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Abstract We present a simple and fast geometric method

for modeling data by a union of affine subspaces. The

method begins by forming a collection of local best-fit affine

subspaces, i.e., subspaces approximating the data in local

neighborhoods. The correct sizes of the local neighborhoods

are determined automatically by the Jones’ β2 numbers (we

prove under certain geometric conditions that our method

finds the optimal local neighborhoods). The collection of

subspaces is further processed by a greedy selection pro-

cedure or a spectral method to generate the final model. We

discuss applications to tracking-based motion segmentation

and clustering of faces under different illuminating condi-

tions. We give extensive experimental evidence demonstrat-

ing the state of the art accuracy and speed of the suggested

algorithms on these problems and also on synthetic hybrid

linear data as well as the MNIST handwritten digits data;

and we demonstrate how to use our algorithms for fast de-

termination of the number of affine subspaces.
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1 Introduction

Several problems from computer vision, such as motion seg-

mentation and face clustering, give rise to modeling data

by multiple subspaces. This is referred to as Hybrid Lin-

ear Modeling (HLM) or alternatively as “subspace cluster-

ing”. In tracking-based motion segmentation, extracted fea-

ture points (tracked in all frames) are clustered according to

the different moving objects. Under the affine camera model,

the vectors of coordinates of feature points corresponding

to a moving rigid object lie on an affine subspace of di-

mension at most 3 (see Costeira and Kanade 1998). Thus

clustering different moving objects is equivalent to cluster-

ing different affine subspaces. Similarly, in face clustering,

it has been proved that the set of all images of a Lambertian

object under a variety of lighting conditions form a convex

polyhedral cone in the image space, and this cone can be ac-

curately approximated by a low-dimensional linear subspace

(of dimension at most 9) (Epstein et al. 1995; Ho et al. 2003;

Basri and Jacobs 2003). One may thus cluster certain images

of faces by HLM algorithms.

The mathematical formulation of HLM assumes a data

set X = {xi}Ni=1 ⊆ R
D where each xi lies on (or around) one

of K flats (i.e., affine subspaces) and requires to find the par-

tition of X corresponding to the flats. We would like to be

able to do this when the data has been corrupted by additive

noise and outliers;1 in this case we may also want to deter-

mine the flats themselves. We first assume here that all flats

1Throughout the paper outliers are corrupted data points, i.e., points

generated by a distribution, which assigns sufficiently small probabil-
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have the same known dimension d (i.e., they are d-flats) and

that their number K is known. In Sect. 3 we address to some

extent the cases of unknown K and mixed dimensions.

Several algorithms have been suggested for solving

the HLM problem (or even the more general problem of

clustering manifolds), for example the K-flats (KF) algo-

rithm or any of its variants (Tipping and Bishop 1999;

Bradley and Mangasarian 2000; Tseng 2000; Ho et al. 2003;

Zhang et al. 2009), methods based on direct matrix fac-

torization (Boult and Brown 1991; Costeira and Kanade

1998; Kanatani 2001; Kanatani 2002), Generalized Princi-

pal Component Analysis (GPCA) (Vidal et al. 2005), Lo-

cal Subspace Affinity (LSA) (Yan and Pollefeys 2006),

RANSAC (for HLM) (Yang et al. 2006), Locally Linear

Manifold Clustering (LLMC) (Goh and Vidal 2007), Ag-

glomerative Lossy Compression (ALC) (Ma et al. 2007),

Spectral Curvature Clustering (SCC) (Chen and Lerman

2009) and Sparse Subspace Clustering (SSC) (Elhamifar

and Vidal 2009). Some theoretical guarantees for particu-

lar HLM algorithms appear in Chen and Lerman (2009),

Arias-Castro et al. (2011), Lerman and Zhang (2011) and

Soltanolkotabi and Candès (2011). We recommend a recent

review on HLM by Vidal (2011).

Many of the algorithms described above require an ini-

tial guess of the subspaces. For example, the K-flats algo-

rithm is an iterative method that requires an initialization,

and in SCC, one needs to carefully choose collections of

d + 1 data points that lie close to each of the underlying d-

flats. Other algorithms require some information about the

suspected deviations from the hybrid linear model; for ex-

ample both RANSAC (for HLM) and ALC ask for a model

parameter corresponding to the level of noise.

Here we propose a straightforward geometric method for

the estimation of local subspaces, which is inspired by Jones

(1990), David and Semmes (1991) and Lerman (2003) as

well as Fukunaga and Olsen (1971) and Little et al. (2009a,

2009b). These local subspace estimates can be used to set

the model parameters for or initialize an HLM algorithm.

The basic idea is that for a data set X sampled from a hy-

brid linear model (perhaps with some noise), there are many

points x such that the principal components of an appropri-

ately sized neighborhood of x give a good approximation to

the subspace x belongs to. Using local subspaces to infer the

global hybrid linear model was suggested in Yan and Polle-

feys (2006) for linear subspaces; however, there they use

very small neighborhoods that are not adaptive to the struc-

ture of the data (e.g., amount of noise etc.). An “appropri-

ately sized neighborhood” needs to be larger than the noise,

so that the subspace is recognized. However, the neighbor-

hood cannot be so large that it contains points from mul-

tiple subspaces. The correct choice of this size is carefully

ity for small neighborhoods around the underlying subspaces. This is

different than corrupting selected entries of data points.

quantified in Sect. 2.1. We refer to such “appropriately sized

neighborhoods” as “optimal neighborhoods”.

In addition to studying how to estimate local subspaces,

we describe two complete HLM algorithms which are nat-

ural extensions of the local estimation: LBF (Local Best-fit

Flat) and SLBF (spectral LBF). On many data sets, the first

obtains state of the art speed with nearly state of the art ac-

curacy (it can also deal with very large data), and the sec-

ond obtains state of the art accuracy (SLBF) with reason-

able run times (it seems to be able to deal to some extent

with some nonlinear structures as the ones arising in motion

segmentation data). We remark that we test accuracy in var-

ious scenarios, but in particular, with intersecting subspaces

and with outliers. While in this work we only theoretically

justify our choice of “optimal” neighborhoods, we are hope-

ful about developing a more complete theory justifying our

algorithms.

In particular, we believe that such a theory can be valid in

the setting suggested by Soltanolkotabi and Candès (2011)

for analyzing the SSC algorithm, while having additional

noise and restricting the fraction of outliers (or modifying

our algorithms so they are even more robust to outliers). We

are also interested in rigorously quantifying the limitations

of our algorithms (as conjectured in Sect. 4).

We summarize the main contributions of this work,

which is the full length version of Zhang et al. (2010), as

follows.

• We make precise the local best-fit heuristic, using the β2

numbers (Jones 1990; David and Semmes 1991; Lerman

2003). We give an algorithm to approximately find opti-

mal neighborhoods in the above sense, in fact, we prove

this under certain geometric conditions.

• Using the local best-fit heuristic, we introduce the LBF

and SLBF algorithms for HLM. At each point of a ran-

domly chosen subset of the data, they use the best-fit flats

of the “optimal” neighborhoods to build a global model

with different methods (LBF is based on energy mini-

mization and SLBF is a spectral method).

• We perform extensive experiments on motion segmenta-

tion data (the Hopkins 155 benchmark of Tron and Vidal

(2007)), face clustering (the extended Yale face database

B), handwritten digits (the MNIST database), and arti-

ficial data, showing that both algorithms, in particular

SLBF, are accurate on real and synthetic HLM problems,

while LBF runs extremely fast (often on the order of ten

times faster than most of the previously mentioned meth-

ods). For the cropped face data we actually indicate a fun-

damental problem of local methods like LBF and SLBF,

though suggest a workaround that works for this particu-

lar data.

• We demonstrate how the local best-fit heuristic can be

used with other algorithms. In particular, we give experi-

mental evidence to show that the K-flats algorithm (Ho
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et al. 2003) is improved by initialization that is based

on the local best-fit heuristic. We also use this heuristic

to estimate the main parameters of both RANSAC (for

HLM) (Yang et al. 2006) and ALC (Ma et al. 2007).

• We show how the combination of LBF and the elbow

method can quickly determine the number of subspaces.

The rest of this paper is organized as follows. In Sect. 2

we describe the LBF and SLBF algorithms and state a the-

orem giving conditions that guarantee that good neighbor-

hoods can be found. Section 3 carefully tests the LBF and

SLBF algorithms (while comparing them to other common

HLM algorithms) on both artificial data of synthetic hybrid

linear models and real data of motion segmentation in video

sequences, face clustering and handwritten digits recogni-

tion. It also demonstrates how to determine the number of

clusters by applying the fast algorithm of this paper together

with the straightforward elbow method. Section 4 concludes

with a brief discussion and mentions possibilities for future

work.

2 The Local Best-Fit Flats Heuristic and the LBF and

SLBF Algorithms

We describe two methods, LBF and SLBF, which have at

their heart an estimation of local flats capturing the global

structures of the data (or part of it). Both methods first find

a set of candidate flats (the number is an input parameter for

LBF). These are best-fit flats for local “optimal” neighbor-

hoods (we describe an algorithm for approximately finding

such neighborhoods and justify it in Sect. 2.1). The two al-

gorithms process the candidates in different ways: LBF uses

energy minimization and SLBF uses a spectral approach.

2.1 Choosing the Optimal Neighborhood

We choose the candidate flats that capture the global struc-

ture of the data by fitting them to ‘optimal’ local neighbor-

hoods of data points. For a point x ∈ R
D , we define an op-

timal neighborhood as the largest ball B(x, r) (centered at

x and with radius r) that only contains points sampled from

the same cluster as x. Indeed, neighborhoods smaller than

the optimal one (around x) can mainly contain the noise

around an underlying subspace (of the hybrid linear model);

consequently their local best-fit flats may not match the un-

derlying flat. On the other hand larger neighborhood than

the optimal one (around x) will contain points from more

than one underlying flat, and the resulting best-fit flat will

again not match any of the underlying flats. We note that the

choice of neighborhood B(x, r) is equivalent to the choice

of radius r , which we refer to as scale (even though it is

also common to refer to log(r) or − log(r) as scale). While

it is possible to take a guess at the optimal scale as a pa-

rameter (e.g., as commonly done by fixing the number of

nearest neighbors to x), we have found that it is possible

to choose the optimal scale reasonably well automatically,

while adapting it to the given point x.

We will start at the smallest scale (i.e., smallest radius

containing only d + 1 points) and look at larger and larger

neighborhoods of a given point x0. At the smallest scale,

any noise may cause the local neighborhood to have higher

dimension than d . As we add points to the neighborhood, it

becomes better and better approximated in a scale-invariant

sense (e.g., by scaling the neighborhood to have radius 1 and

computing the error of approximation by best-fit flat then)

until points belonging to other flats enter the neighborhood.

To be more precise, we define the scale-invariant error for a

neighborhood N ≡ B(x0, r) of x0 by the formula:

β2(N ) =
mind-flats L

√

∑

y∈N ‖y − PLy‖2/|N |
maxx∈N ‖x − x0‖

, (1)

where |N | denotes the number of points in N , PL denotes

the projection onto the flat L and the minimization is over

all d-flats in R
D . We note that the numerator is the approx-

imation error by best-fit ℓ2 flat at scale r and the denomi-

nator is the scale r . The notion of scale-invariant error was

introduced and utilized in Jones (1990), David and Semmes

(1991) and Lerman (2003).

Using this scale-invariant error we can reformulate our

criterion for choosing the optimal neighborhood more pre-

cisely. That is, we start with the smallest neighborhood con-

taining S nearest neighbors of x, increase the number of

nearest neighbors by T in each iteration and check the β2

number of each neighborhood using (1). We estimate the op-

timal neighborhood as the last one for which β2 is smaller

than β2 of the previous neighborhood (that is, we search for

the first local minimizer of β2(N )). This procedure is sum-

marized in Algorithm 1. It is experimentally robust to out-

liers if x is an inlier, since the nearest neighbors of inliers

also tend to be inliers.

Algorithm 1 Neighborhood size selection for HLM by ran-

domized local best-fit flats

Input: X = {x1,x2, . . . ,xN } ⊆ R
D : data, x: a point in X, S:

start size, T : step size

Output: N (x): a neighborhood of x.

Steps:

• k = −1

repeat

• k := k + 1

• Let Nk be the set of the S + kT nearest points in X

to x

• Compute β2(k) := β2(Nk) according to (1)

until k > 1 and β2(k − 1) < min{β2(k − 2), β2(k)}
• Output N (x) := Nk−1



220 Int J Comput Vis (2012) 100:217–240

2.1.1 Theoretical Justification

The following theorem tries to justify our strategy of es-

timating the optimal scale around each point by showing

that in the continuous setting the first local minimizer of

β2(x, r) := β2(B(x, r)) is approximately the distance from

x to the nearest cluster that does not contain x (here the un-

derlying model is a mixture of Lebesgue measures in strips

around several subspaces and x is an arbitrary point on one

of these subspaces). Therefore, if we choose the size of

neighborhood following Algorithm 1 (adapted to the contin-

uous setting), then we will approximately obtain the optimal

neighborhood. It is rather standard to extend such estimates

for measures to a probabilistic setting, where i.i.d. data is

sampled from the continuous distribution. The theorem will

then hold with high probability for sufficiently large sample

size (due to technicalities, which also require truncating the

support of our continuous measure we avoid these details).

The proof of this theorem is in Appendix A.

Our theorem uses the following analog of the discrete β2

of (1) for a measure μ and a ball B(x, r) (see also Lerman

2003):

β2(x, r)

= 1

r
min

d-flatsL⊆RD

√

∫

B(x,r)

dist(x,L)2 dμ/μ(B(x, r)), (2)

where throughout the paper dist(·, ·) denotes the Euclidean

distance, for example in this case dist(x,L) := ‖x − PLx‖.

The theorem also assumes that the underlying measure is

supported on a union of K tubes T (Li,wi) := {x ∈ R
D :

‖x−PLi
x‖ < wi}, i = 1, . . . ,K (centered around the d-flats

L1, . . . ,LK respectively).

Theorem 1 Let K ≥ 2, d < D, {Li}Ki=1 be K d-flats in R
D ,

{μi}Ki=1 be K Lebesgue measures on tubes {T (Li,w)}Ki=1 ⊂
R

D respectively and let μ =
∑K

i=1 μi . For fixed 1 ≤ i∗ ≤ K

and fixed x∗ ∈ Li∗ , let

r0 = r0(x
∗) = dist

(

x∗,
⋃

i 
=i∗
T (Li,w)

)

. (3)

If w < r0, then β2(x
∗, r) (as a function of r) is constant

on [0,w] and decreases on [w, r0]. If also

w

r0
<

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
(

0.02,
√

(D+1)

150
√

2(D−1)K

)

, when d = 1;

min
(

0.02,

√

(D−d+2)

6(50)
d
2 (D−d)K

)

, when d > 1,
(4)

then there exists r0 < r∗ < 1.09 r0 such that

β2

(

x∗, r∗) > β2

(

x∗, r0

)

. (5)

That is, the first local minimum of β2(x
∗, r) (as a function

of r) occurs in (r0,1.09 r0).

The proof of this theorem indicates a weaker condition

than (4), which is less intuitive. It also shows that r∗ → r0 as

w/r0 → 0 and clarifies by example why the first local mini-

mum of β2(x
∗, r0) is often bigger than r0 (see Remark 1).

2.1.2 The Complexity of Algorithm 1

Algorithm 1 requires sorting the neighbors of x according

to their distance to x; the computational cost of this prepro-

cessing step is O(D · N + N · logN). In order to obtain

β2(Nk), we need to obtain the top d singular values of the

|Nk| × D data matrix representing the |Nk| points, which

requires a complexity of O(d · D · |Nk|). To find N (x),

we need to generate β2(Nk) for any |Nk| = S + kT , where

k = 1,2, . . . , (N − S)/T , hence the complexity for obtain-

ing N (x) is of order:

O

(

d · D ·
(N−S)/T

∑

k=1

(S + kT )

)

≤ O
(

d · D · N2/2T
)

.

We thus note that if T is in the order of N , e.g., T =
max(N/300,2), the total complexity of Algorithm 1 is

O((d · D + logN) · N). Note that if we limit the number

of scales that we search, then the two log terms above can

be replaced by a constant.

2.2 The LBF Algorithm

The LBF algorithm searches for a good set of flats from the

candidates (described above) in a greedy fashion. A mea-

sure G of goodness of K flats is chosen; here, it will be the

average distance of points to their nearest flats, i.e.,

G = GX

(

{L1, . . . ,LK}
)

=
∑

x∈X

dist

(

x,

K
⋃

i=1

Li

)

. (6)

After randomly initializing K flats from the list of candi-

dates, p passes are made through the data points. In each of

the passes, we replace a random current flat with the candi-

date that minimizers the value of G. We then move to the

next pass, picking a random flat, etc. Algorithm 2 sketches

this procedure (where the greedy minimization of G is de-

scribed in step 2).

The simplest choice of G is the sum of the squared dis-

tances of each point in X to its nearest flat, i.e., having the

power 2 in (6). However, in some scenarios the l1 energy

of (6) is more robust to outliers than the mean squared error

(see Lerman and Zhang (2011, 2012) for theoretical sup-

port and Zhang et al. (2009) for experimental support). This

method also allows using energy functions, which are hard
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Algorithm 2 LBF: energy minimization over randomized

local best-fit flats

Input: X = {x1,x2, . . . ,xN } ⊆ R
D : data, d : dimension of

subspaces, C: number of candidate planes, K : number of

output flats/clusters, p: number of passes, S and T : pa-

rameters for local scale calculation.

Output: A partition of X into K disjoint clusters {Xi}Ki=1,

each approximated by a d-dimensional flat.

Steps:

1. Pick C random points in X

2. For each of the C points find appropriate local scale

using Algorithm 1

3. Generate a set L containing C candidate flats

L1, . . . ,LC from the best fit flats to the neighbor-

hoods from the previous step

4. Pick a random subset of K flats L̂ ⊂ L

5. for j = 1 to p do

• Pick a random flat L∗ ∈ L̂, and find L̂ =
argminL∈L GX({L̂ \ {L∗}} ∪ {L})

• Update L̂ = {L̂ \ {L∗}} ∪ {L̂}
6. end for

7. Partition X by sending points to nearest flats in L̂

to minimize (even heuristically). Indeed, it only requires

evaluating the energy on the candidate configurations. For

example, when the data set requires stronger robustness to

outliers, one may use the following energy:

G′ = G′
X

(

{L1, . . . ,LK}
)

= Median
x∈X

dist

(

x,

K
⋃

i=1

Li

)

.

The LBF algorithm is closely related to RANSAC, since

both of them use candidate subspaces to fit the data set.

However Algorithm 1 gives LBF an advantage in choosing

good candidates, while RANSAC fits a d-flat by arbitrarily

chosen d + 1 points.

2.2.1 The Complexity and Storage of Algorithm 2

For step 2 of this algorithm we need to run Algorithm 1

C times and thus its complexity is of order O((d · D +
logN) ·C ·N). Note that the logN comes from a full sort of

N distances, and if we restrict to a fixed number of scales,

this can be replaced by a constant. Step 3 of Algorithm 2,

requires C SVD decompositions for C matrices of size at

most N × D, in order to obtain the first d vectors in R
D . It

thus also has a complexity at most O(C · d · D · N).

Step 2 of Algorithm 2 requires the evaluation of the

N × C matrix representing the distances ‖xi − PLj
xi‖ be-

tween X = {x1, x2, . . . , xN } and L1,L1, . . . ,LC . This costs

O(C ·d ·D ·N) operations, since each distance from a point

to a subspace costs O(d · D). Moreover, the p passes have

complexity of order O(p · (C −K) ·N). Therefore, step 2 of

Algorithm 2 has a complexity of order O(C ·N ·(d ·D+p)).

At last, Step 7 of Algorithm 2 has a complexity of order

O(K · d · D · N), which comes from the construction of the

N × K matrix of distances from N points to K subspaces.

Combining these complexities together, we have an over-

all complexity of O(C · N · (d · D + p + logN)) for the

LBF Algorithm; as before, if we fix the number of scales

independently from N , the log terms can be replaced by a

constant.

To compute the storage requirements of LBF, we note

that the data set is saved in an N × D matrix, the candi-

date subspaces are organized in C projection matrices of size

D × d and in addition the algorithm stores an N × C ma-

trix of distances between the data points and the C candidate

subspaces. Therefore, the storage of LBF is in the order of

O(D · N + C · D · d + N · C).

2.3 The SLBF Algorithm

The SLBF algorithm (which is sketched in Algorithm 3)

processes the candidate subspaces via a spectral cluster-

ing method. It first finds the neighborhoods {Ni}Ni=1 for all

points {xi}Ni=1 via Algorithm 1 and fits d-flats {Li}Ni=1 (via

PCA) in these neighborhoods. It then forms the N × N ma-

trices S and Ŝ as follows:

Si,j =
√

dist(xi,Lj )dist(xj ,Li), (7)

and

Ŝi,j = exp
(

−Si,j/2σ 2
j

)

+ exp
(

−Si,j/2σ 2
i

)

, (8)

where

σj = λ

√

min
d-flats L

∑

x∈Nj

‖x − PLx‖2/|Nj | (9)

(we explain the choice of λ below, when we clarify (9)). Fi-

nally, it applies spectral clustering with the matrix Ŝ. More

precisely, SLBF follows the main algorithm of Ng et al.

(2001, Sect. 2), replacing the matrix A there by Ŝ, multi-

plying the unit eigenvectors of Step 3 (of Ng et al. (2001,

Sect. 2)) by the corresponding square roots of eigenvalues

and skipping step 4. We remark that the two last changes

to Ng et al. (2001, Sect. 2) are commonly used so that

the normalized similarity matrix (defined in step 4 of Al-

gorithm 3) can be considered as a Gram matrix, see e.g.,

Euclidean MDS (Cox and Cox 2001) and ISOMAP (Tenen-

baum 2000).

As discussed in Vidal (2011), SLBF is a “spectral

clustering-based method”, similar to SCC, LSA and SSC.

These algorithms construct an N ×N affinity matrix, whose

ij -th entry represents the similarity between points i and j ,
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Algorithm 3 SLBF: spectral clustering based on best-fit

flats

Input: X = {x1,x2, . . . ,xN } ⊆ R
D : data, λ: a parameter

(or several parameters if we use step 7, with default val-

ues [2,2e,2e2, . . . ,2e6]), other parameters used by Algo-

rithm 1.

Output: A partition of X into K disjoint clusters {Xi}Ki=1,

each approximated by a single flat.

Steps:

1. For each point xi , fit a subspace Li by Algorithm 1

2. Construct the N × N matrix S and Ŝ by (7), (8) and

(9)

3. Let D be the N ×N diagonal matrix, such that Di,i =
∑N

j=1 Ŝi,j

4. Normalize Ŝ as follows: Ŝ = D− 1
2 ŜD− 1

2

5. Let U be the N × K matrix whose columns are the

top K eigenvectors of Ŝ, and � be the K ×K matrix

representing the top K eigenvalues of Ŝ

6. Apply K-means to the rows of N ×K matrix U�
1/2

and partition X accordingly

7. Repeat steps 2–6 with the default values of λ (see in-

put) to obtain several segmentations and choose the

segmentation minimizing the error:

K
∑

i=1

min
d-flat L

(

∑

x∈Xi

dist2(x,Li)

)

(10)

and then apply spectral clustering using this affinity matrix.

Ideally, the affinities of points from the same cluster are of

order 1 and the affinities of points from different clusters

are of order 0. Indeed, for the affinity Ŝ of SLBF, if xi and

xj are in the same cluster, then we expect that xi is close

to Lj and xj is close to Li , which means Si,j is close to

0 and thus Ŝi,j is close to 1 (we assume here that Li and

Lj are good estimators for the underlying subspace of the

cluster shared by xi and xj as suggested by Theorem 1).

Otherwise, if xi and xj are not in the same cluster, then

we expect that xi is sufficiently far from Lj and xj is suf-

ficiently far from Li , which implies that Ŝi,j is close to 0.

The choice of σj clearly affects this heuristic argument on

the size of Ŝi,j . Theoretically σj should be larger than the

noise, such that Ŝi,j is close to 1 when xi and xj are in the

same cluster, but σj cannot be too large so that Ŝi,j is close

to 1 when xi and xj are not in the same cluster. Therefore

we use (9), where
√

mind-flats L

∑

x∈Nj
‖x − PLx‖2/|Nj | is

the estimated noise of the data set around the point xj and

λ is a parameter. Following the strategy in Chen and Ler-

man (2009), we choose different values of λ (our fixed de-

fault values are [2,2e,2e2, . . . ,2e6]) and consequently ob-

tain several segmentation results (7 results when using our

default values). We then choose the segmentation with the

smallest error in (10).

We remark that the robustness of SLBF to outliers can

be partly explained by the robustness of spectral-type meth-

ods to outliers. Furthermore, it is possible to initially remove

some outliers according to very small values of the corre-

sponding diagonal elements of D (see e.g., Chen and Ler-

man (2009), Arias-Castro et al. (2011)).

Similar to SLBF, LSA (Yan and Pollefeys 2006) is also

based on fitting local subspaces. However, LSA fits sub-

space by local neighborhoods of fixed number of points and

is not adaptive. Moreover, the local subspaces of LSA are

forced to be linear (since the affinity of LSA is based on

principal angles between such subspaces) and this further

restricts the applicability of LSA. There is also some sim-

ilarity between the idea of SLBF and that of SCC (Chen

and Lerman 2009). Indeed, we may view SCC as fitting

candidate subspaces based on d + 1 data points (the iter-

ative procedure tries to enforce the points to be from the

same cluster). However, in practice they operate very dif-

ferently, in particular, SCC is not based just on local in-

formation (though a local version of SCC follows from

Arias-Castro et al. (2011)). The SSC algorithm is also

a spectral method, but similar to SCC its affinities are

global (they are based on sparse representation of data

points).

2.3.1 Complexity and Storage of the SLBF Algorithm

Step 1 of Algorithm 3 has a complexity of order O((d ·D +
logN) · N2), since it applies Algorithm 1 to every point in

the set X. The most expensive calculation of steps 2–4 in

Algorithm 3 is the construction of S, which requires a com-

plexity of order O(d · D · N2). The eigenvalue decompo-

sition in step 5 has a complexity of order O(K · N2) and

the K-means algorithm in step 6 has a complexity of order

O(ns · N · K2), where ns is the iterations in K-means.

Combining these complexities together, we have an over-

all complexity of order O((d ·D + logN) ·N2 +ns ·N ·K2)

for SLBF. As before, limiting to a constant number of scales

replaces the log term with a constant.

We note that SLBF stores the data set in a D ×N matrix,

the candidate subspaces in N D × d matrices (recall that

in SLBF every data point is assigned a subspace and thus

C = N ) and it also uses the N × N matrix S. Therefore, the

storage of SLBF is in the order of O(N · D · d + N2).

2.4 Adaptation of the Proposed Algorithms to Motion

Segmentation Data

Note that the first minimum in the Theorem 1 excludes the

left endpoint, and thus k = 0 is excluded in Algorithm 1. In
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our experiments, we noticed that on data without too much

noise, it is useful to allow the first scale to count as a lo-

cal minimum and allow k = 0 in Algorithm 1. We refer to

the implementation of LBF and SLBF with those two tech-

niques tailored for motion segmentation data as LBF-MS

and SLBF-MS.

3 Experimental Results

In this section, we conduct experiments on artificial and real

data sets to verify the effectiveness of the proposed algo-

rithm in comparison to other HLM algorithms. We will see

that in many situations, the methods we propose are fast and

accurate; however, in Sect. 3.3 we will show a failure mode

of our method, and discuss how this can be corrected.

We measure the accuracy of those algorithms by the rate

of misclassified points with outliers excluded, that is

error% = # of misclassified inliers

# of total inliers
× 100 %. (11)

In all the experiments below, the number C in Algo-

rithm 2 is 70 · K , where K is the number of subspaces, the

number p in Algorithm 2 is 5 · K , and the numbers S and T

in Algorithm 1 are 2 ·d and 2 respectively, where d is the di-

mension of the subspace. According to our experience, LBF

and SLBF are very robust to changes in parameters, but un-

surprisingly, there is a general trade off between accuracy

(higher C, higher p, smaller T ), and run time (lower C,

lower p, larger T ). We have chosen these parameters for

a balance between run time and accuracy. Nevertheless, we

have insisted to use the same parameters for all data sets and

experiments, even though particular parameters could ob-

tain even better or near perfect results for some of the data

sets. The experiments in Sects. 3.1 and 3.2 run on a com-

puter with Intel Core 2 CPU at 2.66 GHz and 2 GB mem-

ory, and experiments in Sects. 3.3 and 3.4 run on a machine

with Intel Core 2 Quad Q6600 at 2.4 GHz and 8 GB mem-

ory.

3.1 Clustering Results on Artificial Data

We compare our algorithms with the following algorithms:

Mixtures of PPCA (MoPPCA) (Tipping and Bishop 1999),

K-flats (KF) (Ho et al. 2003), Local Subspace Analysis

(LSA) (Yan and Pollefeys 2006), Spectral Curvature Clus-

tering (SCC) (Chen and Lerman 2009), Random Sample

Consensus (RANSAC) for HLM (Yang et al. 2006), Ag-

glomerative Lossy Compression (ALC) (Ma et al. 2007)

and GPCA with voting/robust GPCA (GPCA) (Ma et al.

2008; Yang et al. 2006). Throughout the rest of the pa-

per, we use the Matlab codes of the GPCA, MoPPCA and

KF algorithms from http://perception.csl.uiuc.edu/gpca, the

LSA algorithm from http://www.vision.jhu.edu/db, the SCC

algorithm from http://www.math.umn.edu/~lerman/scc, the

ALC algorithm from http://perception.csl.uiuc.edu/coding/

motion/, the RANSAC algorithm from http://www.vision.

jhu.edu/code/ and the SSC algorithm from http://www.cis.

jhu.edu/~ehsan/ssc.htm.

For the SCC algorithm, we also try a slightly modified

version tailored for motion segmentation as in step 6 of Al-

gorithm 3, which we refer to as SCC-MS (SCC for motion

segmentation): Following the notation of Chen and Lerman

(2009, Algorithm 2) we let the matrix U be the N × K ma-

trix whose columns are the top K left singular vectors of

A∗
C and also denote by � the diagonal K ×K matrix whose

elements are the top K left singular values of A∗
C . Then the

K-means step of SCC-MS is applied directly to the rows of

the N ×K matrix U�
1/2 (as opposed to applying it to U (or

its row-wise normalization by 1) in SCC).

The MoPPCA algorithm is always initialized with a

random guess of the membership of the data points. The

LSCC algorithm is initialized by randomly picking 100×K

(d + 1)-tuples (following Chen and Lerman 2009) and KF

is initialized with a random guess. Since algorithms like KF

tend to converge to local minimum, we use 10 restarts for

MoPPCA, 30 restarts for KF, and recorded the misclassifi-

cation rate of the one with the smallest ℓ2 error for both of

these algorithms. The number of restarts was restricted by

the running time and accuracy. In SSC algorithm, we set the

value λ to be 0.01, as suggested in the code.

The RANSAC for HLM and ALC algorithms (Yang et al.

2006; Ma et al. 2007) depend on a user supplied inlier

threshold. RANSAC (oracle) and ALC (oracle) use the ora-

cle inlier bound given by the true noise variance of the model

and thus clearly have an advantage over the other algorithms

listed. RANSAC (ǫ from LBF) and ALC (ǫ from LBF) es-

timate the inlier threshold by the local best-fit flats heuristic

of this paper. That is, they fit best-fit neighborhoods for all

N points using the latter heuristic and estimate the least er-

ror of approximation by d-flats in these N neighborhoods.

The inlier bound ǫ is then the average of these errors. If

the number of clusters resulting from ALC (ǫ from LBF

or oracle) is larger than K , then we choose the K largest

clusters and identify the points in the rest of clusters as out-

liers. For some cases the RANSAC algorithm breaks down

and we then report it as N/A. The reason for this is that

RANSAC (for HLM) (Yang et al. 2006) is very sensitive to

the estimate of ε and an overestimate can result in removal

of points belonging to more than one subspace, so that the

algorithm may exhaust all points before detecting K sub-

spaces.

We remark that GPCA cannot naturally deal with out-

liers, therefore we use robust GPCA with Multivariate Trim-

ming (Yang et al. 2006) and the parameters ‘angleTolerance’

http://perception.csl.uiuc.edu/gpca
http://www.vision.jhu.edu/db
http://www.math.umn.edu/~lerman/scc
http://perception.csl.uiuc.edu/coding/motion/
http://perception.csl.uiuc.edu/coding/motion/
http://www.vision.jhu.edu/code/
http://www.vision.jhu.edu/code/
http://www.cis.jhu.edu/~ehsan/ssc.htm
http://www.cis.jhu.edu/~ehsan/ssc.htm
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Table 1 Mean percentage of misclassified points in artificial data for linear-subspace cases or affine-subspace case

Linear 22 ∈ R
4 42 ∈ R

6 24 ∈ R
4 102 ∈ R

15 (4,5,6) ∈ R
10 (1,5) ∈ R

6

Outl. % 0 30 0 30 0 30 0 30 0 30 0 30

LSCC e % 2.6 6.9 0.0 2.6 0.1 22.4 0.5 3.8 1.8 28.2 N/A 34.6

t (s) 1.1 0.8 1.0 1.8 1.5 2.0 13.3 5.7 5.1 8.4 N/A 1.9

LSCC-MS e % 2.7 10.0 0.0 4.1 0.1 36.7 0.7 31.9 1.4 19.8 N/A 32.9

t (s) 1.1 0.5 1.1 1.4 1.7 1.5 5.1 5.6 4.0 4.6 N/A 2.0

LSA e % 18.4 19.6 0.1 12.7 0.4 21.0 0.1 9.9 5.9 6.6 27.4 35.4

t (s) 6.8 16.0 7.1 20.8 23.8 54.4 11.7 31.5 20.1 54.4 6.6 13.8

KF e % 2.5 15.8 2.5 18.4 0.1 34.3 0.0 33.8 1.0 30.6 20.2 23.5

t (s) 0.5 0.6 0.2 0.8 0.7 1.8 0.4 1.0 0.7 2.8 0.3 0.5

MoPPCA e % 2.5 14.2 0.0 17.7 0.1 34.2 0.0 38.8 1.6 34.7 23.4 24.0

t (s) 0.3 0.5 0.2 0.7 0.7 2.0 0.2 1.1 1.1 3.3 0.5 0.5

GPCA e % 6.0 2.5 0.0 2.0 0.1 6.3 0.0 14.6 14.6 N/A 5.9 N/A

t (s) 2.1 38.0 1.9 85.2 10.8 136.2 11.2 546.0 73.8 N/A 0.7 N/A

LBF e % 2.8 3.7 0.0 2.3 0.1 11.5 0.0 1.9 1.5 1.5 18.8 14.1

t (s) 0.6 0.5 0.5 0.5 1.8 2.7 0.6 0.8 1.1 1.4 0.5 0.5

LBF-MS e % 2.7 3.0 0.0 2.6 0.1 11.7 0.0 2.2 1.3 1.5 19.5 13.7

t (s) 0.6 0.5 0.4 0.5 1.7 2.6 0.4 0.6 0.9 1.3 0.4 0.4

SLBF e % 5.2 6.3 0.1 7.0 0.1 23.9 0.0 6.2 2.0 2.4 11.1 13.5

t (s) 11.2 20.7 9.4 21.7 65.0 174.9 9.5 23.3 23.2 64.2 9.3 15.3

SLBF-MS e % 7.8 11.7 0.1 6.6 0.2 46.6 0.0 4.8 1.9 2.6 19.7 22.1

t (s) 12.0 24.0 8.8 24.4 68.1 202.0 8.4 23.5 22.0 72.4 9.8 16.3

RANSAC (oracle) e % 2.7 2.6 2.9 2.1 8.0 9.4 0.5 5.8 1.7 1.5 N/A 31.6

t (s) 0.1 0.1 0.1 0.2 0.1 0.2 5.9 6.7 1.5 7.1 N/A 0.2

RANSAC (ǫ from LBF) e % 3.2 2.6 2.1 2.4 7.7 9.8 0.4 6.7 1.8 1.5 N/A 30.6

t (s) 0.1 0.1 0.1 0.2 0.1 0.2 5.9 6.7 1.5 7.0 N/A 0.3

ALC (oracle) e % 4.1 3.4 0.1 16.3 0.1 30.1 50.0 50.0 5.4 36.1 0.3 0.4

t (s) 7.3 23.2 7.7 33.6 28.4 136.3 13.9 172.6 23.0 180.1 7.8 17.3

ALC (ǫ from LBF) e % 4.5 5.7 0.1 10.0 0.1 14.0 50.0 50.0 2.5 1.8 0.4 0.3

t (s) 8.0 28.0 8.1 37.9 29.6 121.9 16.6 152.4 24.0 151.6 8.3 18.1

SSC e % 19.5 34.3 0.2 43.5 0.4 52.8 47.0 44.9 11.5 54.0 9.4 15.9

t (s) 114.8 236.2 97.6 247.9 227.7 591.3 106.0 276.6 185.5 437.9 94.1 142.1

SCC e % 0.0 0.6 0.0 0.0 0.0 0.5 0.0 0.7 0.0 5.8 N/A N/A

t (s) 1.2 1.0 1.1 2.0 1.4 2.5 6.1 13.7 5.6 6.0 N/A N/A

SCC-MS e % 0.0 2.2 0.0 0.5 0.0 5.8 0.0 0.0 0.0 3.1 N/A N/A

t (s) 1.2 0.7 1.2 1.6 1.7 2.2 5.4 6.0 4.6 4.8 N/A N/A

LSA e % 0.1 11.0 0.0 4.7 0.4 41.7 0.0 0.0 0.0 1.1 37.5 37.9

t (s) 6.7 16.1 7.1 20.8 22.2 54.0 11.7 32.2 38.3 54.0 6.6 13.9

KF e % 0.2 15.1 0.1 26.0 0.3 37.1 0.0 24.9 0.0 23.5 24.8 27.1

t (s) 0.8 0.6 0.4 0.7 1.0 1.4 0.6 1.7 1.0 1.4 0.5 0.5

MoPPCA e % 0.2 23.7 0.1 38.3 0.5 39.8 0.0 45.2 0.0 46.8 30.8 30.4

t (s) 0.9 0.5 0.5 0.6 1.1 1.4 0.9 1.9 1.9 2.0 0.5 0.5

GPCA e % 0.2 18.4 0.2 22.2 0.4 38.1 0.0 27.9 0.3 N/A N/A N/A

t (s) 1.8 43.7 3.3 104.0 8.3 209.3 11.8 501.1 69.1 N/A N/A N/A

LBF e % 0.0 2.0 0.0 0.7 0.0 4.5 0.0 0.3 0.0 0.0 4.7 11.2

t (s) 0.7 0.6 0.5 0.6 1.9 2.8 0.6 0.8 1.2 1.5 0.4 0.5

LBF-MS e % 0.0 2.7 0.0 1.5 0.0 5.2 0.0 0.5 0.0 0.0 3.9 10.5

t (s) 0.6 0.5 0.4 0.5 1.7 2.7 0.4 0.6 1.0 1.3 0.4 0.4
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Table 1 (Mean percentage of misclassified points in artificial data for linear-subspace cases or affine-subspace case)

Linear 22 ∈ R
4 42 ∈ R

6 24 ∈ R
4 102 ∈ R

15 (4,5,6) ∈ R
10 (1,5) ∈ R

6

Outl. % 0 30 0 30 0 30 0 30 0 30 0 30

SLBF e % 0.0 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

t (s) 9.3 19.1 5.8 19.0 37.7 143.1 6.3 19.4 35.1 61.4 5.9 14.8

SLBF-MS e % 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

t (s) 8.8 21.7 5.6 21.9 38.0 175.5 5.9 21.1 40.1 66.7 5.9 14.3

RANSAC (oracle) e % 13.8 11.6 9.8 9.6 30.9 27.0 1.9 8.3 1.2 3.4 N/A 23.6

t (s) 0.1 0.2 0.4 1.8 0.4 0.8 6.4 6.8 3.7 7.4 N/A 0.5

RANSAC (ǫ from LBF) e % 13.6 11.6 11.6 10.4 29.9 28.5 1.4 9.6 1.2 2.4 N/A 23.1

t (s) 0.1 0.2 0.4 1.9 0.4 0.8 6.4 6.7 3.7 7.4 N/A 0.5

ALC (oracle) e % 0.0 0.0 0.0 0.0 0.0 25.1 0.0 40.0 0.0 65.0 0.0 0.0

t (s) 17.6 25.2 16.6 39.1 64.2 119.3 20.0 43.0 39.7 92.7 18.3 36.8

ALC (ǫ from LBF) e % 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

t (s) 18.7 26.8 17.2 29.8 65.2 113.6 24.4 55.5 47.9 85.2 18.8 38.9

SSC e % 0.0 1.9 0.0 0.1 0.1 6.4 0.0 0.0 0.0 0.0 0.0 0.0

t (s) 135.9 226.8 176.0 134.7 283.8 592.4 187.0 311.9 338.6 504.1 127.1 183.9

and ‘boundarythreshold’ are set to be 0.3 and 0.4 respec-

tively.

The artificial data represents various instances of K lin-

ear subspaces in R
D . If their dimensions are fixed and equal

d , we follow Chen and Lerman (2009) and refer to the set-

ting as dK ∈ R
D . If they are mixed, then we follow Ma et al.

(2008) and refer to the setting as (d1, . . . , dK) ∈ R
D . Fixing

K and d (or d1, . . . , dK ), we randomly generate 100 differ-

ent instances of corresponding hybrid linear models accord-

ing to the code in http://perception.csl.uiuc.edu/gpca. More

precisely, for each of the 100 experiments, K linear sub-

spaces of the corresponding dimensions in R
D are randomly

generated. The random variables sampled within each sub-

space are sums of two other variables. One of them is sam-

pled from a uniform distribution in a d-dimensional ball

of radius 1 of that subspace (centered at the origin for the

case of linear subspaces). The other is sampled from a D-

dimensional multivariate normal distribution with mean 0

and covariance matrix 0.052 ·ID×D . Then, for each subspace

250 samples are generated according to the distribution just

described. Next, the data is further corrupted with 5 % or

30 % uniformly distributed outliers in a cube of sidelength

determined by the maximal distance of the former 250 sam-

ples to the origin (using the same code).

Since most algorithms (SCC, LSA, MoPPCA, LBF,

SLBF, RANSAC, SSC) do not support mixed dimensions

natively, we assume each subspace has the maximum di-

mension in the experiment. GPCA and ALC support mixed

dimensions natively, and GPCA is the only algorithm for

which we specify the dimensions for each subspace in

mixed-dimension case (note that the knowledge of dimen-

sions are unnecessary in ALC algorithm).

The mean (over 100 instances) misclassification rates

and the mean running time of the various algorithms are

recorded in Table 1. From Table 1 we can see that our algo-

rithms, i.e., LBF, LBF-MS, SLBF, SLBF-MS, perform well

in various artificial instances of hybrid linear modeling (with

both linear subspaces and affine subspaces), and their ad-

vantage is especially obvious with many outliers and affine

subspaces. The robustness to outliers is a result of our use

of both ℓ1 loss function (see e.g., Lerman and Zhang 2011,

2012) and random sampling. The SLBF and SLBF-MS are

better at the affine cases because of their use of spectral clus-

tering. Also unlike many other methods, the proposed meth-

ods natively support affine subspace models (the particular

data has non-intersecting subspaces, which makes advanta-

geous to some other algorithms, e.g., SSC). The results of

RANSAC (ǫ from LBF) and ALC (ǫ from LBF) show that

the local best-fit heuristic can be effectively used to estimate

the main parameter of RANSAC and ALC, i.e., to estimate

the local noise. Table 1 also shows that the running time of

LBF/LBF-MS is less than the running time of most other

algorithms, especially GPCA, LSA, RANSAC, ALC and

SSC. The difference is large enough that we can also use the

proposed algorithm as an initialization for the others. LBF

and LBF-MS algorithms are slower than a single run of K-

flats, but it usually takes many restarts of K-flats to get a

decent result. Notice that the choice of C and p in our algo-

rithm function in a similar manner to the number of restarts

in KF. SLBF and SLBF-MS cost more time when N is large,

because of the construction of the N × N matrix in spectral

clustering, but it still has a comparable speed to LSA and

is faster than SSC, which are two spectral-clustering based

algorithms.

http://perception.csl.uiuc.edu/gpca
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Table 2 The mean and median percentage of misclassified points for two-motions and three-motions in Hopkins 155 database

Checker Traffic Articulated All

Mean Median Mean Median Mean Median Mean Median

2-motion

GPCA 6.09 1.03 1.41 0.00 2.88 0.00 4.59 0.38

LLMC 5 4.37 0.00 0.84 0.00 6.16 1.37 3.62 0.00

LSA 4K 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59

LBF(4K,3) 3.65 0.00 3.89 0.00 4.43 0.15 3.78 0.00

LBF-MS(4K,3) 2.90 0.00 1.64 0.00 2.51 0.06 2.54 0.00

SLBF(2F,3) 1.59 0.00 0.20 0.00 0.80 0.00 1.16 0.00

SLBF-MS(2F,3) 1.28 0.00 0.21 0.00 0.94 0.00 0.98 0.00

SCC(4K,3) 2.42 0.00 4.44 0.00 9.51 2.04 3.60 0.00

SCC-MS(4K,3) 2.00 0.00 0.35 0.00 4.11 1.12 1.77 0.00

SSC-N(4K,3) 1.29 0.00 0.29 0.00 0.97 0.00 1.00 0.00

MSL 4.46 0.00 2.23 0.00 7.23 0.00 4.14 0.00

RANSAC 6.52 1.75 2.55 0.21 7.25 2.64 5.56 1.18

3-motion

GPCA 31.95 32.93 19.83 19.55 16.85 28.66 28.66 28.26

LLMC 4K 12.01 9.22 7.79 5.47 9.38 9.38 11.02 6.81

LLMC 5 10.70 9.21 2.91 0.00 5.60 5.60 8.85 3.19

LSA 4K 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33

LSA 5 30.37 31.98 27.02 34.01 23.11 23.11 29.28 31.63

LBF(4K,3) 8.50 1.26 16.31 13.52 20.75 20.75 10.77 1.70

LBF-MS(4K,3) 6.97 1.15 7.06 0.62 21.38 21.38 7.81 0.98

SLBF(2F,3) 4.57 0.94 0.38 0.00 2.66 2.66 3.63 0.64

SLBF-MS(2F,3) 3.33 0.39 0.24 0.00 2.13 2.13 2.64 0.22

SCC(4K,3) 7.80 1.04 8.05 2.37 7.07 7.07 7.81 0.67

SCC-MS(4K,3) 6.28 0.80 4.09 0.58 7.22 7.22 5.89 0.68

SSC-N(4K,3) 3.22 0.29 0.53 0.00 2.13 2.13 2.62 0.22

MSL 10.38 4.61 1.80 0.00 2.71 2.71 8.23 1.76

RANSAC 25.78 26.01 12.83 11.45 21.38 21.38 22.94 22.03

3.2 Clustering Results on Motion Segmentation Data

We test the proposed algorithms on the Hopkins 155

database of motion segmentation, which is available at

http://www.vision.jhu.edu/data/hopkins155. This data set

contains 155 video sequences along with the coordinates

of certain features extracted and tracked for each sequence

in all its frames. The main task is to cluster the feature vec-

tors (across all frames) according to the different moving

objects and background in each video. It consists of three

types of videos: checker, traffic and articulated (see Fig. 2

for demonstration of frames of such videos).

More formally, for a given video sequence, we denote

the number of frames by F . In each sequence, we have

either one or two independently moving objects, and the

background can also move due to the motion of the cam-

era. We let K be the number of moving objects plus the

background, so that K is 2 or 3 (and distinguish accord-

ingly between two-motions and three-motions). For each se-

quence, there are also N feature points y1,y2, . . . ,yN ∈ R
3

that are detected on the objects and the background. Let

zij ∈ R
2 be the coordinates of the feature point yj in the

ith image frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N .

Then zj = [z1j , z2j , . . . , zFj ] ∈ R
2F is the trajectory of the

j th feature point across the F frames. The actual task of

motion segmentation is to separate these trajectory vectors

z1, z2, . . . , zN into K clusters representing the K underlying

motions.

It has been shown (Costeira and Kanade 1998) that under

the affine camera model, the trajectory vectors correspond-

ing to different moving objects and the background across

the F image frames live in distinct affine subspaces of di-

mension at most three in R
2F . Following this theory, we im-

plement our algorithm with d = 3.

http://www.vision.jhu.edu/data/hopkins155
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Fig. 1 The misclassification rate of some algorithms for the Hopkins

155 database. The y-axis represent the percentage of data sets that

have misclassification rates (under corresponding algorithms) lower

than that of x-axis

Fig. 2 Frames of the traffic, articulated and checker (from left to right)

videos in Hopkins 155 database

We compare our algorithm with the following ones:

improved GPCA for motion segmentation (GPCA) (Vidal

et al. 2008), K-flats (KF) (Ho et al. 2003) (implemented

for linear subspaces), Local Linear Manifold Clustering

(LLMC) (Goh and Vidal 2007), Local Subspace Analy-

sis (LSA) (Yan and Pollefeys 2006), Multi Stage Learn-

ing (MSL) (Sugaya and Kanatani 2004), Spectral Curva-

ture Clustering (SCC) (Chen and Lerman 2009) and SCC-

MS (see description earlier), Sparse Subspace Cluster-

ing (SSC) (Elhamifar and Vidal 2009), and RANSAC for

HLM (Yang et al. 2006).

For GPCA (improved for motion segmentation), LLMC,

LSA, MSL and RANSAC (for HLM), we copy the results

from http://www.vision.jhu.edu/data/hopkins155 (they are

based on experiments reported in Tron and Vidal (2007)

and Goh and Vidal (2007)). We perform our own experi-

ments for SCC, SCC-MS, SSC-N (SSC-B is not reported

since it did not perform as well as SSC-N), LBF, LBF-MS,

SLBF, SLBF-MS, we perform the experiments on our own

and record the mean misclassification rate and the median

misclassification rate for each algorithm for any fixed K

(two or three-motions) and for the different type of mo-

tions (“checker”, “traffic” and “articulated”). Each experi-

ment (testing the latter set of algorithms) was repeated 500

times. The average misclassification rates, standard devia-

tion and running time are recorded in Tables 5 and 6 and

demonstrated in Fig. 1.

Our misclassification rates for SCC are different than

Chen and Lerman (2009) and Lauer and Schnorr (2009) and

our misclassification rates for SSC are different than Elham-

ifar and Vidal (2009) (the difference between our and their

results differ more than twice the standard deviations of mis-

classification rates obtained here). This can be explained by

possible evolutions of the codes since then (at least for SSC).

We remark though that the misclassification rates of SCC-

MS here are even slightly better than the misclassification

rates of SCC in Chen and Lerman (2009).

From Table 2 and Fig. 1 we can see that our algorithms

work well for the Hopkins database. Of all the methods

tested, SLBF-MS and SSC-N are the most accurate algo-

rithms. Besides SLBF/SLBF-MS and SSC-N, only SCC-MS

is better than LBF-MS. However, from Table 4, LBF-MS

ran more than 100 times faster than SSC-N and SLBF-MS

is also more than 10 times faster than SSC. In many of the

cases, the ℓ1 energy (as well as the ℓ2 energy) was lower

for the labels obtained by LBF than the true labels. We thus

suspect that the reason SLBF/SLBF-MS works better than

LBF/LBF-MS is that good clustering of the Hopkins data

requires additional type of information (e.g., spectral infor-

mation) to be combined with subspace clustering (i.e., hy-

brid linear modeling).

By adapting the parameters of SLBF-MS (or alterna-

tively, SLBF, LBF, LBF-MS), we can further improve its

misclassification rates on Hopkins 155 (e.g., total 0.81 % for

two-motions and 2.12 % for three-motions by SLBF-MS).

However, we have fixed in advance all parameters and in-

sisted using the same parameters on all four kinds of data

(see the third paragraph of Sect. 3).

From Table 3 we can see that SLBF-MS, SLBF and SSC-

N have negligible randomness. Indeed, their only random-

ness come from the K-means step, but this randomness is

http://www.vision.jhu.edu/data/hopkins155


228 Int J Comput Vis (2012) 100:217–240

Table 3 The standard deviation to the mean and median percentage of misclassified points for two-motions and three-motions in Hopkins 155

database

Checker Traffic Articulated All

Mean Median Mean Median Mean Median Mean Median

2-motion

LBF(4K,3) 0.71 0.00 1.22 0.00 1.04 0.66 0.50 0.00

LBF-MS(4K,3) 0.53 0.00 1.06 0.00 1.14 0.28 0.47 0.00

WLBF(4K,3) 0.53 0.00 0.98 0.00 1.35 0.00 0.47 0.00

SLBF-MS(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SCC(4K,3) 0.27 0.00 1.51 0.00 2.34 1.52 0.38 0.00

SCC-MS(4K,3) 0.33 0.00 0.25 0.00 1.03 0.46 0.25 0.00

SSC-N(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3-motion

LBF(4K,3) 1.52 0.58 3.71 9.69 7.37 7.37 1.43 0.65

LBF-MS(4K,3) 1.48 0.45 3.81 2.35 6.59 6.59 1.42 0.40

SLBF(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SLBF-MS(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SCC(4K,3) 1.20 0.53 5.70 7.00 1.77 1.77 1.43 0.49

SCC-MS(4K,3) 0.94 0.50 3.25 0.54 2.54 2.54 0.92 0.33

SSC-N(4K,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4 Average total computation times for all 155 sequences

RANSAC LBF-MS(4K,3) LBF(4K,3) SCC-MS(4K,3) SLBF-MS(2F,3) SLBF(2F,3) SSC-N(4K,3)

60 s 73 s 91 s 196 s 28 min 31 min 427 min

effectively reduced because of the restarting strategy. LBF

and LBF-MS are more random, but still have comparable

standard deviations with other good algorithms on Hopkins

155 database such as SCC/SCC-MS.

3.3 Clustering Results on the Extended Yale Face

Database B

We test LBF, LBF-MS, SLBF and SLBF-MS and compare

them with ALC, K-flats, and SSC on the extended Yale face

database B (Lee et al. 2005), which is available on http://

vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html. We

will see that this data set shows a failure mode of our

algorithms; and we will show how we can engineer a work-

around.

We use subsets of the extended Yale face database B con-

sisting of face images of K = 2,3, . . . ,10 persons under

64 varying lighting conditions. Our objective is to cluster

these images according to the persons. In implementation,

for any fixed K we repeat each algorithm on 100 randomly

chosen subsets of K persons. The HLM model is applica-

ble to this database, because the images of a face under

variable lighting lies in a three-dimensional linear subspace

if shadow is not considered (Lee et al. 2005), and a nine-

dimensional subspace with shadow considered (Basri and

Jacobs 2003). In our experiments, we found that the images

of a person in this database lie roughly in a 5-dimensional

subspace, and therefore we first reduce the dimension of

the data to 5K (recall that K is the number of persons).

We do not include the GPCA algorithm since it is slow and

does not work well on this database. We also do not include

SCC and RANSAC since the code provided returns errors

for some examples. The setting of ALC (voting with K)

follows Rao et al. (2010, Sect. 2.2) exactly: it chooses ε

from 101 values in the range 10−5–103 (see the code in

http://perception.csl.uiuc.edu/coding/motion/#Software).

We can see from the first row of Table 5 that LBF does

a poor job discriminating the linear clusters in this data set.

The failure occurs because of a combination of two factors:

the first is the relatively sparse sampling of the data, with

only 64 points per 5-dimensional cluster, and the second,

the relative nearness of the underlying subspaces to each

other. In particular, almost any neighborhood of any given

point (even very small neighborhood) has points from the

other affine clusters and consequently there is no “optimal”

scale. For example, in the 128 face images from persons 1

http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html
http://perception.csl.uiuc.edu/coding/motion/#Software
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Table 5 Mean percentage of misclassified points and mean running time on clustering the extended Yale face database

K 2 3 4 5 6 7 8 9 10

LBF (without whitening) e % 32.49 54.42 57.45 56.00 56.24 56.94 59.53 59.66 60.74

t (s) 0.24 0.48 0.82 1.26 1.93 2.97 4.18 5.81 8.05

LBF-MS (without whitening) e % 18.27 36.22 48.24 50.18 49.99 50.68 53.08 54.06 54.73

t (s) 0.12 0.21 0.36 0.57 0.89 1.41 2.06 2.98 4.13

LBF e % 7.94 8.33 12.89 17.83 27.40 31.89 35.04 38.53 38.95

t (s) 0.24 0.50 0.87 1.38 2.09 3.28 4.58 6.38 8.57

LBF-MS e % 8.40 9.51 12.18 15.57 19.18 22.88 27.20 30.39 33.17

t (s) 0.12 0.22 0.37 0.58 0.89 1.41 2.07 2.94 4.02

SLBF e % 11.12 14.78 20.42 26.52 32.96 36.91 40.49 42.99 46.63

t (s) 4.17 12.72 25.70 44.89 72.99 111.58 165.47 226.56 310.30

SLBF-MS e % 9.12 12.48 18.61 25.27 30.50 33.97 36.22 38.66 41.44

t (s) 3.84 12.20 23.88 41.24 64.10 95.73 142.09 192.34 262.40

ALC (voting with K) e % 3.46 6.08 14.59 29.59 67.06 69.04 76.00 73.94 77.16

t (s) 42.99 122.29 258.20 451.07 699.52 1090.96 1625.10 2384.69 3343.93

ALC (ǫ from LBF) e % 10.43 15.23 32.20 42.15 58.10 62.54 70.84 81.14 84.25

t (s) 0.95 2.49 5.54 11.54 24.38 45.27 78.05 132.35 211.15

SCC e % 5.39 11.82 29.39 41.96 49.56 54.51 55.49 57.24 58.94

t (s) 1.62 3.85 9.52 15.37 22.71 32.45 54.54 56.91 75.92

SCC-MS e % 4.51 15.05 36.00 51.68 59.66 64.15 68.71 71.18 74.01

t (s) 1.62 4.20 9.28 14.49 22.08 31.71 54.21 56.99 73.10

SSC e % 6.45 8.10 10.04 10.32 11.02 11.85 12.47 13.41 15.44

t (s) 28.36 46.45 67.11 92.75 128.46 182.65 259.66 340.12 612.21

K-flats e % 7.20 12.12 19.06 26.77 32.59 35.18 38.58 42.00 44.40

t (s) 0.16 0.37 0.76 1.29 2.14 3.25 5.18 6.91 9.60

and 2, more than a fifth of the points are closer to the sub-

space spanned by the first 5 principal components of the

points in the other cluster than to their second nearest neigh-

bors, and more than two thirds of the points are closer to

the other subspace than to their 4th nearest neighbors. In

some sense, this is a single 5-dimensional set, rather than

two 5-dimensional sets. For example, the average distance

of a point to the 5-dimensional best fit subspace by the points

in the same cluster is 2.7 × 103, and the average distance to

the 5-dimensional best fit subspace of the whole data set is

3.3 × 103, whereas the average norm of a point in the data

set is 1.1 × 104. Thus one loses little in terms of relative

fitting error by considering the set as spanned by a single

subspace.

However, most points are actually closer to the subspace

spanned by the same face than to the subspace spanned by

the other face, if only by a little, and a global method such

as SSC is still able to find and discriminate between the

two affine clusters. The problem of data having large vari-

ance in directions irrelevant to a classification task is not

unusual. A standard method of dealing with this situation is

to “whiten” the data; i.e. reduce the value of the large sin-

gular values. A very crude whitening is obtained by simply

removing the first few principal components. If we exclude

the first two principal components after reducing the dimen-

sion to 5K for LBF/SLBF algorithms, we see in Table 5 that

the results are greatly improved and become competitive.2

With more sophisticated whitening, the results can be fur-

ther improved.

3.4 Clustering Results on MNIST Data Set

Finally, we work on the MNIST data set (available at

http://yann.lecun.com/exdb/mnist/). This data set consists of

several thousand 28 × 28 images of the digits 0 through 9.

We work on some subsets of the data which contain 2 or 3

digits and choose 200 images for each digit at random. We

apply PCA to reduce the dimension to D = 5 for GPCA and

to both D = 10 and D = 50 for the rest of algorithms. The

choice of both D = 10 and D = 50 provide richer testing

opportunities, this is however unavailable for GPCA, which

cannot handle D = 50 and often get stuck with D = 10.

We process the data the same way as in Sect. 3.3. We run

2Removing principal components harms the performance of the other

algorithms.

http://yann.lecun.com/exdb/mnist/
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Table 6 The standard deviation(%) to the mean percentage of misclassified points on the extended Yale face database

Real K 2 3 4 5 6 7 8 9 10

LBF (without whitening) 20.46 14.73 4.87 3.89 5.54 4.99 4.63 3.95 3.22

LBF-MS (without whitening) 18.23 18.77 13.40 6.74 4.52 5.51 5.31 4.90 4.14

LBF 5.27 3.73 7.97 9.86 11.21 10.38 8.27 6.52 6.20

LBF-MS 4.25 3.08 5.33 6.24 7.73 8.02 8.29 8.05 7.25

SLBF 4.76 5.37 5.08 5.25 5.48 5.42 4.57 4.74 3.79

SLBF-MS 4.77 5.37 5.84 4.91 3.75 3.76 2.87 3.01 3.22

ALC (voting with K) 2.21 6.93 13.87 14.89 16.84 24.71 18.05 21.62 16.98

ALC (ǫ from LBF) 13.14 12.96 14.91 16.40 15.22 12.22 10.89 6.76 6.10

SCC 5.21 11.71 14.65 10.60 6.68 5.14 4.67 4.32 5.03

SCC-MS 2.84 13.66 14.66 10.41 8.29 6.72 5.61 5.93 5.46

SSC 4.57 3.76 4.52 3.82 3.59 2.87 3.18 3.45 5.21

K-flats 4.67 6.86 8.53 8.89 7.29 6.41 6.67 4.84 5.43

Table 7 Mean percentage of misclassified points and mean running time on clustering MNIST data set (D = 5 for GPCA, D = 10 for other

algorithms)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

LBF e % 8.0 8.5 12.9 25.5 28.8 28.1 20.2

t (s) 0.4 0.4 0.3 0.4 0.7 0.7 0.7

LBF-MS e % 9.7 7.8 8.8 24.0 40.2 33.5 21.5

t (s) 0.2 0.2 0.2 0.2 0.5 0.4 0.4

SLBF e % 0.5 1.0 2.0 3.0 3.8 19.7 17.3

t (s) 13.9 13.7 13.5 14.5 41.9 41.0 42.7

SLBF-MS e % 0.5 1.0 2.0 3.0 3.8 19.7 17.3

t (s) 12.8 13.7 13.0 14.6 38.6 46.3 39.0

ALC (voting with K) e % 0.2 2.2 3.5 48.5 4.2 42.7 45.3

t (s) 830.5 823.3 813.3 753.2 1789.5 1871.8 1987.7

ALC (ǫ from LBF) e % 20.3 32.0 51.8 27.5 4.0 30.3 14.5

t (s) 23.2 22.5 21.6 23.0 55.6 54.7 54.0

SCC e % 7.0 6.4 11.4 23.4 22.8 26.7 39.2

t (s) 1.2 1.5 1.4 1.3 2.5 2.7 2.3

SCC-MS e % 6.3 7.9 10.5 23.2 23.3 26.9 32.8

t (s) 0.9 0.8 1.1 1.0 1.9 1.9 1.5

GPCA e % 22.3 30.8 32.5 47.0 48.2 33.8 31.0

t (s) 8.7 9.2 9.4 10.8 24.9 24.5 22.5

K-flats e % 11.1 6.8 6.3 29.1 43.9 40.7 29.2

t (s) 0.4 0.4 0.4 0.4 0.9 0.8 0.6

SSC e % 4.5 3.5 9.0 21.0 19.5 24.5 49.3

t (s) 220.6 196.6 200.8 203.2 322.6 333.0 338.2

each experiment 500 times, using d = 3 and the correct

number of clusters, and record the misclassification rates,

the standard deviation and running time in Tables 7, 9, 8

and 10.

From Tables 7 and 8, SLBF and SLBF-MS are the best

algorithms among all the methods in terms of misclassifi-

cation rates, although these misclassification rates are larger

when K = 3. SCC, SCC-MS, SSC, LBF and LBF-MS are

also good algorithms for this data set. ALC is almost as

good as SLBF and SLBF-MS when K = 2, but it fails when

K = 3. LBF, LBF-MS and K-flats are the fastest algorithms

in MNIST data set.
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Table 8 Mean percentage of misclassified points and mean running time on clustering MNIST data set (D = 50)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

LBF e % 20.5 13.1 18.2 30.2 26.3 24.1 19.2

t (s) 2.8 2.8 2.6 3.1 5.2 5.1 4.7

LBF-MS e % 12.5 16.9 10.7 19.1 23.5 27.3 24.3

t (s) 1.3 1.3 1.3 1.3 2.3 2.3 2.3

SLBF e % 8.3 4.3 2.3 13.8 4.3 17.5 21.7

t (s) 15.1 15.0 14.6 16.8 37.5 38.5 39.5

SLBF-MS e % 5.5 3.3 5.0 5.5 3.2 18.5 21.7

t (s) 11.8 12.3 12.3 12.5 34.3 36.9 34.4

ALC (voting with K) e % 47.0 46.0 48.8 100.0 100.0 100.0 65.3

t (s) 1469.2 1445.6 1489.2 679.0 1530.1 1528.5 3032.4

ALC (ǫ from LBF) e % 50.5 50.8 50.5 99.8 99.8 99.8 67.0

t (s) 93.0 93.6 91.0 9.4 18.2 17.9 163.5

SCC e % 5.8 4.9 5.3 17.1 23.0 29.7 33.6

t (s) 0.9 1.0 1.1 0.9 1.6 2.0 1.7

SCC-MS e % 5.1 5.4 5.1 26.2 28.6 41.7 33.0

t (s) 0.9 1.0 1.2 1.0 1.8 1.9 2.0

GPCA e % N/A N/A N/A N/A N/A N/A N/A

t (s) N/A N/A N/A N/A N/A N/A N/A

K-flats e % 10.9 14.9 13.5 30.4 45.3 41.6 26.9

t (s) 2.8 2.9 2.9 3.1 6.2 5.6 5.1

SSC e % 16.8 2.0 3.2 20.0 11.3 17.8 45.5

t (s) 411.8 402.7 395.1 396.0 760.9 763.1 777.0

3.5 Automatic Determination of the Number of Flats

We explain how to use the elbow method to determine the

number of affine clusters in any HLM algorithm, in partic-

ular LBF and SLBF. Fixing an arbitrary HLM algorithm

with the correct input of number of clusters K , let Fj ,

j = 1, . . . ,K be the K flats returned by that algorithm and

WK be the sum of squared distances of all data points to the

flat, among these K flats, corresponding to their clusters.

That is,

WK =
K

∑

j=1

∑

x∈Cj

dist2(x,Fj ). (12)

We note that WK decreases as K increases.

A classical method for determining the number of clus-

ters is to find the “elbow”, or the K past which adding more

clusters does not significantly decrease the error. We search

for the elbow by finding the maximum of the Second Or-

der Difference (SOD) of the logarithm of WK (Yue et al.

2008):

SOD(lnWK) = lnWK−1 + lnWK+1 − 2 lnWK . (13)

The optimal K is thus found by

KSOD = arg max
K

SOD(lnWK), (14)

where K = 2, . . . ,Kmax.

In the following sections, we compare SOD (LBF), i.e.,

SOD applying LBF, SOD (LBF-MS), SOD (SLBF), SOD

(SLBF-MS), SOD (SCC), SOD (SCC-MS) and SOD(SSC)

with ALC (Ma et al. 2007) and part of GPCA (Vidal et al.

2005) on a number of artificial data sets and real data sets.

These experiments run on a machine with Intel Core 2 Quad

Q6600 at 2.4 GHz and 8 GB memory.

3.5.1 Finding the Number of Clusters on Artificial Data

We test SOD with LBF and SLBF on artificial data (where

the number of clusters is not provided to the user) and com-

pare them with some other methods (three variations of

ALC, number of clusters by GPCA and SOD with SSC and

SCC). The artificial data sets are generated by the Matlab

code borrowed from the GPCA (Vidal et al. 2005) pack-

age on http://perception.csl.uiuc.edu/gpca. For each sub-

space 100d initial data points are uniformly sampled in a

unit cube in this subspace centered around the origin and

http://perception.csl.uiuc.edu/gpca
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Table 9 The standard deviation

to the mean percentage of

misclassified points on

clustering MNIST data set

(D = 5 for GPCA, D = 10 for

other algorithms)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

LBF 3.5 4.1 10.0 11.4 11.6 8.3 9.5

LBF-MS 5.9 3.8 10.0 10.0 10.3 7.2 7.8

SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SLBF-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC (voting with K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC (ǫ from LBF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SCC 2.3 2.7 4.6 9.9 9.4 7.5 11.9

SCC-MS 2.0 3.7 5.2 10.2 8.3 8.5 9.2

GPCA 0.0 0.0 0.0 0.0 0.0 0.0 0.0

K-flats 7.6 8.5 7.8 5.7 7.4 7.5 5.9

SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 10 The standard

deviation of the mean

percentage of misclassified

points on clustering MNIST

data set (D = 50)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

LBF 5.6 8.0 8.3 10.6 11.0 6.0 6.0

LBF-MS 8.7 10.5 11.4 11.2 12.3 8.9 9.1

SLBF 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SLBF-MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC (voting with K) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ALC (ǫ from LBF) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SCC 0.6 1.0 0.9 10.3 3.7 4.3 13.9

SCC-MS 0.4 0.7 0.9 15.5 5.4 4.5 5.8

GPCA N/A N/A N/A N/A N/A N/A N/A

K-flats 7.2 11.3 11.1 7.5 7.3 8.1 7.7

SSC 0.0 0.0 0.0 0.0 0.0 0.0 0.0

then corrupted with Gaussian noise in R
D of standard de-

viation 0.05. For the last four experiments, we restrict the

angle between subspaces to be at least π/8 for separation.

The dimension d is given and we let Kmax = 10 in SOD.

In ALC (voting), we try 101 different values from 10−5

to 103 for ǫ (as in Rao et al. 2010) and choose the estimated

K by majority. In ALC (ǫ from LBF), we choose the aver-

age noise in the neighborhood using the local best-fit heuris-

tic as the distortion rate ǫ. In ALC (oracle), we input the

true noise level (ǫ = 0.05) as the distortion rate. For GPCA,

we use the original idea of Vidal et al. (2005, Eqs. (26),

(28)) to find the number of clusters (see our implementation

in the supplemental webpage). We project the data onto a

(d + 1)-dimensional subspace by PCA and let the tolerance

of rank detection be 0.05 (chosen by trying different values

and picking the one obtaining the lowest error). This algo-

rithm is independent of other parts of the GPCA algorithm

and is thus extremely fast and can perform in high ambient

dimensions. We even tried other ideas of Ma et al. (2008,

Eqs. (3.28), (3.29)) (for the same given dimension d), while

applying them to several HLM algorithms (even though they

were originally presented for GPCA). Nevertheless, they did

not work well and we thus did not report them. Each experi-

ment is repeated 100 times (except for SOD(SSC), which is

repeated 10 times due to its low speed) and the error rates of

finding the number of clusters K and the computation time

(in seconds) are recorded in Table 11.

As in Table 11, ALC (oracle) and ALC (ǫ from LBF)

work the best for low dimensions (d = 1,2,3), but in real

problems this choice (the noise level) for ǫ is usually un-

known. The local best-fit flat heuristic provides a good esti-

mation for the distortion rate and helps ALC reduce its run-

ning time. ALC (voting) is not as good as SOD (LBF) for

artificial data. All options of ALC suffer from the computa-

tion complexity, especially ALC (voting). SOD (LBF) and

SOD (LBF-MS) get reasonable outputs and have obvious

advantage of computing time. GPCA is very fast, but does

not work well.
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Table 11 The mean percentage of incorrectness (e %) for finding the number of clusters K and the computation time in seconds t (s) on artificial

data

No minimum angle Minimum angle = π/8

16 ∈ R
5 24 ∈ R

5 33 ∈ R
5 16 ∈ R

3 24 ∈ R
3 33 ∈ R

4 102 ∈ R
15 16 ∈ R

3 24 ∈ R
3 33 ∈ R

4 102 ∈ R
15

SOD

(LBF)

e % 22 2 0 58 32 12 0 2 6 5 0

t (s) 10.43 13.76 14.83 9.84 13.08 14.49 34.16 9.95 13.22 14.47 34.04

SOD

(LBF-MS)

e % 13 1 3 67 33 9 0 3 8 6 0

t (s) 8.70 11.90 12.92 8.37 11.54 12.84 27.56 8.42 11.60 12.84 27.69

SOD

(SLBF)

e % 75 10 5 0 90 95 55 0 85 90 55

t (s) 1097.19 2148.06 2895.85 1076.24 1774.74 2629.26 16124.50 1224.96 2387.70 2830.83 16510.13

SOD

(SLBF-MS)

e % 90 95 70 0 90 85 85 0 75 80 80

t (s) 908.76 2094.68 3141.77 927.25 1740.03 2695.59 15754.05 990.88 2302.66 3010.64 16493.95

ALC

(voting)

e %(K) 24 12 11 32 30 17 100 5 9 9 100

t (s) 2094.75 2700.07 3530.26 1207.54 2346.69 3628.24 119584.04 1184.08 2354.19 3956.05 117353.17

ALC

(ǫ from LBF)

e %(K) 1 0 1 20 20 3 58 0 3 1 63

t (s) 23.72 43.50 57.50 19.76 36.67 53.25 1516.02 19.81 36.60 53.01 1770.77

ALC

(oracle)

e %(K) 1 0 0 34 31 1 16 0 10 1 13

t (s) 23.74 43.44 59.14 20.49 37.49 53.59 1370.92 20.22 37.41 54.11 1354.11

GPCA
e %(K) 88 100 100 27 100 100 100 13 100 100 100

t (s) 0.03 0.09 0.12 0.06 0.09 0.12 1.30 0.04 0.09 0.12 1.30

SOD

(SCC)

e %(K) 35 21 1 63 39 17 0 9 32 11 1

t (s) 32.09 61.26 95.79 25.83 59.41 76.13 475.45 26.74 41.95 61.53 466.79

SOD

(SCC-MS)

e%(K) 71 32 2 80 50 12 0 46 33 3 0

t (s) 31.78 67.77 111.15 22.29 55.25 74.07 475.50 24.53 51.98 75.03 471.31

SOD

(SSC)

e %(K) 10 80 70 100 70 70 100 50 80 80 100

t (s) 39.88 2634.80 3039.55 1708.37 2447.01 2925.27 14918.10 1452.43 2101.84 2641.68 14227.32

3.5.2 Finding the Number of Clusters on the Extended Yale

Face Database B

We use the extended Yale face database B as in Sect. 3.3

for testing the above algorithms for detecting the number

of clusters. The ambient dimension is reduced to D = 5K

by PCA for all of the methods and the intrinsic dimension

of subspaces is set as d = 5 (see Sect. 3.3). For SOD with

different clustering algorithms, we let Kmax = 6, 8, 8, 10

and 10 respectively for 2 to 6 clusters. For GPCA, we let

tolerance be 0.05 which does not affect the performance in

this experiment. Each experiment is repeated 500 times (ex-

cept for SOD(SSC), which is repeated 10 times due to its

low speed). Following Sect. 3.3, we apply LBF, LBF-MS,

SLBF and SLBF-MS with whitening. The error rates of find-

ing the correct number of clusters and the computation time

are recorded in Table 12.

We see from Table 12 that SOD only performs well with

SSC with K smaller than 4. We note that this is due to

the difficulty of the database. Indeed for a simpler database

such as Yale Face database B (Georghiades et al. 2001)

of uncropped faces, SOD (SLBF), SOD (SLBF-MS), ALC

(ǫ from LBF) and ALC (voting) have perfect detection for

K ≤ 10 (whitening is not applied then).

3.5.3 Finding the Number of Clusters on MNIST Data Set

We preprocess MNIST data set exactly the same way as we

did in Sect. 3.4. The ambient dimension is reduced to both

D = 10 and D = 50 by PCA for all of the methods including

GPCA and 3 is given as the intrinsic subspace dimension.

For SOD with different clustering algorithms, we let Kmax =
6, and 8 respectively for 2 and 3 clusters. For GPCA, we let

the tolerance be 0.05 which does not affect the performance

in this experiment. Each experiment is repeated 500 times

(except for SOD(SSC), which is repeated 10 times due to its

low speed). The error rates of finding the correct number of

clusters and the computation time are recorded in Tables 13

and 14.

For all the methods, determining the number K of clus-

ters becomes very difficult when the real K is larger than 3.

For real K ≤ 3, we see from Table 13 that when we project

data to 10-dimensional space, ALC and GPCA fail in most

cases, except for ALC (ǫ from LBF) on digits [3 6 8]. SOD

(SLBF), SOD (SLBF-MS) and SOD (SSC) outperform all

others although they are not very efficient.
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Table 12 The mean percentage

of incorrectness (e %) for

finding the correct number of

clusters K and the computation

time in seconds t (s) on the

extended Yale face database

Real K 2 3 4 5 6

SOD

(LBF)

e %(K) 62 61 69 78 84

t (s) 1.30 3.60 5.69 11.30 15.84

SOD

(LBF-MS)

e %(K) 65 75 78 81 80

t (s) 0.67 1.65 2.49 4.90 6.83

SOD

(SLBF)

e %(K) 24 60 70 86 98

t (s) 115.97 303.02 338.35 729.74 811.40

SOD

(SLBF-MS)

e %(K) 20 60 76 92 96

t (s) 106.87 272.88 306.22 649.50 721.42

ALC

(voting)

e %(K) 100 100 100 100 100

t (s) 42.99 122.29 258.20 451.07 699.52

ALC

(ǫ from LBF)

e %(K) 42 36 76 86 100

t (s) 0.95 2.49 5.54 11.54 24.38

GPCA
e %(K) 100 100 100 100 100

t (s) 0.07 0.13 0.52 0.71 1.02

SOD

(SSC)

e %(K) 100 8 12 28 38

t (s) 172.50 389.66 567.39 1015.99 1336.57

Table 13 The mean percentage

of incorrectness (e %) for

finding the correct number of

clusters K and the computation

time in seconds t (s) on MNIST

data set (D = 10)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

SOD

(LBF)

e % 16.8 3.8 50.8 50.4 75.6 70.0 54.8

t (s) 3.5 3.2 3.0 3.3 7.7 7.5 7.3

SOD

(LBF-MS)

e % 9.6 6.6 33.4 68.2 80.4 76.6 44.2

t (s) 1.9 1.9 1.9 1.8 4.6 4.6 4.7

SOD

(SLBF)

e % 0.0 0.0 0.0 0.0 0.0 100.0 0.0

t (s) 173.9 164.6 160.3 248.6 710.1 610.9 548.5

SOD

(SLBF-MS)

e % 0.0 0.0 0.0 0.0 0.0 100.0 0.0

t (s) 164.6 159.9 150.1 228.5 676.6 586.4 556.2

ALC

(voting)

e % 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t (s) 830.4 823.2 813.2 753.2 1789.5 1871.8 1987.5

ALC

(ǫ from LBF)

e % 100.0 100.0 100.0 100.0 100.0 0.0 100.0

t (s) 23.2 22.5 21.5 22.9 55.6 54.7 54.0

GPCA
e % 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t (s) 1.0 1.0 1.0 1.1 2.8 2.8 2.7

SOD

(SCC)

e %(K) 3.8 7.8 66.4 81.8 64.4 47.6 82.6

t (s) 14.5 13.3 14.7 16.9 37.5 34.1 35.0

SOD

(SCC-MS)

e %(K) 2.4 16.4 53.0 77.4 70.4 49.6 77.8

t (s) 13.7 13.8 13.5 16.4 38.0 35.6 29.4

SOD

(SSC)

e %(K) 0.0 0.0 0.0 100.0 0.0 100.0 100.0

t (s) 233.6 210.3 213.3 218.4 380.0 386.4 390.5

3.6 Initializing K-Flats with the Local Best-Fit Heuristic

Here we demonstrate that our choice of neighborhoods in

Algorithm 1 can be used to get a more robust initialization

of K-flats. We work with geometric farthest insertion. For

fixed neighborhood sizes, say of m neighbors, this goes as

follows: we pick a random point x0 and then find the best-fit

flat F0 for the m point neighborhood of x0. Then we find the

point x1 in our data farthest from F0, find the best-fit flat F1

of the m neighborhood of x1, and then choose the point x2

farthest from F0 and F1 to continue. We stop when we have

K flats; we use these as an initialization for K-flats.
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Table 14 The mean percentage

of incorrectness (e %) for

finding the correct number of

clusters K and the computation

time in seconds t (s) on MNIST

data set (D = 50)

Subsets [1 2] [1 3] [1 7] [4 7] [2 4 8] [3 6 8] [1 2 3]

K 2 2 2 2 3 3 3

SOD

(LBF)

e % 45.0 35.0 54.0 79.0 72.0 67.0 60.0

t (s) 22.9 23.5 22.2 24.9 56.2 54.6 51.1

SOD

(LBF-MS)

e % 32.0 22.0 38.0 66.0 44.0 82.0 58.0

t (s) 12.2 12.2 12.2 12.2 29.3 29.4 29.4

SOD

(SLBF)

e % 0.0 0.0 0.0 0.0 0.0 100.0 100.0

t (s) 204.2 198.1 207.8 295.8 864.5 766.5 706.1

SOD

(SLBF-MS)

e % 0.0 0.0 100.0 0.0 0.0 100.0 100.0

t (s) 213.7 201.7 176.6 259.9 748.1 640.0 681.1

ALC

(voting)

e % 100.0 100.0 100.0 100.0 100.00 100.0 100.0

t (s) 1469.2 1445.6 1489.2 679.0 1530.1 1528.5 3032.4

ALC

(ǫ from LBF)

e % 100.0 100.0 100.0 100.0 100.0 100.0 100.0

t (s) 93.0 93.6 91.0 9.4 18.2 17.9 163.5

GPCA
e % N/A N/A N/A N/A N/A N/A N/A

t (s) N/A N/A N/A N/A N/A N/A N/A

SOD

(SCC)

e %(K) 0.0 4.0 1.0 50.5 78.8 30.3 83.8

t (s) 14.9 10.6 11.6 11.6 24.7 26.2 25.4

SOD

(SCC-MS)

e %(K) 0.0 0.0 0.0 42.4 89.9 97.0 93.9

t (s) 12.6 13.0 14.7 13.9 34.0 36.8 30.7

SOD

(SSC)

e %(K) 0.0 0.0 0.0 0.0 0.0 100.0 100.0

t (s) 426.4 417.6 409.3 413.5 823.8 821.2 836.8

We work on three data sets. Data set #1 consists of

1500 points on three parallel 2-planes in R
3. 500 points are

drawn from the unit square in x, y plane, and then 500 more

from the x, y, z + 0.2 plane, and then 500 more from the

x, y, z + 0.4 plane. This data set is designed to favor the

use of small neighborhoods. The next data set is three ran-

dom flats with 15 % Gaussian noise and 5 % outliers, gener-

ated using the Matlab code from GPCA, as in Sect. 3.1. This

data set is designed to favor large neighborhood choices. Fi-

nally, we work on a data set with 1500 points sampled from

3 planes in R
2 as in Fig. 3. The error rates of K-flats with

farthest insertion initialization with fixed neighborhoods of

size 10,20, . . . ,160 are plotted against the error rates for far-

thest insertion with adapted neighborhoods (searched over

the same range), averaged over 400 runs in Fig. 4. Although

our method did not always beat the best fixed neighborhood,

it was quite close; and it always significantly better than the

wrong fixed neighborhood size. Both methods did signifi-

cantly better than a random initialization.

In Fig. 3 we plot the number of neighbors picked by our

algorithm for each point of a realization of data set #3.

4 Conclusions and Future Work

We presented a very simple geometric method for HLM

based on selecting a set of local best-fit flats. The size of the

Fig. 3 Color map of neighborhood size obtained by the local best–

fit flat heuristic. The color value represents the number of neighbors

chosen at that point. Note that the algorithm chooses smaller neighbor-

hoods for points closer to the intersection of the planes (Color figure

online)

local neighborhoods is determined automatically using the

ℓ2 β numbers; it is proven under certain geometric condi-

tions that our method approximately finds the optimal local
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Fig. 4 Using our neighborhood choice to improve initialization of k-

flats: the first row is the visualization of three data sets, and the seconds

row shows the corresponding figures such that the vertical axis is ac-

curacy, and the horizontal axis is fixed neighborhood size in geometric

farthest insertion for initialization of K flats. The red line is the result

of using adapted neighborhoods. The data sets are #1, #2, and #3 as

described in Sect. 3.6. Random initialization leads to misclassification

rates of 0.4 or greater for all three data sets (Color figure online)

neighborhoods. We give extensive experimental evidence

demonstrating the state of the art accuracy and speed of the

algorithm on synthetic and real hybrid linear data.

We believe that one promising next step is to adapt the

method for multi-manifold clustering. As it is, our method,

while quite good at unions of flats, cannot successfully han-

dle unions of curved manifolds. We expect that by gluing to-

gether groups of local best-fit flats related by some smooth-

ness conditions, we will be able to approach the problem of

clustering data which lies on unions of smooth manifolds.

We also believe that it will be possible to provide a the-

oretical framework for performance guarantees with noise

for LBF and SLBF. Specifically, we hope to prove a quan-

titative form of the following alternative: suppose the data

lies on the union of d-dimensional affine sets, perhaps with

additive noise and outliers. Then either

1. Most points are roughly as close to an affine set they

don’t belong to as they are to their nearest O(d) neigh-

bors;

2. A large fraction of the points have optimal neighbor-

hoods contained in only one of the affine clusters, the

principal components of these neighborhoods are good

approximations to the clusters; and LBF and SLBF re-

cover good approximations to the two affine clusters, or

3. The data looks locally lower than d-dimensional, even

though each cluster is globally d-dimensional, and has

high curvature; in this case, there are pure optimal neigh-

borhoods, but the local estimation does not accurately

represent the affine clusters.
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Appendix A: Proof of Theorem 1

Assume without loss of generality that i∗ = 1. Note that

when r ≤ r0, B(x∗, r)∩T (L1,w) = B(x∗, r)∩ supp(μ) and

that L1 is the minimizer of the RHS of (2). Combining these

observations with (2) and the fact that β2(x
∗, r) is invariant

to scaling of r and w, we immediately obtain that for r < r0:

β2
2

(

x∗, r
)

=

∫

T (L1,
w

max(r,w)
)∩B(x∗,1)

dist(x∗,L1)
2 dμ1

μ1(T (L1,
w

max(r,w)
) ∩ B(x∗,1))

. (15)

In particular, β2(x
∗, r) is constant for all 0 ≤ r ≤ w.
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To show that β2(x
∗, r) is strictly decreasing whenever

w ≤ r ≤ r0, we first note that for any r1 and r2 satisfying

w ≤ r1 ≤ r2 ≤ r0:

T

(

L1,
w

max(r2,w)

)

∩ B
(

x∗,1
)

⊂ T

(

L1,
w

max(r1,w)

)

∩ B
(

x∗,1
)

. (16)

Moreover, any point in T (L1,
w

max(r1,w)
) \ T (L1,

w
max(r2,w)

)

has a larger distance to L1 than any point in T (L1,
w

max(r2,w)
).

Combining these observations with (15), we conclude that

β2(x
∗, r1) > β2(x

∗, r2), i.e., β2(x
∗, r) is strictly decreasing

on [w, r0].
Next, we will prove (5) with a weaker requirement on r∗.

More precisely, we define r∗ = max(r∗
1 , r∗

2 ), where

r∗
1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

r0+2w
√

1− 3
√

2 (D−1)Kw2

(D+1)r0(r0+2w)

, when d = 1;

r0+2w
√

1−(
6(D−d)Kw2

(D−d+2)(r0+2w)2
)

2
d

, when d > 1
(17)

and

r∗
2 = 1

√

2
(r0+2w)2 − 1

r2
0

. (18)

We further assume that w < r0 and

(r∗2 − r2
0 )

d
2 · (r0 + w)

(r∗2 − r2
0 )

d
2 + (r∗2 − w2)

d
2

+ r∗
√

d + 1
≤ r0. (19)

We will later show that (4) implies (19) and we will also

verify that r0 ≤ r∗ < 1.09r0.

Without loss of generality we assume that

argmini>1 dist(x∗,Li) = 2,

and let x0 be the center of mass of μ1 + μ2 in B(0, r). Then

for any r > r0

min
L

∫

B(x∗,r)

(

dist(x,L)

r

)2

dμ

≥ min
L

∫

B(x∗,r)

(

dist(x,L)

r

)2

d(μ1 + μ2)

= min
L:x0∈L

∫

B(x∗,r)

(

dist(x,L)

r

)2

d(μ1 + μ2)

≥ min
L

∫

B(x∗,r)

(

dist(x,L)

r

)2

dμ1

+ min
L:x0∈L

∫

B(x∗,r)

(

dist(x,L)

r

)2

dμ2

=
∫

B(x∗,r)

(

dist(x,L1)

r

)2

dμ1

+ min
L:x0∈L

∫

B(x∗,r)

(

dist(x,L)

r

)2

dμ2. (20)

We claim that when r = r∗, the minimizer in the second

expression in the RHS of (20) (denoted by L0) satisfies that

dim(L0 ∩ L2) = d − 1 and (L0 ∩ L⊥
2 ) ⊥ L2. We denote the

orthonormal vector passes through x∗ and x0 by u1, one of

the d orthonormal vectors that span L2 by u2, and one of the

D−d −1 orthonormal vectors that span (span(L2))
⊥ by u2.

We will prove that u1 is the top eigenvector of
∫

B(x∗,r∗)(x −
x0)(x − x0)

T dμ(x), and u2 is the second top eigenvector, by

proving

∫

B(x∗,r∗)∩T (L2,w)

(

uT
1 (x − x0)

)2
dμ2(x)

>

∫

B(x∗,r∗)∩T (L2,w)

(

uT
2 (x − x0)

)2
dμ2(x)

>

∫

B(x∗,r∗)∩T (L2,w)

(

uT
3 (x − x0)

)2
dμ2(x). (21)

We note that

(

B
(

x∗,w
)

∩ L⊥
1

)

×
(

B
(

x∗,
√

r∗2 − w2
)

∩ L1

)

⊂ T (L1,w) ∩ B
(

x∗, r∗)

⊂
(

B
(

x∗,w
)

∩ L⊥
1

)

×
(

B
(

x∗, r∗) ∩ L1

)

. (22)

Defining y as nearest point to x∗ on L2, then for r∗ > r0 +
2w, we have that

(

B(y,w) ∩ L⊥
2

)

×
(

B
(

y,
√

r∗2 − (r0 + 2w)2
)

∩ L2

)

⊂ T (L2,w) ∩ B
(

x∗, r∗)

⊂
(

B(y,w) ∩ L⊥
2

)

×
(

B
(

y,

√

r∗2 − r2
0

)

∩ L2

)

. (23)

Moreover

vol
(

B
(

x∗, r1

)

∩ L⊥)

×
(

B
(

x∗, r2

)

∩ L
)

= C0(d,D − d) rD−d
1 rd

2 . (24)

Denote the center of mass of B(x∗, r∗) ∩ T (L2,w) by x1,

notice that ‖x0 − x∗‖ < r0 + w, the center of mass of

B(x∗, r∗) ∩ T (L1,w) is x∗, and x∗, x0 and x1 satisfies

x0 = vol(B(x∗,r∗)∩T (L1,w))x∗+vol(B(x∗,r∗)∩T (L2,w))x1

vol(B(x∗,r∗)∩T (L1,w))+vol(B(x∗,r∗)∩T (L2,w))
.

(25)
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Combining (22), (23), (24) and (25) we have the estima-

tion

∥

∥x0 − x∗∥
∥

≤ vol(B(x∗, r∗) ∩ T (L2,w)) (r0 + w)

vol(B(x∗, r∗) ∩ T (L1,w)) + vol(B(x∗, r∗) ∩ T (L2,w))

≤
(r∗2 − r2

0 )
d
2

(r∗2 − w2)
d
2 + (r∗2 − r2

0 )
d
2

· (r0 + w). (26)

Therefore for any point x1 in B(x∗, r∗)∩T (L2,w), using

(19) and (26) we have

∣

∣uT
1 (x1 − x0)

∣

∣ ≥ r0 −
∥

∥x0 − x∗∥
∥ ≥ r∗

√
d + 1

and

∫

B(x∗,r∗)∩T (L2,w)

(

uT
1 (x − x0)

)2
dμ2(x)

≥ r∗2

d + 1
μ2

(

B
(

x∗, r∗) ∩ T (L2,w)
)

. (27)

Since any points in B(x∗, r∗) ∩ T (L2,w) has a distance to

x0 smaller than r∗, we have

∫

B(x∗,r∗)∩T (L2,w)

(

uT
1 (x − x0)

)2

+ d

∫

B(x∗,r∗)∩T (L2,w)

(

uT
2 (x − x0)

)2

×
∫

B(x∗,r∗)∩T (L2,w)

‖x − x0‖2 dμ2(x)

< r∗2μ2

(

B
(

x∗, r∗) ∩ T (L2,w)
)

. (28)

Combining (27) and (28), the first inequality in (21) is

proved.

By direct integration one obtains that the average of

(uT
2 x1)

2 for x1 in

(

B(y,w) ∩ L⊥
2

)

×
(

B(y,
√

r∗2 − (r0 + 2w)2)
)

,

is d
d+2

(r∗2 − (r0 + 2w)2), and the average of (uT
2 x1)

2 for x1

in

T (L2,w) \
((

B(y,w)∩L⊥
2

)

×
(

B
(

y,
√

r∗2 − (r0 + 2w)2
)))

is larger than that of the set

(

B(y,w) ∩ L⊥
2

)

×
(

B
(

y,
√

r∗2 − (r0 + 2w)2
))

.

Applying these two facts, we obtain the estimate

∫

B
(

x∗,r∗
)

∩T (L2,w)

(

uT
2 (x∗ − x0)

)2
dμ2

≥ d

d + 2

(

r∗2 − (r0 + 2w)2
)

×μ2

(

B
(

x∗, r∗) ∩ T (L2,w)
)

. (29)

We also have
∫

B
(

x∗,r∗
)

∩T (L2,w)

(

uT
3

(

x∗ − x0

))2
dμ2

≤ w2μ2

(

B
(

x∗, r∗) ∩ T (L2,w)
)

. (30)

Using the fact that r∗ ≥ r∗
2 , we have

r∗2 − (r0 + 2w)2 ≥ r∗2
2 − (r0 + 2w)2

= (r0 + 2w)2

(

r2
0

r0 − 4r0w − 4w2
− 1

)

= (r0 + 2w)2

r0 − 4r0w − 4w2
·
(

r0w + 4w2
)

> 4w2. (31)

Combining (29), (30) and (31), the second inequality in

(21) is also proved.

To estimate β2(x
∗, r∗) and β2(x

∗, r0), using integration

the points in (B(x∗, r1) ∩ L⊥) × (B(x∗, r2) ∩ L) has an av-

erage squared distance D−d
D−d+2

r2
2 to L. Besides, the points in

(B(y,w) ∩ L⊥
2 ) × (B(y,

√

r∗2 − (r0 + 2w)2) ∩ L2) has an

average squared distance at least (r∗2 − (r0 + 2w)2)/3 to

the minimizer L in (20). Combining these facts with (20),

(22), (23), and (24), we have

β2
2 (x∗, r∗)

>

D−d
D−d+2

wD−d+2r∗d + wD−d(r∗2 − (r0 + 2w)2)
d+2

2 /3

r∗2(wD−dr∗d + (K − 1)wD−d(r∗2 − r2
0 )

d
2 )

(32)

and

β2
2

(

x∗, r0

)

<
D − d

D − d + 2

w2

r2
0

. (33)

To prove (5), we only need to prove that the RHS of (32)

is larger than the RHS of (33), which has a following sim-

plified form:

D − d + 2

3(D − d)

(

1 − (r0 + 2w)2

r∗2

)
d+2

2

≥ (K − 1)
w2

r2
0

(

1 −
r2

0

r∗2

)
d
2

+ w2

r2
0

(

1 −
r2

0

r∗2

)

. (34)
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When d = 1, (34) follows from

(

D + 1

3(D − 1)

)2(

1 − (r0 + 2w)2

r∗2

)3

≥ K2 w4

r4
0

(

1 −
r2

0

r∗2

)

.

(35)

From r∗ ≥ r∗
1 , we have

(

1 − (r0 + 2w)2

r∗2

)2

≥ 18(D − d)2K2

(D − d + 2)2

w4

r2
0 (r0 + 2w)2

, (36)

and from r∗ ≥ r∗
2 we have

2

(

1

(r0 + 2w)2
− 1

r∗2

)

≥ 1

r2
0

− 1

r∗2
. (37)

Then (35) follows from (36) and (37), and therefore (5)

is proved for the case d = 1.

For the case d ≥ 2, the proof of (34) follows a similar

strategy. Combing (37) and

(

1 − (r0 + 2w)2

r∗2

)
d
2

≥ 6(D − d)K

(D − d + 2)

w2

(r0 + 2w)2
, (38)

we obtain

D − d + 2

3(D − d)

(

1− (r0 + 2w)2

r∗2

)
d+2

2

≥ K
w2

r2
0

(

1−
r2

0

r∗2

)

, (39)

and (34) follows from (39).

Now we will prove that (4) satisfies (19). Notice that

r∗2 − w2 > (r0 + 2w)2 − w2 > r2
0 , it is sufficient to prove

r0 + w

1 + (
r2
0

r∗2−r2
0

)
d
2

+ r∗
√

d + 1
≤ r0

and since r∗ > r∗
1 > (r0 +2w)/

√
1 − c > (1+2c)r0/

√
1 − c

and w < c r0, where c = 0.02, we only need to prove

1 + c

1 + ( 1
(1+2c)2

1−c
−1

)
d
2

+ 1 + 2c√
(d + 1)(1 − c)

≤ 1. (40)

It holds for c = 0.02 and d = 1. Since that when c is fixed,

d = 1 maximizes the LHS of (40), (40) holds for any d

with c = 0.02. Therefore (4) satisfies (19) and Theorem 1

is proved.

At last we will show that r∗ < 1.09 r0. Indeed, r∗
1 <

r0(1+2 ·0.02)/
√

1 − 0.02 < 1.09 r0, and r∗
2 < 1

√

2

1.042 −1
r0 <

1.09r0, therefore r∗ = max(r∗
1 , r∗

2 ) < 1.09r0.

Remark 1 The function β2(x, r) often does not have a

local minimum at exactly r0. We demonstrate it for a

particular case, but it is evident that this is rather typi-

cal. Assume that K = 2, d = 1, D = 2 and L1 ⊥ L2,

then for sufficiently small η, {B(x∗, r) ∩ T (L2,w2)} ⊂
T (L1, β2(x

∗, r0)). Following the same argument for the

interval [wi∗ , r0], β2(x
∗, r) is decreasing in the interval

[r0, r0 + η].
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