisited. Proc. of 1st
ESAS Conference, 2004.

[8] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J.
Zhang. Fast authenticated key establishment protocols
for self-organizing sensor networks. Proc. of 2nd ACM
WSNA Conference, pp.141-150, 2003.

[9] J. M.Kahn, R. H. Katz, and K.S.J. Pister. Mobile
Networking for Smart Dust. Proc. of Mobicom’99,
ACM/IEEE, Seattle, WA, August 1999.

[10] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Van-
stone. An Efficient Protocol for Authenticated Key
Agreement. In: Designs, Codes and Cryptography, Vol.
28(2), pp. 119–134, March 1998.

[11] D. Malan, M. Welsh, and M. Smith. A Public-Key In-
frastructure for Key Distribution in TinyOS Based on
Elliptic Curve Cryptography. Proc. of 1st SACN Con-
ference, IEEE, 2004. 2003.

[12] C. Schnorr. Efficient Signature Generation by Smart
Cards. In: Journal of Cryptology, Vol. 4 (1991), pp.
161-174.

[13] R. Struik, and G. Rasor. Mandatory ECC Security Al-
gorithm Suite. Submissions to IEEE p802.15 Wireless
Personal Networks, April 2002.

[14] S. Zhu, S. Setia and S. Jajodia. LEAP: Efficient Se-
curity Mechanisms for Large-Scale Distributed Sensor
Networks. Proc. of CCS’03, ACM, October 2003.

7


