
1

Hybrid Long-Range Collision Avoidance for
Crowd Simulation

Abhinav Golas1, Rahul Narain2, Sean Curtis1, and Ming C. Lin, Fellow, IEEE1

1University of North Carolina at Chapel Hill
2University of California, Berkeley

Abstract—Local collision avoidance algorithms in crowd simulation often ignore agents beyond a neighborhood of a certain size.

This cutoff can result in sharp changes in trajectory when large groups of agents enter or exit these neighborhoods. In this work,

we exploit the insight that exact collision avoidance is not necessary between agents at such large distances, and propose a

novel algorithm for extending existing collision avoidance algorithms to perform approximate, long-range collision avoidance. Our

formulation performs long-range collision avoidance for distant agent groups to efficiently compute trajectories that are smoother

than those obtained with state-of-the-art techniques and at faster rates. Comparison to real-world data demonstrates that crowds

simulated with our algorithm exhibit an improved speed sensitivity to density similar to human crowds.

Another issue often sidestepped in existing work is that discrete and continuum collision avoidance algorithms have different

regions of applicability. For example, low-density crowds cannot be modeled as a continuum, while high-density crowds can

be expensive to model using discrete methods. We formulate a hybrid technique for crowd simulation which can accurately

and efficiently simulate crowds at any density with seamless transitions between continuum and discrete representations. Our

approach blends results from continuum and discrete algorithms, based on local density and velocity variance. In addition to being

robust across a variety of group scenarios, it is also highly efficient, running at interactive rates for thousands of agents on portable

systems.

Index Terms—crowd simulation, collision avoidance, lookahead, hybrid algorithms

✦

1 INTRODUCTION

Long-range vision is critical to human navigation;
in addition to avoiding nearby obstacles, the human
visual system looks ahead to perform dynamic global
planning and local navigation. By considering the
distribution of other pedestrians and obstacles over
large distances, people can anticipate overcrowded
regions and navigate around them, thereby finding
efficient, uncongested paths to their goals. Thus long-
range vision greatly improves crowd flow and progress.
Most existing work addresses either global navigation
around static obstacles or local avoidance of collisions
with nearby pedestrians, but often neglects the im-
portance of long-range collision avoidance. Modeling
long-range collision avoidance holds tremendous po-
tential, to improve the flow of simulated crowds and
help them reach their goals faster. To maximize utility,
such a model should improve crowd flow without
disrupting existing crowd simulation pipelines. Thus
we consider this as the primary goal of this work.

The state of the art for this topic is a synthetic-
vision based steering algorithm proposed by Ondrěj et
al. [1]. This method explores a vision-based approach
for collision avoidance among walkers. It offers global
efficiency among the agents in terms of overall walking

golas@cs.unc.edu
narain@eecs.berkeley.edu
seanc@cs.unc.edu
lin@cs.unc.edu

time. Achieving reasonable performance is perhaps the
key challenge of using this approach for large-scale,
interactive applications. Even a parallel, GPU-based
implementation cannot handle more than 200 agents
at interactive rates. Complementing this approach, our
work addresses this problem by offering a simple and
efficient alternative that naturally extends existing local
collision avoidance algorithms to provide long-range
collision avoidance. Our avoidance algorithm works
based on the concept of lookahead, i.e. future agent
states are approximated using past and present infor-
mation; and these states are used to model possible
collisions with agents not considered by local collision
avoidance. Our method is robust even in presence
of obstacles and chaotic crowd motion, and provides
improved correspondence to real-world behavior.

Collision avoidance algorithms can be broadly clas-
sified into two categories: discrete and continuum –
based on the underlying representation of crowds. We
formulate and demonstrate our lookahead approach
for both classes of algorithms, as the problem is not
restricted to either class. Though our demonstration
in this paper uses specific examples of continuum
and discrete algorithms, our technique can be easily
applied and generalized to other collision avoidance
algorithms.

The use of continuum and discrete algorithms for col-
lision avoidance also brings up a common issue with ei-
ther class, namely their applicability to different ranges

2

Fig. 1. Results without lookahead (left) and with lookahead (right) for 2 demo scenarios. Crossing: (Top) shows

two groups of agents seeking to exchange positions at simulation time t = 10 s. Note how, with lookahead, the

bigger group parts to allow smaller group through. Circle: (Bottom) shows agents on the edge of a circle heading

to diametrically opposite points at simulation time t = 40 s. Note significantly improved progress with lookahead.

of agent density. Continuum algorithms (e.g. [2]) are
ideally suited for medium to high densities, since the
continuum assumption holds when pedestrian paths
are tightly constrained by the nearby neighbors found
at these levels of density. On the other hand, though
discrete algorithms can be applied at any density, their
computational costs escalate at high densities, along
with numerical issues in some cases. Since crowds can
exhibit an entire spectrum of densities even in any
particular scene, these cases are not exceptions, but
common occurrences. This insight suggests the need
for an inexpensive hybrid scheme that locally blends
both approaches for efficient collision avoidance over
the entire spectrum of crowd densities. Such a scheme
should choose the most suitable underlying algorithm
for a particular simulation sub-domain, especially for
problem cases where the wrong choice can lead to
instabilities or other computational issues such as in
scenarios of high or low densities, high variance of
agent velocities, etc.

To address these problems, this paper introduces
the following main results:

• A novel approach for approximate long-range
collision avoidance that can be used with discrete
or continuum algorithms with minimal increase
in computational costs.

• An inconsistency metric to measure oscillations
in agent trajectories that can be used to detect

chaotic crowd behavior and curtail lookahead or
to serve as a basis for comparing crowds, real or
simulated.

• A hybrid algorithm that combines existing contin-
uum and discrete collision avoidance algorithms
to efficiently compute smooth local collision avoid-
ance responses in any sub-domain.

• Comparison to real-world data that demonstrates
improved speed sensitivity to density in simulated
crowds using our algorithm, similar to human
crowds as measured using the fundamental dia-
gram.

Our results show significant improvements in crowd
progress with minor increases in computational costs
In Fig. 1, we demonstrate our approach on two
scenarios, where improvements in crowd behavior
and progress are seen with less than 3x computational
overhead. Our approach is able to perform interactive
long-range steering for both large, dense crowds and
sparsely populated scenes, but also achieve interactive
rates on a commodity laptop.

2 BACKGROUND

We model a crowd as a set of agents, each of which has
a specified goal position that it attempts to reach while
avoiding collisions with other agents and with static
obstacles in the environment. The standard crowd

3

simulation loop that we and others often use is as
follows:

1) For each agent, perform global planning to find a
path to the goal that avoids collisions with static
obstacles while ignoring other agents. Set the
preferred velocity vp along the direction of the
initial segment of the path.

2) For each agent, perform local collision avoidance
(LCA) to steer the preferred velocity vp away
from collisions with other agents, yielding the
actual velocity v that the agent moves with.

Below, we briefly discuss some of the prior work
relating to these two steps and discuss some of the data
and techniques used for validating crowd simulation.

Most algorithms for global planning represent the
connectivity of free space in the environment as a
graph, and perform search queries for each agent to
determine a collision-free path [3], [4], [5], [6], [7], [8],
[9]. We do not diverge from previous work in this
aspect.

A variety of models have been proposed for local
collision avoidance among agents. These may use
either discrete or continuum representations of the
crowd. In discrete models, each agent considers other
agents as individual obstacles, and attempts to avoid
all of them simultaneously. Collision avoidance in this
context can be formulated in terms of repulsion forces
between agents [9], [10], [11], [12], [13], [14], [15], [16],
or geometrically based algorithms [17], [18], [19], [20],
[21]; the state of the art involves treating possible
collisions as obstacles in velocity space [22], [23],
[24], [25]. As considering the interaction of all pairs
of agents becomes expensive in large crowds, such
methods typically only take into account neighboring
agents that lie within a specified radius, limiting the
amount of lookahead possible. Guy et al. [26] propose
a method to mitigate the computational cost of large
neighborhoods by approximately clustering agents.

In a continuum-based approach, one first obtains
from the set of agents a density field and a veloc-
ity field by accumulating the agents’ positions and
velocities on a background grid. This smoothed repre-
sentation can then be used to compute the ideal motion
of agents while avoiding regions of high density. The
method of Treuille et al. [27] performs a global solve
over the obtained density and velocity fields, giving
compelling results including long-range congestion
avoidance effects. However, its computational cost
increases steeply with the number of distinct goals
in the simulation, making this approach unsuitable
for interactive crowd simulation where agents may
have many diverse goals. Narain et al. [2] propose a
technique that prevents overcrowding in highly dense
crowds, but it relies on purely local information and
thus cannot plan around congestion at a large distance.

Validating crowd simulation has always been chal-
lenging. Historically, the presence of so-called “emer-
gent phenomena” has been considered evidence which

suggested correctness. Steerbench is a suite of tests
designed to allow comparison of models [28]. While it
suggests some basis for comparing models, it does
not present (or use) a ground truth; there is no
data of human pedestrians used in performing the
benchmarks.

In the pedestrian dynamics community, the most
common quantitative metrics for crowd behavior deal
with aggregate crowd properties: flow and density.
The relationship between flow and density has been
referred to as the “fundamental diagram” [29]. In
addition to this aggregate analysis, Guy et al. propose
a new statistical metric for measuring how likely a
particular pedestrian model is to match a given set
of data [30]. In recent years, experiments have been
performed with human subjects in various scenarios
and several data sets have been made publicly avail-
able: “one-dimensional” pedestrian movement, uni-
directional movement [31], uni- and bi-directional flow
in a corridor [32], [33], and flow through a bottleneck
[34]. The value of lookahead is greatest in the case of
conflict. As such, we do not perform validation against
the uni-directional corridor or bottleneck flow. Instead,
we perform analysis on an experimental setup similar
to [33]. Ideally, we would prefer data of pedestrians
moving over a large space, however, even in this
limited scenario, we can show that lookahead improves
the behavior of the simulated crowds (see Fig. 12).

Our approach aims to extend some of the existing
work in LCA algorithms to support long-range colli-
sion avoidance queries. We accomplish this through the
simple yet effective approach of extrapolating agents’
motion into the future. Our algorithm is described
in section 3, and we demonstrate its application to
continuum and discrete algorithms in section 3.1 and
section 3.2. In some cases lookahead may not be
possible, particularly in presence of obstacles and
turbulent flow. These are detailed in section 4 in
addition to a novel metric for measuring oscillation
and chaotic behavior in crowds. Furthermore, using
discrete models alone can be extremely expensive in
dense crowds, while continuum models are poorly
suited to representing the motion of sparse crowds.
In section 5, we propose a hybrid algorithm that
blends results from continuum and discrete algo-
rithms, producing consistently realistic results for
both low and high densities under various velocity
conditions. We demonstrate the advantages of our
proposed techniques with examples in section 6, and
compare our proposed lookahead based long-range
collision avoidance algorithm with real-world data in
section 7. Finally, we conclude with the limitations of
our method, and discuss avenues for future work in
section 8.

4

Fig. 2. Effect of extrapolation in time from x = 0, t = 0
to x = 4, t = i∆t. Dotted line indicates effective radius

(P ≥ 0.4) of agent for collision avoidance, while spread

of gaussian curve indicates splatting area for density

field creation.

3 LOOKAHEAD FOR LONG-RANGE COLLI-
SION AVOIDANCE

In this section, we describe our approach for efficiently
computing long-range collision avoidance for both
continuum-based and discrete agent-based crowd
models. The problem can be summarized as follows:
For each agent with a given preferred velocity vp (as
computed by the global planning stage), we wish
to find an updated velocity v close to the preferred
velocity vp that avoids congestion in front of the agent
at a range of distances from far to near, and also avoids
collisions with neighboring agents. Influences from
nearer agents should receive priority; that is, the agent
should not divert itself to collide with a nearby agent
in trying to avoid congestion farther away.

Given the extensive amount of already existing work
on local collision avoidance algorithms, our aim is to
take advantage of these existing techniques to solve
the problem of long-range collision avoidance. In this
paper, we propose a general approach for decomposing
long-range collision avoidance into a sequence of
simple LCA queries. Thus, our algorithm can re-use
existing LCA algorithms with minimal increase in
computation and coding effort. We show how to apply
this approach to both the discrete and continuum
settings, resulting in efficient algorithms for long-range
collision avoidance in both cases. The crux of the idea
lies in evaluating LCA queries not only on the current
state of the crowd, but on its future state, estimated
at a series of future times, enabling greater lookahead
while using only local operations.

When an agent plans its long-term motion, it needs
to estimate the motion of other agents over a large
time interval into the future. While the future motions
of other agents are of course unknown, they can be
estimated with some degree of confidence using the
agents’ current velocities. To reflect the uncertainty in
this estimation, we treat an agent’s predicted location
in the future not directly as a point, but as a probability
distribution representing the expected probability of
finding the agent at a given position. Intuitively, one

can think of this as a traveling “blob” of probability,
whose center x(t) is linearly extrapolated from the
agent’s current position and velocity, and whose
spread σ(t) gradually expands over time, reflecting
the increasing uncertainty as one looks further in the
future.

In the continuum representation of the crowd, this
has the effect of smoothing out the influence of any
agent on the crowd density field, which enlarges the
distance over which it influences the motion of other
agents while simultaneously attenuating the magni-
tude of its effect. Thus, when an agent performs a
short lookahead, only its nearby agents are significantly
influential, while over a large lookahead, it only sees
a smoothed-out density field that averages over many
agents across a large area. In the discrete model, an
agent is treated as a rigid, impenetrable “blocker” of
fixed radius. When the agent position is uncertain,
we consider a point to be blocked by the agent if
the probability that the agent covers that point is at
least a certain threshold p. As can be seen in Fig. 2,
as the uncertainty increases, the effective size of the
blocker decreases. This has the desirable effect that
agents planning far into the future are not excessively
hindered by the estimated motion of other agents,
given that the latter is unreliable.

With this model for uncertainty, we can formulate
the basic lookahead algorithm for long-range collision
avoidance. The algorithm starts with the preferred ve-
locities vp obtained from the global planning stage, and
performs a number of iterations i = imax, imax−1, . . . , 0
with decreasing time horizons ∆ti = 2i−1∆t, i > 0,
and ∆t0 = 0. In each iteration, we extrapolate the
state of the crowd by a time interval ∆ti into the
future, perform an LCA query (with uncertainty) using
the preferred velocity, and then replace the preferred
velocity with the result of the LCA, as illustrated in
Fig 3. In the last iteration, we set the lookahead ∆t0
to zero, so that we perform the standard LCA with no
uncertainty, and thus maintain the collision avoidance
guarantees of the underlying LCA.

With this scheme, agents are sampled in a larger
radius than in the standard LCA query, and extrap-
olated queries are biased towards the direction of
motion, providing lookahead. Our approach smoothly
merges the effects of distant and nearby avoidance
considerations. Congestion avoidance with a long
time horizon takes place in earlier levels, influencing
the final result by updating the preferred velocity;
nevertheless, this can still be overridden if needed to
avoid imminent collisions with nearby agents, which
are considered later in the process.

The algorithm is defined formally in Fig. 4, where we
denote by v = A(vp, vc, x, ρ) an LCA query performed
for an agent at position x with current velocity vc
and preferred velocity vp in a region of local density
ρ (people per unit area), producing a collision-free
velocity v. In the following subsections, we apply

5

v = vp

x + v

Fig. 3. Effect of lookahead. Note how lookahead allows

the orange agent to see the approaching crowd and

adjust its velocity from preferred velocity vp to v by

incorporating information from the future crowd state at

time t+∆t.

For each leaf node p

• Foreach level i in range imax to 0 DO

1) Determine future state of crowd xi = x+
vc∆ti

2) Solve local collision avoidance problem
v = A(vp, vc, xi, ρi)

3) Update preferred velocity vp = v

• END Foreach

Fig. 4. Lookahead Algorithm using LCA algorithm A.

our generic long-range collision avoidance algorithm
to two examples of LCA algorithms, one continuum-
based and one discrete, showing the broad applicability
of our technique. We also describe some optimizations
that are possible in the specific cases.

3.1 Continuum Lookahead

Continuum representations treat the crowd as a con-
tinuous distribution of density ρ and velocity v over
space, through which any given agent must navigate.
The knowledge of the density distribution enables us
to determine congestion directly as regions of high
density. It is well known that pedestrians walk slower
in regions of high density [35], a fact that can be

formalized into a graph known as the fundamental
diagram relating density, ρ, to a natural walking speed:
vmax = f(ρ) Therefore, agents should navigate around
overcrowded regions to avoid lowering their speed
and maximize their rate of progress towards their goals.
In this section, we first describe a simple algorithm
that uses this idea to avoid congestion over a short
time horizon, then extend it to look much further in
time using our long-range approach.

Consider an agent that has a preferred velocity
vp pointing towards of the goal. Suppose over the
planning time horizon ∆t, the agent maintains a
constant heading along a chosen direction v̂ and walks
at the maximum speed allowed by the fundamental
diagram f . Then to first order, the density it passes
through will change at a rate of fv̂ · ∇ρ, and so its
displacement after time ∆t will be

d(∆t) = fv̂∆t+
1

2
(fv̂ · ∇ρ)f ′v̂∆t2, (1)

where f and f ′ are evaluated at the density at the
current position. We choose v̂ to maximize the progress
towards the goal, vp · d(∆t). This formulation reduces
to the following optimization problem,

argmax
v̂

(

vp · v̂ +
f ′∆t

2
(v̂ · ∇ρ)(vp · v̂)

)

‖v̂‖ ≤ 1.

(2)
We can solve this problem using projected gradient
descent, with the direction of the current velocity as the
initial guess; this converges in less than ten iterations
on average. This simple approach produces excellent
avoidance results with maximal progress while still
being computationally inexpensive. Though similar in
spirit to [2], it avoids the need to calculate a global
pressure to exert forces.

Before formulating the lookahead algorithm for
continuum crowds, we first need to estimate the
future densities of the crowd. In accordance with
the uncertainty model, extrapolation further into the
future requires that each agent’s contribution to the
density field be spread out over larger and larger
areas, which can become inefficient with the traditional
“splatting” approach. Instead, it is more efficient to
represent future states on coarser grids, which will
automatically have the effect of increasing the agents’
effective footprint. Each successive grid is coarsened by
a user-defined factor c, which represents the increase in
uncertainty σ(∆t) from one level of lookahead to the
next. Thus, a pyramid of grids is constructed, where
each level is coarser than the one below it by a factor
c. Level i of the pyramid contains the future state of
the crowd at time t+∆ti.

With this representation, the lookahead algorithm
as defined in Fig. 4 can be directly applied. For each
cell at the bottom of the pyramid, we solve the LCA
problem separately at multiple levels of the pyramid,
starting from the top and cascading the solution at
level i as the preferred velocity at level i− 1. Though

6

this involves redundant computation being a depth-
first approach, we prefer this approach as opposed to
the breadth-first model where all cells at level i are
solved, and the solution is cascaded down to level
i− 1. This allows improved parallelism since there is
no interdependence of solutions of neighboring cells, a
reduced memory footprint since intermediate solutions
do not need to be stored, and reduced interpolation
and smoothing artifacts.

3.2 Discrete Lookahead

We now extend the algorithm to discrete collision
avoidance. Here, we use an extended reciprocal ve-
locity obstacle (RVO) algorithm [25], which is imple-
mented in the RVO2 library [36]. The RVO algorithm
performs collision avoidance in velocity space, that
is, the space of possible velocities that an agent may
choose. In this space, we create a “velocity obstacle”
for each neighboring agent, which represents the set of
velocities that would lead to a collision with that agent.
Then, choosing a velocity outside the union of all these
obstacles ensures collision avoidance. Each obstacle
is modeled as a constraint in a linear optimization
problem to determine a collision-free velocity closest
to the preferred velocity.

The RVO library requires the choice of a neighbor-
hood radius R and time horizon τ , and only guarantees
collision-free behavior within time τ with nearby
agents no further than R distance away. This technique
is limited to local planning in a small neighborhood,
as increasing τ and R to large values degrades the
performance of the method. To support long-range
collision avoidance, we apply our algorithm to RVO-
based LCA with minor modifications.

Instead of constructing trees for each future instant,
we approximate future neighbor searches from the
current state. Recall that our generic algorithm has
multiple levels, and at the ith level, we consider a
lookahead of ∆ti time into the future. In the discrete
setting, we search for agents which may collide with
the current agent within time ∆ti. Since distance
between two agents can change at most by 2vmax∆ti in
this time, where vmax is the maximum agent speed, the
agents relevant at level i are those that lie at distances
between R + 2vmax∆ti−1 and R + 2vmax∆ti from the
current agent at the present time. Once these neighbors
are determined, we create velocity constraints using
the agents’ extrapolated future positions, with their
effective radii rf reduced by a ratio c for every step
into the future. (This constant is the same as that
grid coarsening factor for the continuum formulation,
since both density and effective agent radius are
inversely proportional to the standard deviation of
the probability distribution assumed for the agent.)

Now, all the long-range interactions considered at
different levels are represented simply as constraints
on the final velocity of the agent. Instead of solving

Fig. 5. Distant agents can be clustered for collision

avoidance, cluster size being proportional to distance.

Since possible collisions with distant agents lie in future

timesteps, extrapolated future agent states have high

uncertainty, and hence small effective radii, making

individual avoidance inefficient.

the levels one after another, we may apply all the con-
straints simultaneously in a single RVO optimization.
This means that only one optimization solve needs
to be performed per agent, but at the expense of an
increase in the number of constraints. We therefore
adopt a level-of-detail approach to reduce the number
of constraints by adaptively grouping distant agents
into clusters.

As we extrapolate agents further in time, their
effective radius reduces further, and thus have a
decreased effect on agent velocity. Thus, it is prudent to
cluster these agents both to improve efficiency, and to
increase the probability of avoiding a future collision.
We use a spatial hierarchy, such as a k−d tree, over the
agent positions to choose the clusters. Such a hierarchy
already exists in the RVO implementation to support
nearest neighbor queries, and so does not require
additional computational effort. The nodes of the tree
can provide suitable candidates for agent clusters.

When considering lookahead at level i, that is, until
future time ∆ti, we only consider agents at a distance
between R + 2vmax∆ti−1 and R + 2vmax∆ti. These
agents should be grouped into clusters of size ∆ti

∆t

as shown in Fig. 5. Instead of performing multiple
searches to collect nodes at each level, we perform
one tree traversal where the level of the node can
be determined based on its distance from the agent.
Thus, we perform a tree traversal where at any node
C, we can determine its level i by checking which
distance band it lies in, i.e. dC ∈ [R+ 2vmax∆ti−1, R+
2vmax∆ti]. However, every node may not form a
good candidate since the distribution of agents in
the subtree of this node may be sparse. Therefore
we use a maximal separation as a quality measure

7

For each agent j, traverse the tree T starting from
the root node, at each node C:

• If node C does not satisfy maximal separation
constraint recurse on its children

• If constraint is satisfied and its level i ≤ imax,
formulate velocity obstacle constraint for node
C

where imax is the highest tree level considered.

Fig. 6. Lookahead Algorithm using RVO.

of each node, i.e. maxi∈subtree(C) disti, where disti =
mink∈subtree(C)(‖xi − xk‖). Though exact computation
of this value is expensive, we compute an approximate
value during tree construction by choosing the maxi-
mum of child values, and the separation between the
nodes themselves. Thus, if a node satisfies this quality
constraint, it can be added as a velocity constraint.

Once we have a chosen a set of agents to form
a cluster, we set its position xC and velocity vC as
the mean of the positions and current velocities of
its member agents. We choose the effective radius rC
of the cluster so that it covers all the expected agent
positions, and is padded by the effective agent radius
rf for time t+∆ti. In other words, for a cluster of m
agents {x1, x2, . . . , xm}, we define

xC =
1

m

m
∑

j=1

xj , (3)

vC =
1

m

m
∑

j=1

vj , (4)

rC = rf +max
j

‖xj − xC‖. (5)

With this definition, we define our discrete lookahead
algorithm in Fig 6.

4 CURTAILING LOOKAHEAD

The discussion thus far has been based on the as-
sumption that agent states can be extrapolated to any
future time. However in certain cases, the information
available to long-range collision avoidance may be
insufficient to create a reliable future state. In such
cases, we curtail lookahead to the last reliable future
time.

If the extrapolated path intersects an obstacle, we can
infer that the agent has a plan to prevent this. However,
determining this plan would require a query to the
local planner, which in turn would require positions
of all neighbors. This can recursively trigger local
planning queries for an increasing number of agents,
thus increasing computational cost. Thus choosing
the simpler alternative of curtailing lookahead is a
computationally efficient choice. This also has parallels
among human crowds, which tend to plan within their
visual range. Since obstacles restrict the visual range,

it is natural to allow obstacles to curtail the planning
region in a simulation as well.

The other scenario where we propose curtailing
lookahead is when an agent has a chaotic trajectory -
as measured over a small window of previous time
steps. Extrapolating such a trajectory using any low-
order polynomial function is likely to result in large
approximation errors. This may even be indicative
of a chaotic crowd, or an artifact in the underlying
algorithm. In either case, the local crowd state is not
amenable for long-range collision avoidance, as its
future state is hard to predict.

We now detail the exact method utilized to address
these two cases.

4.1 Obstacles

We allow extrapolation step i if and only if the path
from the agent’s current position to its extrapolated
position does not intersect any obstacles, which can
be modeled as a visibility query. Correct extrapolation
of the agent’s position would necessitate a model
for agent response to an obstacle. As previously
explained, this can result in a significant increase in
computation. In addition, this may require information
from the global planner. This information is typically
not available. While it could be made available, this
would require significant changes to the simulation
pipeline, undercutting one of the goals of this approach:
to extend current systems with minimum modifica-
tion.

These queries can be efficiently implemented for
both continuum and discrete simulations. Continuum
simulations traditionally model obstacles as distance
fields. These can be used to efficiently perform the
needed intersection tests. The extrapolation curve
representing the expected trajectory can be checked
for collisions by finding the minimum distance to
any obstacle in the scene. Such algorithms involve
sampling the distance field at multiple points - either
uniformly or adaptively - along the curve, with sam-
pling controlled by the cell width of the distance field
and the curvature of the curve itself. This approach
can also be used for discrete simulations. However, in
case the underlying simulation represents obstacles as
discrete objects, an alternate approach can be used. In
such a scenario, the problem can be modeled as a ray
shooting problem. Using a hierarchical structure for
static obstacles in the scene, such visibility queries can
be performed efficiently at run-time.

4.2 Chaotic Crowds

Extrapolation assumes that agent velocity is temporally
consistent, i.e. the agent is expected to follow a
predictable path. However, if the underlying crowd
flow presents chaotic disturbances, then future agent
states cannot be determined reliably with low-order
extrapolation. Determining whether a crowd exhibits

8

chaotic behavior locally or globally requires the knowl-
edge of agent velocities for a time window. Given this
information, we propose a new ‘inconsistency metric’
to detect chaotic behavior, and measure the suitability
of the agent’s state to extrapolation.

4.2.1 Inconsistency Metric

In case of an oscillating agent trajectory, extrapolation
of an agent’s position is not feasible due to the
uncertainty in the agent’s velocity. This oscillation
can be measured by the acceleration of the agent,
determined using its first-order approximation as

δv =
vi − vi−1

∆t
, (6)

where vi is the agent velocity at step i, and ∆t is the
time step between the two steps. Thus for each agent,
a relative deviation can be computed at every time
step i.

The inconsistency metric is computed using a set
of n deviation vectors. These 2-dimensional deviation
vectors are concatenated into a n × 2 matrix M . We
use Principal Component Analysis (PCA) to analyze
the deviation vectors by computing the eigenvalues
of the matrix:

C =
1

n
MTM. (7)

The eigen-decomposition of this matrix is of the
form:

XTΛ2X, (8)

where Λ is a diagonal matrix with entries λ1 and λ2,
as shown in Fig. 7. The metric is then defined as the
sum of the magnitudes of the eigenvalues:

σ = |λ1|+ |λ2| (9)

Low values of the metric indicate a smooth low-order
trajectory of the agent, while higher values indicate
chaotic paths. The rows of X give the corresponding
eigenvectors x1 and x2, which can be used to further
analyze the nature of the deviation.

To determine whether an agent can be accurately
extrapolated, the inconsistency metric can be computed
on a local neighborhood of the agent. In this case the
matrix M is constructed from the deviation vectors
of the agent and its neighbors over a time window
of τ seconds, i.e. for k agents, data for f time steps,
f = τ

∆t
is concatenated into a kf × 2 matrix M . The

contribution of older samples can be also weighted
to facilitate graceful degradation. For analysis of the
entire crowd, the metric can be computed for all agents
using a single matrix containing all deviation vectors
for the given time window. Such analysis can be
useful for comparing collision avoidance algorithms,
preferring those which result in smoother paths as
indicated by slowly varying velocity.

Fig. 7. Our proposed inconsistency metric σ is com-

puted as the sum of the eigenvalues λ1, λ2 of the

given deviation vectors δv (in red), which represents the

variance of these deviations. The eigenvectors x1, x2 (in

green) corresponding to these eigenvalues represent

the principal components of the space of deviations.

4.2.2 Curtailing

The inconsistency metric value as computed for the
local neighborhood of an agent can be used to curtail
the extent of lookahead. Variation of velocity in the
vicinity of the agent indicates that the agent velocity
is likely to change in the near future as well. For
inconsistency values near zero, the agent can perform
the allowed maximum imax lookahead steps. As the
metric value rises to a maximum σmax and beyond,
the maximum allowed lookahead steps decrease to
zero, at which point only local collision avoidance is
performed. We use linearly spaced transition points,
performing at most i lookahead steps if the metric
value σ lies in the range:

σ ∈

[

(i− 1)σmax

imax

iσmax

imax

]

(10)

for simplicity. The agent’s choice of how far to look
ahead is assumed to be based on local crowd condi-
tions. Thus, only neighbors as defined by the local
collision avoidance algorithm are used for computing
the inconsistency metric for an agent. This metric value
controls the agent’s lookahead steps, as well as the
lookahead of any agents considering this agent for
collision avoidance. This implies that if a distant agent
cluster has a metric value higher than that allowed
for the lookahead step, then that cluster will not be
considered for collision avoidance at that step, since
that cluster cannot be expected to behave coherently
as a single entity. Also, though the metric can be

9

computed for every agent, its value is expected to vary
smoothly, hence it can be sampled at certain points
and interpolated for remaining agents, improving the
efficiency of this computation.

5 HYBRID CROWD SIMULATION

Collision avoidance guarantees, provided by algo-
rithms discussed thus far, are conditional on certain
assumptions. In situations where these assumptions
are violated, collision avoidance guarantees do not
hold, and this can produce incorrect or at least visually
unappealing results. For example, continuum algo-
rithms work on the assumption that a crowd can be
represented accurately as a density field. In low density
regions, where this assumption does not hold, agents
routinely collide with each other, or have to be pushed
apart creating oscillatory behavior. In addition, grid
representations of these fields can suffer from aliasing
issues, resulting in damped or smoothed velocities.
Discrete algorithms suffer from numerical issues at
high densities, due to low inter-agent separation. For
example, force based methods use repulsive forces
that are inversely proportional to distance. As a result,
strict limits need to be enforced to prevent agents from
colliding, either on the time step, or on the repulsive
forces themselves. In geometric methods like RVO
[22], [25], this is reflected in increased constraints
on the solution, meaning that the algorithm needs
to spend more computational time to converge, or
risk failing to compute a collision-free velocity. In
addition, computational costs of discrete algorithms
are proportional to the number of agent neighbors.
Since this cost rises sharply for high density regions,
discrete algorithms can lose their performance edge
for such scenarios.

Our lookahead formulation performs successive
local collision avoidance queries, thus such errors are
likely to accumulate and cause significant issues. To
address this issue, we propose a simple and efficient
hybrid algorithm that blends discrete and continuum
collision avoidance results. This is possible since
problem cases for either class of algorithms do not
overlap. The choice of algorithm is based on both
density and variance in velocity. For varying density,
there are three possible cases:

• [0, ρcmin]: Discrete collision avoidance
• [ρcmin, ρdmax]: Blend Discrete and Continuum

collision avoidance
• [ρdmax, ρmax]: Continuum collision avoidance

where ρdmax is the maximum density at which dis-
crete collision avoidance can be applied, ρcmin is the
minimum density for continuum collision avoidance,
and ρcmin ≤ ρdmax. By using linear blending, this can
be expressed as:

v = vdisc(1− w) + vcontw (11)

w = wρ = clamp

(

ρ− ρcmin

ρdmax − ρcmin

, 0, 1

)

(12)

where clamp(x,min,max) clamps the value of x to
the range [min,max], and vdisc and vcont are collision-
free velocities generated by discrete and continuum
algorithms respectively. In our examples we use
ρcmin = 2, ρdmax = 4, ρmax = 5.5. The values of
these parameters are guided by the densities observed
in human crowds, being less than 5.5 people per
m2 in most cases. For choosing ρcmin, we rely on
guidance from [37], which states that the crowds can be
represented as a continuum “provided the characteristic
distance scale between pedestrians is much less than the
characteristic distance scale of the region in which the
pedestrians move’’. In medium-scale examples like those
shown in this paper, densities above ρcmin = 2 people
per m2 satisfy this constraint in the average sense.
At higher density ranges, we observe qualitatively
similar results using continuum and hybrid algorithms
at densities higher than 4 people per m2, which guides
the choice of ρdmax.

To address the case of high velocity variance, we
can define similar linear blending weights. In this
case, blending weights are controlled by the standard
deviation σv of the local velocity. We blend discrete and
continuum velocities in a user-defined range [c1v, c2v],
where v is the local velocity, and c1, c2 are constants. In
regions of low velocity variance, continuum avoidance
is preferred, with discrete avoidance preferred in
regions of low variance, where variance is σ2

v . Then,
in a manner similar to equation (12), we can define
blending weights for this case as well:

wσv
= clamp

(

c2v − σv

(c2 − c1) v
, 0, 1

)

(13)

Note that this weight has a slightly different form to
maintain the convention in (11).

We now need to combine these two weights to
produce a single interpolation weight. Though a
number of possible combinations exist, we choose
w = wρwσv

. This is biased towards a discrete solution,
which ensures that the likelihood of regions with high
velocity variance being simulated with continuum
methods remains low. This weighing can be tuned
by appropriately choosing c1 and c2. We find best
results by choosing c1 = 1, c2 = 2. It is important to
note that these two weights are not independent. As
has been noted by [2] and others, velocity variance
decreases at high densities. Thus adding a weight for
velocity variance does not affect high density behavior
significantly.

6 RESULTS

Our algorithms were implemented in C/C++ using
scalar code. In Table 1, we provide running times on a
quad-core Intel Core i7 965 at 3.2GHz. Note that these
times can be significantly improved by using appropri-
ate vector instructions. We modified the RVO2 library
to remove the restriction of maximum neighbors so

10

(a) (b) (c) (d)

Fig. 8. 4 way crossing of agents with 2000 agents. (a) Discrete (b) Discrete with lookahead (c) Continuum (d)

Continuum with lookahead. Note lack of agent buildup in cases with lookahead.

Scene #Agents

Simulation Time

Method
Duration

Improv per
-ement Step

(s) (ms)

Crossing 500
Disc 135.2

2.6x
0.98

Disc LA 52.5 3.68

Circle 1000
Disc 347.2

2.2x
2.6

Hyb LA 156.0 5.2

4 way 2000

Disc

- -

5
Disc LA 47.3
Cont LA 6.8
Hyb LA 16.29

4 groups 2000
Cont 107.1

1.5x
6.6

Cont LA 72.28 6.89

TABLE 1

Single thread performance for our examples

(dt = 0.01s). Legend: LA - with lookahead, Disc -

Discrete, Cont - Continuum, Hyb - Hybrid. Note: > 20
fps performance in all cases (> 60 fps w Hyb) and 1.5x

- 2.6x reduction in simulation duration with LA

as to provide collision avoidance guarantees for the
neighborhood threshold supplied.

Our lookahead and hybrid algorithms were tested
on a number of cases. The first example scenes demon-
strate the lookahead algorithm for the continuum and
discrete cases. In the discrete case, two groups of agents
– one bigger than the other – head towards each other
on a collision course. Using our lookahead algorithm,
the larger group of agents parts to allow the smaller
group to go through, which is not observed in the
traditional RVO algorithm. Though we encounter a
3.5x slowdown, the progress seen by agents is more
than double, thus over the time of the simulation, the
overall cost is less than 2x. In the continuum case 10,
where 4 groups of agents attempt to reach diametrically
opposite regions, more distant agents avoid the high
density region in the center. In contrast to a simulation
without lookahead, agents are able to reach their des-
tination sooner, demonstrating improved crowd flow
and progress. An advantage of the continuum case
is that lookahead is extremely inexpensive, as is seen
with this example, where significant improvements in
behavior can be seen at almost no cost

The second example scene demonstrates a 4-way
crossing. With traditional collision avoidance schemes,
a bottleneck quickly develops in the middle of the
scene hindering progress and causes spurious behavior.
Such behavior is significantly reduced with lookahead,

both in the discrete and continuum cases. Using hybrid
algorithm in this case provides two benefits. Oscillation
of agents in low density regions is reduced as com-
pared to the continuum algorithm, while significant
performance benefits are obtained vs. the discrete
algorithm. Though discrete lookahead slows down
significantly due to the number of neighbors to be
considered, the hybrid algorithm shows a performance
benefit of 3x while retaining the same behavior. A
visual comparison in Fig. 8 shows the difference in
the 4 kinds of simulation.

We replicated the well-known circle demo with 2000
agents. In this scenario, agents are seeded on a circle
and attempt to reach the diamterically opposite point
as shown in Fig. 1. At a 2x extra computational cost,
we observe significant improvement in behavior and
progress. Agents are able to reach their goal in less
than half the time, which balances the computational
cost.

To quantify the benefit of curtailing lookahead we
analyze the circle (Fig. 1) and 4-groups (Fig. 10) demos.
We examine how the choice of σmax and imax affects
the simulation duration, i.e. the total time taken by all
agents to reach their goals. Fig. 9 shows the results of
this experiment. In each graph, dotted lines represent
simulation duration of constant lookahead, while solid
lines represent curtailed lookahead. In both scenarios,
as σmax increases, overall performance improves be-
yond constant lookahead, as demonstrated by lower
simulation durations. As σmax continues to increase,
simulation performance asymptotically approaches
constant lookahead. It is clear that constant lookahead
in scenarios with inconsistent behavior causes agents to
become overly conservative, reducing the efficiency of
crowd flow. By curtailing lookahead with appropriate
parameters, agents reach their goals more efficiently,
providing improvements of 10− 100%. In addition to
improvements in simulation performance, curtailing
lookahead also results in reduced computation.

Evaluation of the inconsistency metric for curtailing
lookahead increases computation by less than 5%, and
this extra computation is balanced by the reduction
in number of lookahead steps. Performance can be
improved further by coarser evaluation, as noted in
Section 4.2.2.

Most demos in this video use a maximum of 8
lookahead steps. As demonstrated by Fig. 9, differ-

11

0 5 10 15 20 25
220

240

260

280

300

320

340

Circle

Maximum Metric σ
max

S
im

u
la

ti
o

n
 D

u
ra

ti
o

n

i
max

=4

i
max

=8

i
max

=16

2 4 6 8 10
305

310

315

320

Inset for i
max

=4,16

0 0.5 1 1.5 2 2.5 3 3.5
50

60

70

80

90

100

110
4 Groups

Maximum Metric σ
max

S
im

u
la

ti
o

n
 D

u
ra

ti
o

n

i
max

=4

i
max

=8

i
max

=16

Fig. 9. Effect of Curtailing Lookahead in the circle (Top)

and 4 groups (Bottom) demo. Solid lines show curtailed

lookahead, while dotted lines show constant lookahead.

Note how curtailing lookahead with a maximum metric

value σmax allows agents to reach their goals faster,

as demonstrated by the reduced duration. In some

cases, curtailing can double the improvement shown by

lookahead (circle, imax = 16). Even with optimal choice

of mmax, we see benefits of 10%.

ent scenarios and collision avoidance algorithms can
demonstrate best performance for different values of
imax and σmax. Our experiments indicate that imax and
σmax can be optimized one at a time in order. This
task if simplified by the fact that these optimizations
do not exhibit local minima.

7 COMPARISON TO REAL-WORLD DATA

We compare the simulation result of our proposed
algorithm against available open-source data. We use
the data provided by [33], specifically a bi-directional
flow in a constrained environment, whose scene setup
is shown in Fig. 11. In this experiment, two groups

(a)

(b)

Fig. 10. 4 groups of agents in circular formation

exchange their positions. Notice how lookahead (b)

shows red and green agents moving around the built

up region in the center and avoid getting stuck as is the

case in (a).

of pedestrians travel down a narrow corridor 3.6 m
wide in opposing directions. Though this presents a
restricted environment, agents attempt to move in a
constant direction due to which they can lookahead,
and their future position can be determined with
some reasonable accuracy. We compare the behavior
of real pedestrians with that of simulated crowds
first by examining the relationship between speed
and density (commonly known as the fundamental
diagram), and second, by using the metric defined in
section 4.2.1. We provide comparison results using the
discrete collision avoidance algorithm, RVO2 [25], [36].
Fig. 12 demonstrates how adding lookahead causes
the simulated agents to exhibit a density-dependent
behavior similar to that of real pedestrians. Real
pedestrians demonstrate a significant sensitivity to
density. Speeds decrease by a factor of 2–3 as crowd
density increases for 1 person per m2 to 3 people per
m2. However, a significant number of agents using
RVO2 move with a maximum speed towards the
goal as denoted by the number of sample points at
v = 1.6m/s in Fig. 12 (Top). In Fig. 12 (Bottom), we note
that agents show the same downward trend of speed
with increasing density as real pedestrians. Though
the observed patterns do not match human behavior
exactly, the graphs demonstrate that adding lookahead

12

Fig. 11. Experimental setup for bi-directional crowd flow (Image courtesy [33]).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
ρ (people/m2)

0.0

0.5

1.0

1.5

2.0

Sp
ee

d
(m

/s
)

Fundamental Diagram - Bidirectional Flow
Simulated
Measured

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
ρ (people/m2)

0.0

0.5

1.0

1.5

2.0

Sp
ee

d
(m

/s
)

Fundamental Diagram - Bidirectional Flow
Simulated
Measured

Fig. 12. Speed v.s. density plots for simulated crowds

using (Top) traditional local collision avoidance, and

(Bottom) long-range collision avoidance. Note how

simulation with lookahead improves correspondence

to speeds observed in the real-world data as compared

to density, and how collision avoidance with lookahead

demonstrates the same downward trend in speed with

increasing density.

improves the behavior of simulated agents. Exact
matching cannot be expected unless the underlying
local collision avoidance algorithm models human
behavior exactly. One caveat is that agents exhibit
a decreased aversion to being in dense scenarios, as
is indicated by significant clustering in density range
of 3–3.5 people per m2. This is partly due to lower
speeds resulting in slower dissipation of congestion.

Simulated crowds in the experimental setup get
to their goals in 98.4 seconds with lookahead, while
taking approximately 169.88 seconds with purely local
collision avoidance. For the same example, real crowds
are able to navigate the same scene in 76.75 seconds.
Thus, in addition to improved crowd behavior, looka-
head results in a 1.73x improvement in crowd progress
bringing the progress of the simulated crowd within
28.2% of observed crowds. Using a window of 10 time
steps, i.e. 0.4 seconds, we computed our inconsistency
metric for simulated crowds. Local collision avoidance
produced metric values in the range [0, 3.192] with a
mean of 0.635, while crowds with lookahead resulted
in values in the range [0, 2.776] with a mean of 0.505.
The inconsistency metric measures path smoothness
as indicated by low-acceleration. By this measure,
lookahead improves the mean path smoothness by
20.55%. Real-world observations in this experimental
setup are made using head-trackers, which introduce a
minor oscillation into agent positions. To remove this
oscillation, we compute metric values for real-world
data after smoothing the trajectories over a window
of 2 time steps. The resulting data produces metric
values in the range [0, 2.213] with a mean of 1.45.

8 CONCLUSIONS AND FUTURE WORK

We have presented a new, generic algorithm that can
extend both existing discrete and continuum methods
to provide a simple yet effective lookahead to achieve
long-range collision avoidance for crowd simulations.
This approach results in smoother crowd movement
and exhibits an agent’s tendency to avoid congestion
that is often observed in real crowds. To quantify the
smoothness of agent trajectories, we propose a novel
metric. This metric also serves as the means to curtail
the extend of lookahead in presence of chaotic crowd

13

Fig. 13. Crowd motion using (Top) real-world data,

(Middle) Local collision avoidance, (Bottom) Long-range

collision avoidance.

behavior. In addition, we propose the use of this metric
for comparing crowd simulation algorithms based on
smoothness, as well as comparing simulated crowds
to real-world data. We have further introduced a
hybrid technique that enables the simulation system to
seamlessly transition between discrete and continuum
formulations by locally blending the results and by
optimizing for performance and quality of resulting
simulations based on the local crowd density.

Our stated goal is to improve crowd flow using long-
range collision avoidance; measured as crowd progress.
With the improvements proposed in this paper, simu-
lated crowds reach their desired goals 1.5x-2.6x faster
(shown in Table 1) while using speeds similar to those
used by real crowds in similar scenarios (shown in Fig.
12). As shown by these measures, lookahead brings the
behavior of simulated crowds closer to real humans.
However, in some cases we observe outliers. After

detailed analysis, we believe these cases arise due
to the underlying collision avoidance model. In case
of Fig. 12, solitary agents sometimes turn around to
avoid collisions with oncoming groups of agents. This
occurs when the space behind said agent is empty.
Thus the geometrically optimal solution for collision
avoidance as defined by [25] led the agent to turn
around. This behavior is independent of lookahead
and inherent in the underlying collision avoidance
algorithm. However, lookahead allows agents behind
such agents to preemptively avoid the oncoming group.
Though this improves overall flow, it makes this
artifact visually more prominent.

In case of Fig. 1, the larger group parts cleanly for
the other. The underlying [36] algorithm optimizes
with respect to hard constraints. Thus, constraints
from near agents and far groups are equally important
and must be respected. In this case, it leads to the
clean separation of the larger group. To remedy this
artifact, the formulation of constraints in [25] would
need to be revisited taking into account of observed
human behaviors.

Acknowledgements: This research was supported in
part by ARO Contract W911NF-04-1-0088, NSF awards
0917040, 0904990, 100057 and 1117127, and Intel.

REFERENCES

[1] J. Ondřej, J. Pettré, A.-H. Olivier, and S. Donikian, “A synthetic-
vision based steering approach for crowd simulation,” in ACM
SIGGRAPH 2010 papers, ser. SIGGRAPH ’10. New York, NY,
USA: ACM, 2010, pp. 123:1–123:9.

[2] R. Narain, A. Golas, S. Curtis, and M. C. Lin, “Aggregate
dynamics for dense crowd simulation,” ACM Trans. Graph.,
2009.

[3] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graph.
Models, vol. 69, no. 5-6, pp. 246–274, 2007.

[4] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Better group
behaviors in complex environments with global roadmaps,”
Proc. 8th Intl. Conf. Artificial Life, pp. 362–370, 2002.

[5] A. Kamphuis and M. Overmars, “Finding paths for coherent
groups using clearance,” Proc. of ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, pp. 19–28, 2004.

[6] F. Lamarche and S. Donikian, “Crowd of virtual humans: a new
approach for real-time navigation in complex and structured
environments,” Computer Graphics Forum, vol. 23, no. 3, pp.
509–518, 2004.

[7] J. Pettré, J.-P. Laumond, and D. Thalmann, “A navigation graph
for real-time crowd animation on multilayered and uneven
terrain,” First Intl. Workshop on Crowd Simulation, pp. 81–90,
2005.

[8] M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors
for crowd simulation,” Computer Graphics Forum, vol. 23, no. 3
(Sept), pp. 519–528, 2004.

[9] A. Sud, R. Gayle, E. Andersen, S. Guy, M. Lin, and D. Manocha,
“Real-time navigation of independent agents using adaptive
roadmaps,” in Proc. ACM Symp. Virtual Reality Software and
Technology, 2007, pp. 99–106.

[10] C. W. Reynolds, “Flocks, herds and schools: A distributed
behavioral model,” ACM SIGGRAPH, vol. 21, pp. 25–34, 1987.

[11] D. Helbing and P. Molnár, “Social force model for pedestrian
dynamics,” Physical Review E, vol. 51, p. 4282, May 1995.

[12] C. W. Reynolds, “Steering behaviors for autonomous charac-
ters,” Game Developers Conference, vol. 1999, 1999.

[13] L. Heigeas, A. Luciani, J. Thollot, and N. Castagné, “A
physically-based particle model of emergent crowd behaviors,”
Proc. Graphikon ’03, vol. 2, 2003.

14

[14] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein, “Modifications
of the Helbing-Molnar-Farkas-Vicsek social force model for
pedestrian evolution,” SIMULATION, vol. 81, p. 339, 2005.

[15] Y. Sugiyama, A. Nakayama, and K. Hasebe, “2-dimensional
optimal velocity models for granular flows,” in Pedestrian and
Evacuation Dynamics, 2001, pp. 155–160.

[16] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling indi-
vidual agents in high-density crowd simulation,” Proceedings of
the 2007 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pp. 99–108, 2007.

[17] P. Fiorini and Z. Shiller, “Motion planning in dynamic envi-
ronments using velocity obstacles,” Intl. J. on Robotics Research,
vol. 17, no. 7, pp. 760–772, 1998.

[18] F. Feurtey, “Simulating the collision avoidance behavior of
pedestrians,” Master’s thesis, University of Tokyo, School of
Engineering, Feb. 2000.

[19] S. Paris, J. Pettre, and S. Donikian, “Pedestrian reactive navi-
gation for crowd simulation: a predictive approach,” Computer
Graphics Forum, vol. 26, no. 3, pp. 665–674, September 2007.

[20] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha, “Real-
time path planning in dynamic virtual environments using
multi-agent navigation graphs,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 3, pp. 526–538, 2008.

[21] M. Kapadia, S. Singh, W. Hewlett, and P. Faloutsos, “Egocentric
affordance fields in pedestrian steering,” in Proceedings of the
2009 symposium on Interactive 3D graphics and games, ser. I3D
’09. New York, NY, USA: ACM, 2009, pp. 215–223.

[22] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal
velocity obstacles for realtime multi-agent navigation,” Proc.
IEEE Conf. Robotics and Automation, pp. 1928–1935, 2008.

[23] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. C.
Lin, “Interactive navigation of individual agents in crowded
environments,” Proc. ACM Symposium on Interactive 3D Graphics
and Games, pp. 139–147, 2008.

[24] S. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin,
D. Manocha, and P. Dubey, “Clearpath: Highly parallel colli-
sion avoidance for multi-agent simulation,” Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2009.

[25] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha,
“Reciprocal n-body collision avoidance,” Proc. Intl. Symposium
on Robotics Research, 2009.

[26] S. J. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin,
and D. Manocha, “Pledestrians: a least-effort approach to
crowd simulation,” in Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser.
SCA ’10. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2010, pp. 119–128.

[27] A. Treuille, S. Cooper, and Z. Popovic, “Continuum crowds,”
ACM Trans. Graph., vol. 25, no. 3, pp. 1160–1168, 2006.

[28] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “Steer-
bench: a benchmark suite for evaluating steering behaviors,”
Computer Animation and Virtual Worlds, vol. 20, no. 5-6, pp.
533–548, 2009.

[29] U. Weidmann, “Transporttechnik der fussgaenger,” ETH Zürich,
Tech. Rep. 90, 1993.

[30] S. J. Guy, J. van den Berg, W. Liu, R. Lau, M. C. Lin,
and D. Manocha, “A statistical similarity measure for
aggregate crowd dynamics,” ACM Trans. Graph., vol. 31,
no. 6, pp. 190:1–190:11, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366209

[31] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, “The
fundamental diagram of pedestrian movement revisited,” J.
Stat. Mech., no. 10, October 2005.

[32] J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried,
“Transitions in pedestrian fundamental diagrams of straight
corridors and t-junctions,” J. Stat. Mech., vol. 2011, no. 06, p.
P06004, 2011.

[33] J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried,
“Ordering in bidirectional pedestrian flows and its influence
on the fundamental diagram,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2, p. 2, Feb. 2012.

[34] A. Seyfried, O. Passon, B. Steffen, M. Boltes, T. Rupprecht,
and W. Klingsch, “New insights into pedestrian flow through
bottlenecks,” Transportation Science, pp. 395–406, 2009.

[35] J. Fruin, Pedestrian planning and design. Metropolitan Associa-
tion of Urban Designers and Environmental Planners, 1971.

[36] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha.
RVO2 Library: Reciprocal collision avoidance for real-time
multi-agent simulation.

[37] R. L. Hughes, “The flow of human crowds,” Annual Review of
Fluid Mechanics, vol. 35, no. 1, pp. 169–182, 2003.

Abhinav Golas received a BTech & MTech
in Computer Science and Engineering from
the Indian Institute of Technology, Delhi in
2008. He is currently a Ph.D. candidate of
computer science at the University of North
Carolina at Chapel Hill. His research interests
include computer graphics, physically-based
modeling and simulation, and architecture-
aware algorithms. His current research re-
lates to large-scale flow simulations of fluids
and crowds.

Rahul Narain received a B.Tech. in Computer
Science and Engineering from the Indian
Institute of Technology Delhi, and a Ph.D.
in Computer Science from the University of
North Carolina at Chapel Hill. He is a post-
doctoral scholar at the University of Califor-
nia, Berkeley. His research interests include
simulation of fluids, crowds, cloth, and other
dynamical systems.

Sean Curtis Sean Curtis received the BA
degree in German from Brigham Young Uni-
versity, the BS degree in Computer Science
from the University of Utah and the MS in
Computer Science from the University of
North Carolina at Chapel Hill where he is
working towards his PhD. His research in-
terests include pedestrian modeling, multi-
agent navigation, motion synthesis, crowd
visualization and collision detection.

Ming Lin received her B.S., M.S., and Ph.D.
degrees in Electrical Engineering and Com-
puter Science from the University of Cali-
fornia, Berkeley. She is current the John R.
& Louise S. Parker Distinguished Professor
of Computer Science at the University of
North Carolina (UNC), Chapel Hill and an
honorary Chair Professor (Yangtze Scholar)
at Tsinghua University in China. She has
received several honors and awards, includ-
ing IEEE VGTC VR Technical Achievement

Award 2010, and 9 best paper awards. She is a Fellow of ACM
and IEEE. Her research interests include physically-based modeling,
real-time interactive 3D graphics, virtual environments, geometric
modeling, and GPU-Computing. She has (co-) authored more than
250 refereed publications and coedited/ authored four books. She
is the Editor-in-Chief of IEEE Transactions on Visualization and
Computer Graphics and a member of six editorial boards of scientific
journals. She has served as a program/paper committee member for
over 120 leading conferences and co-chaired over 25 international
conferences and workshops.

http://doi.acm.org/10.1145/2366145.2366209

	Introduction
	Background
	Lookahead for Long-Range Collision Avoidance
	Continuum Lookahead
	Discrete Lookahead

	Curtailing Lookahead
	Obstacles
	Chaotic Crowds
	Inconsistency Metric
	Curtailing

	Hybrid Crowd Simulation
	Results
	Comparison to Real-World Data
	Conclusions and Future Work
	References
	Biographies
	Abhinav Golas
	Rahul Narain
	Sean Curtis
	Ming Lin

