
sustainability

Article

Hybrid Logical Security Framework for Privacy
Preservation in the Green Internet of Things

Isha Batra 1, Sahil Verma 1 , Arun Malik 1, Kavita 1, Uttam Ghosh 2 , Joel J. P. C. Rodrigues 3,4 ,

Gia Nhu Nguyen 5,6 , A. S. M. Sanwar Hosen 7,* and Vinayagam Mariappan 8,*

1 School of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, India;

isha.17451@lpu.co.in (I.B.); sahilverma@ieee.org (S.V.); arun.17442@lpu.co.in (A.M.); kavita@ieee.org (K.)
2 Department of EECS, Vanderbilt University, Nashville, TN 37240, USA; uttam.ghosh@vanderbilt.edu
3 Post-Graduation Program in Electrical Engineering, Federal University of Piauí (UFPI), Teresina 64049-550,

Brazil; joeljr@ieee.org
4 Covilhã Delegation, Instituto de Telecomunicações, 6201-001 Covilhã, Portugal
5 Graduate School, Duy Tan University, Da Nang 550000, Vietnam; nguyengianhu@duytan.edu.vn
6 Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam
7 Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Korea
8 Advanced R&D Department, SMR Automotive Modules, Bucheon 14556, Korea

* Correspondence: sanwar@jbnu.ac.kr (A.S.M.S.H.); vinayagam@ieee.org (V.M.)

Received: 21 May 2020; Accepted: 26 June 2020; Published: 9 July 2020
����������
�������

Abstract: Lately, the Internet of Things (IoT) has opened up new opportunities to business and

enterprises; however, the cost of providing security and privacy best practices is preventing numerous

organizations from adopting this innovation. With the proliferation of connecting devices in IoT,

significant increases have been recorded in energy use, harmful contamination and e-waste. A new

paradigm of green IoT is aimed at designing environmentally friendly protocols by reducing the

carbon impact and promote efficient techniques for energy use. There is a consistent effort of

designing distinctive security structures to address vulnerabilities and attacks. However, most of

the existing schemes are not energy efficient. To bridge the gap, we propose the hybrid logical

security framework (HLSF), which offers authentication and data confidentiality in IoT. HLSF uses a

lightweight cryptographic mechanism for unique authentication. It enhances the level of security and

provides better network functionalities using energy-efficient schemes. With extensive simulation,

we compare HLSF with two existing popular security schemes, namely, constrained application

protocol (CoAP) and object security architecture for IoT (OSCAR). The result shows that HLSF

outperforms CoAP and OSCAR in terms of throughput with low computational, storage and energy

overhead, even in the presence of attackers.

Keywords: green IoT; ICT; authentication; confidentiality; cryptography; security framework

1. Introduction

The Internet of Things (IoT) leads to a revolutionary change in the lifestyle of users [1]. Every device

that is connected to the IoT works in a smart way to make the world technology-dependent [2]. IoT works

in numerous applications, such as inventory, health care, and smart homes [3]. Therefore, users expect

a high level of security and privacy from the IoT, requiring a security framework [4]. The inbuilt

security solutions in the IoT are susceptible to attacks, such as denial of service (DoS), spoofing,

and many more [5]. A security framework is evaluated by assessing its security features, such as

authentication, or confidentiality in this case [6,7]. The next step for evaluating a framework is to

check whether the data collected are authentic or not [8]. The last evaluation measure for a security

Sustainability 2020, 12, 5542; doi:10.3390/su12145542 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0003-3136-4029
https://orcid.org/0000-0003-1698-8888
https://orcid.org/0000-0001-8657-3800
https://orcid.org/0000-0003-4267-3900
https://orcid.org/0000-0002-2068-4126
http://dx.doi.org/10.3390/su12145542
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/12/14/5542?type=check_update&version=2

Sustainability 2020, 12, 5542 2 of 15

framework is the synthesis or mining of data to make fruitful decisions. A security framework can be

competent if it can meet the security requirements and can make decisions efficiently in real-time [9].

A security framework tends to provide overall system security. As shown in Figure 1 below, there

are four operation layers in the IoT. These four layers—that is the perception, network, transport,

and application layers—take care of the security implementation at different levels.

Sustainability 2020, 12, x FOR PEER REVIEW 2 of 16

decisions. A security framework can be competent if it can meet the security requirements and can
make decisions efficiently in real-time [9]. A security framework tends to provide overall system
security. As shown in Figure 1 below, there are four operation layers in the IoT. These four layers—
that is the perception, network, transport, and application layers—take care of the security
implementation at different levels.

Figure 1. Security concerns at each layer of the Internet of Things (IoT).

The IoT consists of resource-constrained devices like radio frequency identification (RFID),
sensors that are battery operated. Therefore, special attention should be paid to limit the use of their
resources, as well as to offer security at the same time. Lightweight cryptography solutions offer both
security as well as performance. The main reasons for applying lightweight cryptography in IoT are
summarized below:

 End-to-end communication efficiency: when two resource-constrained devices communicate
using lightweight solutions, the overall energy consumption will be reduced. Hence, the end-to-
end communication will become efficient.

 Increased number of connections: as a lightweight solution requires fewer resources, any
resource-constrained device can connect to the network. The number of connections in the
network will thus increase.

Lightweight block ciphers work well over conventional solutions due to their lightweight design
considerations, as specified below:

 Small key size: the key size selected by a lightweight block cipher should be comparatively less
than those of conventional block ciphers. The National Institute of Standards and Technology
(NIST) restricts the minimum key size to 112 bits. A key size less than this is more susceptible to
brute force attacks.

 Small block size: the block size chosen for the lightweight cipher should be less than those of
conventional ciphers. For example, if the block size is chosen as 64 bit, as compared to 128 bit,
the Advanced Encryption Standard (AES), a greater number of plaintext blocks can be
encrypted. Moreover, the memory requirements will be less.

Figure 1. Security concerns at each layer of the Internet of Things (IoT).

The IoT consists of resource-constrained devices like radio frequency identification (RFID),

sensors that are battery operated. Therefore, special attention should be paid to limit the use of their

resources, as well as to offer security at the same time. Lightweight cryptography solutions offer both

security as well as performance. The main reasons for applying lightweight cryptography in IoT are

summarized below:

• End-to-end communication efficiency: when two resource-constrained devices communicate using

lightweight solutions, the overall energy consumption will be reduced. Hence, the end-to-end

communication will become efficient.

• Increased number of connections: as a lightweight solution requires fewer resources,

any resource-constrained device can connect to the network. The number of connections in the

network will thus increase.

Lightweight block ciphers work well over conventional solutions due to their lightweight design

considerations, as specified below:

• Small key size: the key size selected by a lightweight block cipher should be comparatively less

than those of conventional block ciphers. The National Institute of Standards and Technology

(NIST) restricts the minimum key size to 112 bits. A key size less than this is more susceptible to

brute force attacks.

• Small block size: the block size chosen for the lightweight cipher should be less than those of

conventional ciphers. For example, if the block size is chosen as 64 bit, as compared to 128 bit,

Sustainability 2020, 12, 5542 3 of 15

the Advanced Encryption Standard (AES), a greater number of plaintext blocks can be encrypted.

Moreover, the memory requirements will be less.

• Simple round structure: the rounds designed for lightweight ciphers should be simpler than the

conventional cryptographic algorithms. For example, a round can be made simpler by replacing

an 8-bit Substitution (S)-Box with a 4- bit S-Box. This will also reduce memory requirements.

This may reduce the level of security, which can be improvised by increasing the total number

of rounds.

• Simple key schedule: the generation function of key schedule in lightweight designs must generate

the subkeys very fast. The simpler a key schedule is, the less power consumption and memory

will be required by the algorithm. Using a simple key schedule may lead to attacks like a weak

key, related key, or chosen key attack, but that can be overcome by using a secure and frequent

function for key generation.

• Fewer implementation requirements: A device should support either encryption or decryption.

Only the required operations of the cipher should be implemented rather than implementing the

full cipher.

• Purpose of green IoT: green IoT focuses on reducing IoT energy usage, a necessity for satisfying

the world’s appetite for the maintainability of everything being intelligent and reducing CO2

emissions. Green IoT comprises designing and leveraging aspects [10]. The design elements of

green IoT refer to developing registering devices, correspondence conventions, energy efficiency,

and networking architectures [11]. Leveraging the IoT element seeks to reduce or eliminate

emissions of CO2, reduce the contaminations, and enhance energy efficiency. On the other hand,

the enabling technologies for green IoT are called information and communication technology

(ICT) technologies [12].

1.1. Motivation

With the advancement of technology, every internet user is more inclined towards the smart

activities that can be performed using IoT. With this smartness, security vulnerabilities also become an

issue, when user details are processed online. This kind of call is required for a security framework for

IoT environments. Security frameworks can be designed at every architectural layer of IoT. This work

primarily works on the security framework on the application layer. Different frameworks for security

exist in IoT, but the existing solutions use the traditional heavyweight security mechanisms like AES in

various modes or asymmetric cryptographic solutions like RSA. These heavyweight solutions can take

away all the resources and will decay the power sources of the devices. Therefore, this research paper

proposes a security framework that uses a lightweight security alternative that will consume minimal

resources and power. In this way, this system is also helpful for protecting the environment.

1.2. Contributions

Three major phases of security are taken into consideration while designing a security framework

for IoT; namely, registration, authentication, and data security.

• Registration: This is the first phase every device has to go through. Whenever a device joins the

network, the identity of the device is registered on the server. This is a one-time process.

• Authentication: Once the registration is done and the device is in an active state and has some

information to share with the server, the device has to first authenticate its identity to the server.

The server in response also authenticates itself to the device. The moment mutual authentication

is over, a device can initiate the data transfer process.

• Data Security: The last but the important concern is that every time information is shared between

the device and the server, the data need to be secure. This phase ensures that the data shared are

not readable as well as not alterable by a third party.

Sustainability 2020, 12, 5542 4 of 15

Therefore, the main contribution of this work is the proposal of a security framework that uses a

smaller key size, fewer rounds with an easy but tricky round structure in the process of registration,

authentication as well as offering data security. On the other hand, the existing frameworks tend to

use a large key size and a complex round structure. This makes the proposed framework a better,

more lightweight solution as compared to the existing counterparts.

1.3. Organization

The rest of the paper is organized as follows. In the second section, the literature review is

conducted that highlights the existing security frameworks in IoT by specifying their security features

and modes of operation. In this section, two existing frameworks are detailed; one is constrained

application protocol (CoAP), and the second is object security architecture for IoT (OSCAR). The third

section proposes a new security framework, HLSF, for IoT categorized into three distinct phases,

where the first is registration, the next is authentication and the final phase is data security. This section

elaborates on the flow of steps that are to be followed for one-time registration, authentication,

and every-time data security required during data transmission. Later, in the next section, the existing

security frameworks CoAP and OSCAR are compared with the proposed security framework HLSF

using the COOJA simulator, and based on result analysis, certain discussions and decisions are

made. Performance parameters used for comparison are memory requirements, energy overhead,

computation overhead, and communication rate. Finally, the last section concludes with the state of

the art and the working efficiency of the HLSF proposed.

2. Related Work

After conducting the theoretical and analytical study, this section describes the recent state of

existing security frameworks in IoT. There are several existing security frameworks in IoT, achieving the

same target while following different approaches [13–15]. Each framework is designed based on the

same level of expectancy, as specified below

• Software reliance in each framework to carry out the whole process

• Set of protocols required to initiate and set up the communication among the devices.

• Contribution of the security framework in maintaining the security and privacy in IoT.

Considering the expectancy from a security framework and in authentication, cryptographic

solutions [16] used by the framework are the prime concern of this section. The frameworks analyzed in

this study are the constrained application protocol (CoAP) framework, and object security framework

for IoT (OSCAR).

2.1. Constrained Application Protocol (CoAP) Framework

CoAP was proposed by constrained restful environment working group (CORE) in the Internet

Engineering Task Force (IETF) [17]. CoAP works for constrained devices at the application layer.

For communication, IPV6 over Low Power Personal Area Network (6LoWPAN) provides the usage of

IPv6 communication among the sensing devices. IoT devices can communicate in CoAP by using the

user datagram protocol (UDP) at the transport layer and 6LoWPAN [18]. Interactions in a constrained

network like IoT running CoAP can be either between devices or the client/server, where one of the

devices can act as a client and one dedicated device acts as a server [19]. Figure 2 shows the integration

of CoAP with the Internet. CoAP itself acts as an internal network, which means that a CoAP client

request can only be processed by the CoAP server. CoAP, otherwise, can be extended and can process

HTTP client requests using the CoAP/HTTP mapping process, as CoAP acts as a subset of HTTP.

The 6LoWPAN border router (6LBR) can be used to establish this connection.

Sustainability 2020, 12, 5542 5 of 15Sustainability 2020, 12, x FOR PEER REVIEW 5 of 16

Figure 2. Constrained application protocol (CoAP) Network.

The CoAP framework uses the CoAP protocol working at the application layer, the transport
layer’s UDP protocol and, in the end, 6LoWPAN is used at the network layer [20]. At the network
layer, 6LoWPAN is used, as it commercializes with the constrained networks like IoT. At the
transport layer, UDP is used for fast transmission as compared to the reliable countermeasure
transmission control protocol (TCP). This is due to the reliability mechanism offered by the message
layer of CoAP. At the application layer, CoAP operates at distinguished sub layers. The responsibility
of the request/response layer is to employ methods like get, put, post, and delete for accessing the
resources in the CoAP network [21–23]. The number of requests and the mapping among their
semantically correct responses also forms the responsibility of this layer.

CoAP offers security features by using datagram transport layer security (DTLS) over UDP
instead of TCP. DTLS is designed to offer end-to-end security. As it runs with UDP, it can be used in
numerous constrained applications like voice over IP (VoIP), real-time communication. DTLS in
CoAP offers security features such as authentication, confidentiality, integrity, key sharing
mechanism [24]. This research work emphasizes the authentication and the confidentiality security
aspect of CoAP. CoAP comes in four security options, namely NoSec, PreShared Key, Certificates,
and RawPublic key.

2.2. Object Security Framework for IoT (OSCAR)

The OSCAR framework works on the consumer–producer model. In IoT, consumers are the end
devices, such as accessories used by humans, and the actuating devices that intake data from the
producers, such as sensors, smartwatches, smart meters, and motion sensors. The responsibility of
offering security in OSCAR lies with the producers. Security is provided to the data at rest or during
transmission. The major emphasis of OSCAR is on the object/device security. Global applications,
such as smart cities, work on OSCAR, as several consumers/clients are requesting the services of
constrained servers [25]. Figure 3 represents the OSCAR framework as the typical consumer–
producer model.

Figure 2. Constrained application protocol (CoAP) Network.

The CoAP framework uses the CoAP protocol working at the application layer, the transport

layer’s UDP protocol and, in the end, 6LoWPAN is used at the network layer [20]. At the network layer,

6LoWPAN is used, as it commercializes with the constrained networks like IoT. At the transport layer,

UDP is used for fast transmission as compared to the reliable countermeasure transmission control

protocol (TCP). This is due to the reliability mechanism offered by the message layer of CoAP. At the

application layer, CoAP operates at distinguished sub layers. The responsibility of the request/response

layer is to employ methods like get, put, post, and delete for accessing the resources in the CoAP

network [21–23]. The number of requests and the mapping among their semantically correct responses

also forms the responsibility of this layer.

CoAP offers security features by using datagram transport layer security (DTLS) over UDP

instead of TCP. DTLS is designed to offer end-to-end security. As it runs with UDP, it can be used in

numerous constrained applications like voice over IP (VoIP), real-time communication. DTLS in CoAP

offers security features such as authentication, confidentiality, integrity, key sharing mechanism [24].

This research work emphasizes the authentication and the confidentiality security aspect of CoAP.

CoAP comes in four security options, namely NoSec, PreShared Key, Certificates, and RawPublic key.

2.2. Object Security Framework for IoT (OSCAR)

The OSCAR framework works on the consumer–producer model. In IoT, consumers are the

end devices, such as accessories used by humans, and the actuating devices that intake data from

the producers, such as sensors, smartwatches, smart meters, and motion sensors. The responsibility

of offering security in OSCAR lies with the producers. Security is provided to the data at

rest or during transmission. The major emphasis of OSCAR is on the object/device security.

Global applications, such as smart cities, work on OSCAR, as several consumers/clients are requesting

the services of constrained servers [25]. Figure 3 represents the OSCAR framework as the typical

consumer–producer model.

OSCAR needs authorization servers to restrict the access of resources by the consumers.

For authentication, OSCAR uses the simple concept of elliptic curve digital signatures. A cryptographic

security solution to offer confidentiality is provided by using AES in CCM mode is used.

There are numerous other security add-ons that are frequently made in the literature for IoT.

With the increasing number of sensors required for IoT surveillance, there comes a requirement of

large-scale sensor-based designs for operating these systems. For supporting these applications which

are based on real-time with minimum delay, routers or switches are visualized [26]. Additionally,

interconnectivity is required among everything that is connected in IoT that needs integration of the

networking components [27]. This openness of sensors in IoT scenarios also comes with the different

attacks and vulnerabilities and these security threats are identified by the authors in [28].

Sustainability 2020, 12, 5542 6 of 15

Figure 3. Object security framework for IoT (OSCAR) framework.

In [29], a study was made on considering the effective security solutions for IoT. The above

solutions are independent of the platform and contribute to energy savings. IoT protection in smart

healthcare applications, alongside energy efficiency, is a key issue. Password conceiving is the most

common thing that can be done with a weak security framework in such applications. In [30], the user’s

privacy in applications with IoT is maintained through a certain password strengthening technique.

IoT devices are a vein of security for the operation of IoT to ensure the validity of devices and

data gathered from these devices. In the literature, many authentication methods to verify the data

collected from the devices are available to ensure the authenticity of the application. To improve the

third party’s faith in the IoT system, the data can be collected carefully. In [31], a scheme for sensing

the sensed data is proposed that is based on policy and confidence. The suggested scheme, Real Alert,

shows the trust of both the systems and the collected data. It increases the user’s conviction.

In [32], the author introduced an IoT application validation protocol (AAoT). This scheme

involves no changes to existing micro control units. The disadvantage of this system is that dynamic

vulnerabilities cannot be corrected. The Authenticated Key Exchange system [33], which provides

protection to side-channel attacks and is versatile in key certificate management, is still vulnerable to

the leakage of random secret values.

New threats are being inserted at every point in existing IoT operations. Consequently, a SCADA

model was introduced in [34] for threat detection. For detection of attacks, detection models using

vector support machines and networks of deep faith are used.

To deal with the information for attack detection, the current attacks involve other intelligent

methods and one of their intelligent security strategies is proposed [35]. In [36], the authors addressed

background history, concerns, holes, and obstacles in IoT that contribute to these attacks. Devices are

authenticated by Zigbee technology between devices in [37]. This is important because IoT devices are

heterogeneous and therefore need a common platform for security arrangements between devices.

Therefore, based on related work, it can be concluded that the existing framework for IoT security

implements solutions that are heavyweight in context to their key size, the complex structure of each

round, and key schedules. The existing frameworks lack efficiency regarding security, throughput,

and the delay in packet transmission.

Sustainability 2020, 12, 5542 7 of 15

3. Proposed Hybrid Logical Security Framework (HLSF)

The proposed HLSF contends to offer security services like confidentiality, integrity,

and authentication. For this, HLSF is divided into three phases. The first phase is for the registration

of the new devices that join the network. Second phase lightweight authentication is designed for

providing a mechanism with which every device has to authenticate itself to the centralized server.

Once the authentication is over, the last phase concentrates on the security of data in transit when

different devices communicate with each other.

The entire HLSF is executed by taking an example of inventory automation, with a coordinating

unit (CU), items, a database, an inventory server (IS), and an internet service provider as the components.

The architecture representing the communication flow among these components is represented in

Figure 4.

Figure 4. Hybrid logical security framework (HLSF) architecture.

3.1. Security Features

The proposed HLSF offers authentication, data confidentiality, and validation by using efficient

mechanisms for each. The whole process is categorized into three phases, namely registration,

then authentication, and finally data security. The notations used in every algorithm are described in

Table 1.

Table 1. Notations used in Hybrid Logical Security Framework (HLSF).

Symbol Description

C&NC Coordinating Unit (CU) and Number of CU

IDC&IDS Identity of CU and Identity of Server

TIDC Temporary Identity of CU

IS Inventory Server

SN Sequence Number

UID Unique IDs

KS Key Shared between CU and Server

TV Temporary Variable

Ka Alternate Keys

Sustainability 2020, 12, 5542 8 of 15

• Registration Phase

When a new device joins a network, the credentials are logged first to the server using the

key-sharing system as shown in Figure 5.

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 16

Table 1. Notations used in Hybrid Logical Security Framework (HLSF).

Symbol Description
C&NC Coordinating Unit (CU) and Number of CU

IDC&IDS Identity of CU and Identity of Server
TIDC Temporary Identity of CU

IS Inventory Server
SN Sequence Number

UID Unique IDs
KS Key Shared between CU and Server
TV Temporary Variable
Ka Alternate Keys

 Registration Phase
When a new device joins a network, the credentials are logged first to the server using the key-

sharing system as shown in Figure 5.

Figure 5. Registration process of HLSF.

In the registration phase, whenever a new CU joins, it has to submit its identity to IS. IS, further
using its own identity, the identity of CU and a nonce value, computes a secret key KS, along with
unique IDs, alternate keys, and a unique sequence number for that particular CU. Every time a
connection request is made by CU to IS, the sequence umber of CU is matched with the one stored in
IS. If a match occurs, CU is authenticated at the server otherwise it makes use of alternate keys for
proving its identity to IS.

 Authentication Phase

Once the device receives the credentials, the mutual authentication between the client and the
server is completed, as shown in Figure 6 before any contact is initiated.

Figure 5. Registration process of HLSF.

In the registration phase, whenever a new CU joins, it has to submit its identity to IS. IS, further using

its own identity, the identity of CU and a nonce value, computes a secret key KS, along with unique IDs,

alternate keys, and a unique sequence number for that particular CU. Every time a connection request

is made by CU to IS, the sequence umber of CU is matched with the one stored in IS. If a match occurs,

CU is authenticated at the server otherwise it makes use of alternate keys for proving its identity to IS.

• Authentication Phase

Once the device receives the credentials, the mutual authentication between the client and the

server is completed, as shown in Figure 6 before any contact is initiated.Sustainability 2020, 12, x FOR PEER REVIEW 9 of 16

Figure 6. Authentication process of HLSF.

The mutual authentication process starts between CU and IS, where CU first generates a variable
computing hash of its identity, a nonce, and an already shared secret key. CU then sends an
authentication request consisting of a variable, its ID, and the SN it already has. IS, on receiving the
request, first matches the SN received by CU; if a match occurs, IS initiates the process of
authentication. For this, IS generates a temporary variable, again using a hash function on the variable
received by CU, a secret key and a nonce. CU extracts its variable from a received message from IS.
If a match occurs, IS is also authenticated at CU. Once this mutual authentication is done, further data
communication starts.

 Securing Data in HLSF

Once the device is authenticated, the data communicated to and from the device are made secure
using a security algorithm, as shown in Figure 7.

Figure 6. Authentication process of HLSF.

Sustainability 2020, 12, 5542 9 of 15

The mutual authentication process starts between CU and IS, where CU first generates a variable

computing hash of its identity, a nonce, and an already shared secret key. CU then sends an

authentication request consisting of a variable, its ID, and the SN it already has. IS, on receiving the

request, first matches the SN received by CU; if a match occurs, IS initiates the process of authentication.

For this, IS generates a temporary variable, again using a hash function on the variable received

by CU, a secret key and a nonce. CU extracts its variable from a received message from IS. If a

match occurs, IS is also authenticated at CU. Once this mutual authentication is done, further data

communication starts.

• Securing Data in HLSF

Once the device is authenticated, the data communicated to and from the device are made secure

using a security algorithm, as shown in Figure 7.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 16

Figure 7. Data security process of HLSF.

Data security in communication is achieved by performing computation and permutation
operations on data being shared. First, the key is divided into two halves to perform computations
like finding 1s and the sum of 1s. Later, an Ex-OR operation is done on two separate halves. Finally,
the ciphertext is fetched by permutating the halves and using crossover operation.

3.2. Security Analysis of HLSF

Proposed HLSF works in three different ways to overcome attacks; that is, during registration,
authentication, and then finally during data transit. Each phase of HLSF tends to make the whole
framework secure by preventing attacks based on its working mechanism. Security analysis of HLSF
will explore the attacks that are restricted by each phase and hence makes HLSF less vulnerable to
attacks.

 Attack Resistance during Registration

This phase of registration is used to generate a secret key that will be further used during the
authentication and data security phases. Any CU who wishes to be part of the network has to register
itself to the server. There is a sequence number assigned to CU by IS during registration. Whenever
a communication initiates, the CU has to present that sequence number. If an intruder tries to connect
to IS, the IS will ask for a sequence number or any alternate key which the intruder will not have.
When there is a mismatch, IS will not allow an intruder to join the network. This concept of matching
SN will prevent a denial of service attack against the server, as an intruder will not be able to connect
to the server.

 Attack Resistance during Authentication

Mutual authentication is performed among CU and IS using multiple parameters, such as a
secret key, a random variable, and an SN that is generated in the registration phase. In the
authentication phase, the entire security process depends on multiple parameters for generating

Figure 7. Data security process of HLSF.

Data security in communication is achieved by performing computation and permutation

operations on data being shared. First, the key is divided into two halves to perform computations

like finding 1s and the sum of 1s. Later, an Ex-OR operation is done on two separate halves. Finally,

the ciphertext is fetched by permutating the halves and using crossover operation.

3.2. Security Analysis of HLSF

Proposed HLSF works in three different ways to overcome attacks; that is, during registration,

authentication, and then finally during data transit. Each phase of HLSF tends to make the whole

framework secure by preventing attacks based on its working mechanism. Security analysis of HLSF

will explore the attacks that are restricted by each phase and hence makes HLSF less vulnerable

to attacks.

Sustainability 2020, 12, 5542 10 of 15

• Attack Resistance during Registration

This phase of registration is used to generate a secret key that will be further used during the

authentication and data security phases. Any CU who wishes to be part of the network has to register

itself to the server. There is a sequence number assigned to CU by IS during registration. Whenever a

communication initiates, the CU has to present that sequence number. If an intruder tries to connect

to IS, the IS will ask for a sequence number or any alternate key which the intruder will not have.

When there is a mismatch, IS will not allow an intruder to join the network. This concept of matching

SN will prevent a denial of service attack against the server, as an intruder will not be able to connect

to the server.

• Attack Resistance during Authentication

Mutual authentication is performed among CU and IS using multiple parameters, such as a secret

key, a random variable, and an SN that is generated in the registration phase. In the authentication

phase, the entire security process depends on multiple parameters for generating authentication

messages at CU as well as for generating a response message from IS. Even if the secret key generated

in the registration phase is compromised by an intruder, they will still not have the SN, and thus cannot

authenticate themselves to the IS. This will again help in preventing denial of service attacks and is

also non-vulnerable to the man in the middle attack.

• Attack Resistance during Data Transit

This phase is used to transmit data securely. For this, certain operations like EX-OR, permutation,

and cross over operations are performed on the secret key and the plain text to figure out the ciphertext.

EX-OR operation is used as it is reversible as well as the output calculated depends on both the halves.

The simple but tricky mechanism of data security abstains from compromising attacks and replay

attacks as each time a new secret key is created for information transmission.

4. Performance Comparison of COAP, OSCAR, and HLSF

This section evaluates and compares the performance of existing frameworks CoAP, OSCAR with

the proposed framework HLSF. First, the security effectiveness of the frameworks is tested by finding

the memory requirements, energy overhead, computational overhead, communicate rate, and denial

of service attack. Later, the effectiveness of the overall framework from authentication, data collection,

data security, data mining, and decision making is tested in terms of throughput, latency, and packet

delivery ratio. Considering the heterogeneous nature of frameworks, certain research assumptions are

made and realized for the performance evaluation.

4.1. Simulation Tool and Simulation Parameters

To evaluate the performance of HLSF, CoAP, and OSCAR, the COOJA simulator developed by

Adam Dunkels in 2002 supported on CONTIKI OS is used. COOJA offers an environment where

sensor motes can connect, communicate, and share data. While the data are shared among the

motes, each security framework is implemented on data to measure its performance. The simulation

parameters used to carry out this evaluation are represented in Table 2 below.

Sustainability 2020, 12, 5542 11 of 15

Table 2. Simulation parameters.

Parameter Name Value

Radio medium Unit Disk Graph Medium (UDGM)

Transmission range 50 m

Inference range 100 m

Type of Channel Wireless

Nodes Position Random

Sensing interval 10 s

MAC protocol Contiki MAC

Routing protocol RPL

Map Area 1000 × 1000 m2

4.2. Memory Requirements

The random-access memory (RAM) and read-only memory (ROM) are evaluated for CoAP,

OSCAR, and the proposed HLSF, using COOJA as the simulator. Figure 8 represents the memory

requirements in percentage by considering the total available memory in CoAP, OSCAR, and HLSF.
Sustainability 2020, 12, x FOR PEER REVIEW 12 of 16

Figure 8. Percentage memory requirement for CoAP, OSCAR, and HLSF.

From Figure 8, it can be concluded that the ROM requirement of HLSF is 3 percent less than
CoAP and 13 percent less than OSCAR. On the other hand, the RAM requirement of HLSF is 2 percent
less than CoAP and 7 percent less than OSCAR. Therefore, it can be deduced that the overall memory
requirements of HLSF are less as compared to those of OSCAR and CoAP.

4.3. Energy Overhead

The energy overhead of the security framework has a direct impact on the lifetime of the sensors
and will ultimately impact the transmission rate of the application. Therefore, if the energy overhead
increases for a particular application, its lifetime gradually decreases. A more complex security
framework possesses more energy overhead. Figure 9 represents the energy overhead calculated in
millijoules (MJ) for CoAP, OSCAR, and HLSF.

Figure 9. Energy overhead for CoAP, OSCAR, and HLSF.

Figure 9 reflects that energy overhead depends on the packet size. With an increase in packet
size, energy overhead goes on increasing. Even at the largest packet size, the energy overhead of the
proposed HLSF is 18 percent less than CoAP and 55 percent less than OSCAR.

Figure 8. Percentage memory requirement for CoAP, OSCAR, and HLSF.

From Figure 8, it can be concluded that the ROM requirement of HLSF is 3 percent less than CoAP

and 13 percent less than OSCAR. On the other hand, the RAM requirement of HLSF is 2 percent less

than CoAP and 7 percent less than OSCAR. Therefore, it can be deduced that the overall memory

requirements of HLSF are less as compared to those of OSCAR and CoAP.

4.3. Energy Overhead

The energy overhead of the security framework has a direct impact on the lifetime of the sensors

and will ultimately impact the transmission rate of the application. Therefore, if the energy overhead

increases for a particular application, its lifetime gradually decreases. A more complex security

framework possesses more energy overhead. Figure 9 represents the energy overhead calculated in

millijoules (MJ) for CoAP, OSCAR, and HLSF.

Sustainability 2020, 12, 5542 12 of 15

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 16

Figure 8. Percentage memory requirement for CoAP, OSCAR, and HLSF.

From Figure 8, it can be concluded that the ROM requirement of HLSF is 3 percent less than
CoAP and 13 percent less than OSCAR. On the other hand, the RAM requirement of HLSF is 2 percent
less than CoAP and 7 percent less than OSCAR. Therefore, it can be deduced that the overall memory
requirements of HLSF are less as compared to those of OSCAR and CoAP.

4.3. Energy Overhead

The energy overhead of the security framework has a direct impact on the lifetime of the sensors
and will ultimately impact the transmission rate of the application. Therefore, if the energy overhead
increases for a particular application, its lifetime gradually decreases. A more complex security
framework possesses more energy overhead. Figure 9 represents the energy overhead calculated in
millijoules (MJ) for CoAP, OSCAR, and HLSF.

Figure 9. Energy overhead for CoAP, OSCAR, and HLSF.

Figure 9 reflects that energy overhead depends on the packet size. With an increase in packet
size, energy overhead goes on increasing. Even at the largest packet size, the energy overhead of the
proposed HLSF is 18 percent less than CoAP and 55 percent less than OSCAR.

Figure 9. Energy overhead for CoAP, OSCAR, and HLSF.

Figure 9 reflects that energy overhead depends on the packet size. With an increase in packet

size, energy overhead goes on increasing. Even at the largest packet size, the energy overhead of the

proposed HLSF is 18 percent less than CoAP and 55 percent less than OSCAR.

4.4. Computational Overhead

Computational overhead is the excess time required by a security framework for offering security

used in IoT applications. Figure 10 represents the computational overhead evaluated in milliseconds

(ms) for CoAP, OSCAR, and HLSF.

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 16

4.4. Computational Overhead

Computational overhead is the excess time required by a security framework for offering
security used in IoT applications. Figure 10 represents the computational overhead evaluated in
milliseconds (ms) for CoAP, OSCAR, and HLSF.

Figure 10. Computational overhead for CoAP, OSCAR, and HLSF.

Figure 10 reflects that the computational overhead depends on the packet size. With an increase
in packet size, computational overhead goes on increasing. Even at the largest packet size, the
computational overhead of proposed HLSF is 8 percent less than CoAP and 24 percent less than
OSCAR.

4.5. Communication Rate

The communications rate is the number of packets sent over in one second. The communication
rate is impacted by the type of security framework used for an application scenario. An application
that does not offer any security will tend to have a greater communication rate than a security-
oriented application. Figure 11 represents the communication rate of CoAP, OSCAR, and HLSF,
considering the packet size as 64 bytes.

Figure 11. Communication Rate for CoAP, OSCAR, and HLSF.

Figure 10. Computational overhead for CoAP, OSCAR, and HLSF.

Figure 10 reflects that the computational overhead depends on the packet size. With an

increase in packet size, computational overhead goes on increasing. Even at the largest packet

size, the computational overhead of proposed HLSF is 8 percent less than CoAP and 24 percent less

than OSCAR.

Sustainability 2020, 12, 5542 13 of 15

4.5. Communication Rate

The communications rate is the number of packets sent over in one second. The communication

rate is impacted by the type of security framework used for an application scenario. An application

that does not offer any security will tend to have a greater communication rate than a security-oriented

application. Figure 11 represents the communication rate of CoAP, OSCAR, and HLSF, considering the

packet size as 64 bytes.

Sustainability 2020, 12, x FOR PEER REVIEW 13 of 16

4.4. Computational Overhead

Computational overhead is the excess time required by a security framework for offering
security used in IoT applications. Figure 10 represents the computational overhead evaluated in
milliseconds (ms) for CoAP, OSCAR, and HLSF.

Figure 10. Computational overhead for CoAP, OSCAR, and HLSF.

Figure 10 reflects that the computational overhead depends on the packet size. With an increase
in packet size, computational overhead goes on increasing. Even at the largest packet size, the
computational overhead of proposed HLSF is 8 percent less than CoAP and 24 percent less than
OSCAR.

4.5. Communication Rate

The communications rate is the number of packets sent over in one second. The communication
rate is impacted by the type of security framework used for an application scenario. An application
that does not offer any security will tend to have a greater communication rate than a security-
oriented application. Figure 11 represents the communication rate of CoAP, OSCAR, and HLSF,
considering the packet size as 64 bytes.

Figure 11. Communication Rate for CoAP, OSCAR, and HLSF. Figure 11. Communication Rate for CoAP, OSCAR, and HLSF.

From Figure 11, it can be concluded that the communication rate—that is, the number of packets

sent per unit time—is more in HLSF, as it is more than 2 percent greater than that of CoAP and more

than 10 percent greater than that of OSCAR.

The overall result is summarized below:

• With a fewer number of rounds required, the memory requirements of HLSF are less as compared

to CoAP and OSCAR.

• HLSF has a less complex structure, as it does not work on an asymmetric algorithm, hence making

its energy overhead less.

• HLSF takes less time to encrypt the data as the round keys are generated at each round and are of

optimal size, making its computational overhead smaller.

• Even if the number of rounds is less and the structure is less complex and but still tricky, each round

generates a unique set of keys. Thus, this makes it less vulnerable to denial of service attack, as it

becomes difficult for the intruder to get over the frequently changing key. Moreover, every time

intruder has to prove its authenticity to the server.

• HLSF with a security mechanism offered still has a high communication rate, as fewer packets are

lost or attacked in transmission.

5. Conclusions

With the proliferation of advanced technology, the environment is facing more challenges due to

e-waste and risky emissions. It becomes very essential that more research must take into consideration

green IoT to preserve our environment and to make society more astute and greener. As the essential

factors of ICT become more advanced, the things around us will get smarter, performing explicit

endeavors in a self-administering way, rendering the new sort of green communication among human

and things and between entities themselves. Providing security and network functionalities with

a preferable decreased energy usage is one of the requirements of next generation IoT. In light of

this, the hybrid logical security framework (HLSF) has been proposed, consisting of three phases:

Sustainability 2020, 12, 5542 14 of 15

namely, registration, authentication, and data security. HLSF provides a lightweight security solution

that requires a lower key size and frequently changes the pattern of the key. We have simulated

and compared our proposed method with two well-known frameworks, namely CoAP and OSCAR.

The simulation result shows that the memory requirement for HLSF is 3% and 13% less as compared to

CoAP and OSCAR, respectively. HLSF outperforms the CoAP and OSCAR in terms of computational

and energy overhead. The computational overhead of the proposed method is 8% and 24% less in

comparison to CoAP and OSCAR, respectively. The energy requirement of HLSF is 18% less than

CoAP and 55% less than OSCAR. Moreover, the throughput of HLSF is more than 2% greater than that

of CoAP and 10% more than that of OSCAR. Thusly, it is evident that HLSF provides better network

functionalities with a low overhead as compared to CoAP and OSCAR. In order to make the system

more efficient and smarter, further research can be carried out by investigating the use of data mining

and enabling smart decision making for innovative dynamics in IoT.

Author Contributions: Formal analysis, A.M. and U.G.; Investigation, G.N.N.; Resources, A.S.M.S.H. and V.M.;
Validation, J.J.P.C.R.; Writing—original draft, S.V. and I.B.; Writing—review & editing, K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was supported by research funds of Jeonbuk National University in 2020. This work is
partially funded by FCT/MCTES through national funds and when applicable co-funded EU funds under the
Project UIDB/EEA/50008/2020; and by Brazilian National Council for Scientific and Technological Development
(CNPq) under Grant No. 309335/2017-5.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Verikoukis, C.; Minerva, R.; Guizani, M.; Datta, S.K.; Chen, Y.; Muller, H.A. Internet of Things: Part 2.

IEEE Commun. Mag. 2017, 55, 114–115. [CrossRef]

2. Silva, J.S.; Zhang, P.; Pering, T.; Boavida, F.; Hara, T.; Liebau, N.C. People-Centric Internet of Things.

IEEE Commun. Mag. 2017, 55, 18–19. [CrossRef]

3. Hasan, M.; Islam, M.M.; Islam, I.; Hashem, M.M.A. Attack and Anomaly Detection in IoT Sensors in IoT

Sites Using Machine Learning Approaches. Internet Things 2019, 7, 100059. [CrossRef]

4. Yang, Y.; Wu, L.; Li, G.Y.L.; Zhao, H. A survey on security and privacy issues in internet-of-things.

IEEE Internet Things J. 2017, 4, 1250–1258. [CrossRef]

5. Ling, Z.; Luo, J.; Xu, Y.; Gao, C.; Wu, K.; Fu, X. Security vulnerabilities of the internet of things: A case study

of the smart plug system. IEEE Internet Things J. 2017, 4, 1899–1909. [CrossRef]

6. Cheng, C.; Lu, R.; Petzoldt, A.; Takagi, T. Securing the Internet of Things in a quantum world.

IEEE Commun. Mag. 2017, 55, 116–120. [CrossRef]

7. Allhoff, F.; Henschke, A. The Internet of Things: Foundational ethical issues. Internet Things 2018, 1, 55–66.

[CrossRef]

8. Kawamoto, Y.; Nishiyama, H.; Kato, N.; Shimizu, Y.; Takahara, A.; Jiang, T. Effectively collecting data for the

location-based authentication in the Internet of Things. IEEE Syst. J. 2017, 11, 1403–1411. [CrossRef]

9. Garcia-de-Prado, A.; Ortiz, G.; Boubeta-Puig, J. COLLECT: Collaborative Context-aware service-oriented

architecture for intelligent decision-making in the Internet of Things. Expert Syst. Appl. 2017, 85, 231–248.

[CrossRef]

10. Fussler, C.; James, P. Eco-Innovation: A Break thorough Discipline for Innovation and Sustainability; Pitman:

London, UK, 1996.

11. Correia, E.; Carvalho, H.; Azevedo, S.G.; Govindan, K. Maturity models in supply chain sustainability:

A systematic literature review. Sustainability 2017, 9, 64. [CrossRef]

12. Li, W.; Xu, J.; Zheng, M. Green governance: New perspective from open innovation. Sustainability 2018,

10, 3845. [CrossRef]

13. Wang, J.; Gao, Y.; Zhou, C.; Sherratt, R.S.; Wang, L. Optimal Coverage Multi-Path Scheduling Scheme with

Multiple Mobile Sinks for WSNs. Comput. Mater. Contin. 2020, 62, 695–711. [CrossRef]

14. Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H. An Enhanced PEGASIS Algorithm with Mobile Sink Support for

Wireless Sensor Networks. Topol. Control Emerg. Mobile Netw. 2018. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2017.7842420
http://dx.doi.org/10.1109/MCOM.2017.7841465
http://dx.doi.org/10.1016/j.iot.2019.100059
http://dx.doi.org/10.1109/JIOT.2017.2694844
http://dx.doi.org/10.1109/JIOT.2017.2707465
http://dx.doi.org/10.1109/MCOM.2017.1600522CM
http://dx.doi.org/10.1016/j.iot.2018.08.005
http://dx.doi.org/10.1109/JSYST.2015.2456878
http://dx.doi.org/10.1016/j.eswa.2017.05.034
http://dx.doi.org/10.3390/su9010064
http://dx.doi.org/10.3390/su10113845
http://dx.doi.org/10.32604/cmc.2020.08674
http://dx.doi.org/10.1155/2018/9472075

Sustainability 2020, 12, 5542 15 of 15

15. Min, Z.; Yang, G.; Wang, J.; Kim, G. A Privacy-preserving BGN-type Parallel Homomorphic Encryption

Algorithm Based on LWE. J. Internet Technol. 2019, 20, 2189–2200.

16. Choo, K.R.; Gritzalis, S.; Park, J.H. Cryptographic Solutions for Industrial Internet-of-Things:

Research Challenges and Opportunities. IEEE Trans. Ind. Inform. 2018, 14, 3567–3569. [CrossRef]

17. Eclipse Organization. Mqtt and Coap, IoT Protocols. Available online: http://www.eclipse.org/community/

eclipse_newsletter/2014/february/article2.php (accessed on 5 February 2014).

18. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); Standards Track RFC 7252;

Center for Computing Technologies (TZI), University of Bremen: Bremen, Germany, June 2014.

19. Mišić, J.; Ali, M.Z.; Mišić, V.B. Architecture for IoT Domain with CoAP Observe Feature. IEEE Internet

Things J. 2018, 5, 1196–1205. [CrossRef]

20. Mišić, J.; Mišić, V.B. Proxy cache maintenance using multicasting in CoAP IoT domains. IEEE Internet Things J.

2018, 5, 1967–1976. [CrossRef]

21. Correia, N.; Sacramento, D.; Schütz, G. Dynamic aggregation and scheduling in CoAP/observe-based wireless

sensor networks. IEEE Internet Things J. 2016, 3, 923–936. [CrossRef]

22. Betzler, A.; Gomez, C.; Demirkol, I.; Paradells, J. CoAP congestion control for the internet of things.

IEEE Commun. Mag. 2016, 54, 154–160. [CrossRef]

23. Son, S.; Kim, N.; Lee, B.; Cho, C.; Chong, J. A time synchronization technique for coap-based home automation

systems. IEEE Trans. Consum. Electron. 2016, 62, 10–16. [CrossRef]

24. Park, C.; Park, W. A Group-Oriented DTLS Handshake for Secure IoT Applications. IEEE Trans. Autom.

Sci. Eng. 2018, 99, 1–10. [CrossRef]

25. Vucinic, M.; Tourancheau, B.; Rousseau, F.; Duda, A.; Damon, L. OSCAR: Object Security Architecture for

the Internet of Things. In Proceedings of the 2014 IEEE 15th International Symposium, Sydney, Australia,

19 June 2014; pp. 3–16.

26. Aly, M.; Khomh, F.; Haoues, M.; Quintero, A.; Yacout, S. Enforcing Security in Internet of Things Frameworks:

A Systematic Literature Review. Internet Things 2019, 6, 100050. [CrossRef]

27. Younis, M. Internet of everything and everybody: Architecture and service virtualization. Comput. Commun.

2018, 131, 66–72. [CrossRef]

28. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw.

Comput. Appl. 2017, 88, 10–28. [CrossRef]

29. Hellaoui, H.; Koudil, M.; Bouabdallah, A. Energy-efficient mechanisms in the security of the internet of

things: A survey. Comput. Netw. 2017, 127, 173–189. [CrossRef]

30. He, D.; Ye, R.; Chan, S.; Guizani, M.; Xu, Y. Privacy in the Internet of Things for Smart Healthcare.

IEEE Commun. Mag. 2018, 56, 38–44. [CrossRef]

31. Li, W.; Song, H.; Zeng, F. Policy-based secure and trustworthy sensing for the internet of things in smart

cities. IEEE Internet Things J. 2018, 5, 716–723. [CrossRef]

32. Feng, W.; Qin, Y.; Zhao, S.; Feng, D. AAoT: Lightweight attestation and authentication of low resource things

in IoT and CPS. Comput. Netw. 2018, 134, 167–182. [CrossRef]

33. Ruan, O.; Zhang, Y.; Zhang, M.; Zhou, J.; Harn, L. After-the-fact leakage-resilient identity based authenticated

key exchange. IEEE Syst. J. 2018, 12, 2017–2026. [CrossRef]

34. Huda, S.; Yearwood, J.; Hassan, M.M.; Almogren, A. Securing the operations in SCADA-IoT platform-based

industrial control system using ensemble of deep belief networks. Appl. Soft Comput. 2018, 71, 66–77.

[CrossRef]

35. Miloslavskaya, N.; Tolstoy, A. Internet of Things: Information security challenges and solutions.

Cluster Comput. 2019, 22, 103–119. [CrossRef]

36. Adat, V.; Gupta, B.B. Security in Internet of Things: Issues, challenges, taxonomy, and architecture.

Telecommun. Syst. 2018, 67, 423–441. [CrossRef]

37. Alshahrani, M.; Traore, I.; Woungang, I. Anonymous mutual IoT inter-device authentication and key

agreement scheme based on the ZigBee technique. Internet Things 2019, 7, 100061. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2018.2841049
http://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://dx.doi.org/10.1109/JIOT.2018.2800691
http://dx.doi.org/10.1109/JIOT.2018.2818115
http://dx.doi.org/10.1109/JIOT.2016.2517120
http://dx.doi.org/10.1109/MCOM.2016.7509394
http://dx.doi.org/10.1109/TCE.2016.7448557
http://dx.doi.org/10.1109/TASE.2018.2855640
http://dx.doi.org/10.1016/j.iot.2019.100050
http://dx.doi.org/10.1016/j.comcom.2018.07.008
http://dx.doi.org/10.1016/j.jnca.2017.04.002
http://dx.doi.org/10.1016/j.comnet.2017.08.006
http://dx.doi.org/10.1109/MCOM.2018.1700809
http://dx.doi.org/10.1109/JIOT.2017.2720635
http://dx.doi.org/10.1016/j.comnet.2018.01.039
http://dx.doi.org/10.1109/JSYST.2017.2685524
http://dx.doi.org/10.1016/j.asoc.2018.06.017
http://dx.doi.org/10.1007/s10586-018-2823-6
http://dx.doi.org/10.1007/s11235-017-0345-9
http://dx.doi.org/10.1016/j.iot.2019.100061
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation
	Contributions
	Organization

	Related Work
	Constrained Application Protocol (CoAP) Framework
	Object Security Framework for IoT (OSCAR)

	Proposed Hybrid Logical Security Framework (HLSF)
	Security Features
	Security Analysis of HLSF

	Performance Comparison of COAP, OSCAR, and HLSF
	Simulation Tool and Simulation Parameters
	Memory Requirements
	Energy Overhead
	Computational Overhead
	Communication Rate

	Conclusions
	References

