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Abstract

The development of controlled-release nanoparticle (NP) technologies has great potential to

further improve the therapeutic efficacy of RNA interference (RNAi), by prolonging the release of

small interfering RNA (siRNA) for sustained, long-term gene silencing. Herein, we present a NP

platform with sustained siRNA-release properties, which can be self-assembled using

biodegradable and biocompatible polymers and lipids. The hybrid lipid-polymer NPs showed

excellent silencing efficacy, and the temporal release of siRNA from the NPs continued for over

one month. When tested on luciferase-expressed HeLa cells and A549 lung carcinoma cells after

short-term transfection, the siRNA NPs showed greater sustained silencing activity than

lipofectamine 2000-siRNA complexes. More importantly, the NP-mediated sustained silencing of

prohibitin 1 (PHB1) generates more effective tumor cell growth inhibition in vitro and in vivo than

the lipofectamine complexes. We expect that this sustained-release siRNA NP platform could be

of interest in both fundamental biological studies and clinical applications.
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Background

RNA interference (RNAi) has shown great potential to treat various diseases including

cancer, through selectively silencing target genes.1,2 To facilitate safe and effective delivery

of RNAi therapeutics (e.g., siRNA) to tumor cells – a major hurdle for the clinical

applications of RNAi, a few cationic lipid-/polymer-based nanoparticle (NP) platforms have

been successfully developed and moved into clinical studies in cancer patients.3–6 These NP

systems, however, lack sustained siRNA release properties, and their therapeutic efficacy

may be limited by transient gene silencing. We hypothesize that sustained siRNA delivery

could lead to long-term, effective knockdown of target genes, thus avoiding frequent

administration of therapeutic siRNAs to maintain the silencing action and minimizing

systemic side effects.

Macroscopic biomaterial scaffolds and microspheres have been demonstrated with sustained

siRNA release and prolonged gene silencing, but these strategies are mainly limited to local

delivery applications due to their large size.7,8 Therefore, the development of controlled-

release NP platforms would be necessary to achieve sustained siRNA delivery for systemic

cancer treatment.9,10 We have recently developed an innovative lipid-polymer hybrid NP

platform for siRNA delivery,11 and herein demonstrate that our ameliorated hybrid NPs can

release siRNA continuously for periods longer than one month and achieve sustained gene

silencing for at least two weeks. The growth of tumor cells treated with our NPs containing

siRNA specifically targeting prohibitin 1 (siPHB1) was drastically inhibited both in vitro

and in vivo.

Methods

Hybrid lipid-polymer NPs were prepared by a modified double-emulsion solvent

evaporation technique and self-assembly method.11 In this work, a new cationic lipid-like

compound (G0-C14) was synthesized by reacting 1,2-epoxytetradecane with PAMAM

dendrimer (generation 0), and used for siRNA NP formulation. The siRNA release profile

was obtained by measuring the dye-labeled siRNA remaining in the NPs or lipofectamine

2000 (Lipo2K) at different time points. Luciferase expression change was measured in

luciferase-expressing HeLa (Luc-HeLa) cells transfected with NP(siLuc) or Lipo2K(siLuc)

for 6 hours. Similarly, the expression level of PHB1 in A549 lung cancer cells was tested by

immunoblotting over a period of 14–24 days, after treatment with NP(siPHB1). In vitro

A549 cell proliferation was monitored by AlamarBlue assay for 12 days. The A549

xenograft tumor growth was studied using 6-week-old BALB/C nude mice. A detailed

description of the methods and experiments is included in the Supplementary Materials.
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Results

The hybrid lipid-polymer NPs (Figure 1) are composed of an aqueous siRNA core stabilized

by the positively charged lipid-like compound G0-C14, a middle hydrophobic PLGA

polymer shell, and a relatively neutral-charge lipid-PEG surface layer. With the use of G0-

C14 and selected formulation parameters, these NPs can have a sustained siRNA release for

more than one month (Figure 2A). The siRNA half-release time can be extended to ~ 9 days,

as compared to ~ 8 hours for Lipo2K. To evaluate the silencing efficacy of these sustained-

release NPs, we introduced NP(siLuc) or Lipo2K(siLuc) into Luc-HeLa cells and measured

luciferase expression at different time points. As shown in Figures 2B and S1, the luciferase

signal was significantly decreased to less than 10% at day 2 by both NP(siLuc) and

Lipo2K(siLuc). Notably, by day 4, the luciferase signal remained less than 10% in

NP(siLuc)-treated cells, while it recovered to over 30% in Lipo2K(siLuc)-transfected cells.

This result suggested that the sustained siRNA release from NPs could contribute to the

prolonged silencing activity. As the Luc-HeLa cells proliferate rapidly (Figure S2), the

internalized NPs can be highly diluted with time. This resulted in the recovery of luciferase

expression back to ~ 30% and 60% at day 7 and 10, respectively, although still much lower

than those (~ 68% and 92%) in Lipo2K(siLuc)-transfected cells.

In addition to luciferase silencing, we also evaluated the sustained knockdown of PHB1, a

protein involved in cell proliferation, apoptosis, chemoresistance, and other biological

process.12–14 Figure 3A shows that after single transfection with Lipo2K(siPHB1) for 6

hours, the PHB1 expression in A549 cells can be effectively silenced after 3 days. However,

it recovered after 14 days. In contrast, the impressive PHB1 silencing was maintained by

NP(siPHB1) over 2 weeks, and PHB1 expression was recovered at 24 days (Figure S3). No

significant difference was observed in the cellular uptake of siRNA with either the NP or

Lipo2K formulation after 6-hour incubation (Figure S4). This result further suggested that

the prolonged silencing effect of NPs is more likely due to the sustained siRNA releasing.

To determine whether the sustained silencing could lead to better efficacy in inhibiting

cancer cell growth, we first studied the in vitro proliferation of A549 cells after transfection

with NP(siPHB1) or Lipo2K(siPHB1). Cell number was measured using AlamarBlue assay,

which allows continuously monitoring of cell number in real time. Figure 3B demonstrates

that the A549 cell growth in the control group is very rapid with a ~ 50-fold increase of cell

number on day 9 relative to day 0, much faster than that in the Lipo2K(siPHB1) and

NP(siPHB1) groups. More impressively, the cell proliferation was significantly inhibited

after a week in the NP(siPHB1) group, whereas the Lipo2K(siPHB1) group showed

continuous cell growth. This means that sustained silencing of PHB1 inhibits A549 cell

growth in vitro more efficiently than short-term silencing. Furthermore, we studied in vivo

growth of A549 cells using a xenograft mouse model. Consistent with our in vitro results,

the mean tumor volumes of NP(siPHB1) group were significantly smaller compared to

Lipo2K(siPHB1) or to the two control groups (saline and control NP), as shown in Figure 4.
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Discussion

Controlled-release polymer technologies have benefited many branches of medicine over the

past four decades, as they can enhance the in vivo therapeutic efficacy, reduce the

administration frequency, and maximize the patient compliance.15 Recently, we have

developed self-assembled polymeric NP technologies with sustained-release and targeting

properties, which were brought from conception to clinical studies for cancer treatment and

smoking cessation.16–18 The hybrid lipid-polymer NPs are designed based upon these

polymeric nanotechnologies, and combine the unique properties of lipoplexes. It is

noteworthy that majority of reported siRNA NP platforms, including those in clinical

studies, do not have the sustained siRNA release property. While more tests (e.g., release

kinetics effect and systemic delivery) will be needed to clarify the potential of this NP

system for further improvement of RNAi therapy, the present results are promising and have

demonstrated its capability for sustained, long-term gene silencing and effective inhibition

of tumor cell growth. Furthermore, we postulate that the anti-tumor efficacy of our RNAi

NPs could be greatly enhanced by incorporating tumor-specific targeting ligands, and/or by

simultaneously delivering synergistic siRNA combinations against multiple pathways or

drug-siRNA combinations.3,6,19,20

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Hybrid lipid-polymer NPs for siRNA delivery. (A) Schematic and (B) TEM image of the

NPs.
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Figure 2.
Sustained siRNA release and luciferase silencing. (A) In vitro siRNA release profiles of the

NPs vs. Lipo2K complexes. (B) Luciferase expression vs. time after 6-hour transfection with

NP(siLuc) and Lipo2K(siLuc).
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Figure 3.
Sustained PHB1 silencing and its effect on A549 cell proliferation. (A) The PHB1

expression change in A549 cells was measured by Western blot analysis after 6-h

transfection. Actin was used as an internal standard. (B) A549 cell proliferation vs. time

after transfection. *P<0.05, **P<0.01, NP vs. Lipo2K.
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Figure 4.
Xenograft tumor growth of A549 cells pre-treated with NP(siPHB1) vs. Lipo2K(siPHB1),

saline, and control NP (n=4–5). *P<0.05, NP vs. Lipo2K.
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