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Loop Quantum Gravity is a nonperturbative and background independent program for the

quantization of General Relativity. Its underlying formalism has been applied successfully to

the study of cosmological spacetimes, both to test the principles and techniques of the

theory and to discuss its physical consequences. These applications have opened a new

area of research known as Loop Quantum Cosmology. The hybrid approach addresses

the quantization of cosmological systems that include fields. This proposal combines the

description of a finite number of degrees of freedom using Loop Quantum Cosmology,

typically corresponding to a homogeneous background, and a Fock quantization of the

field content of the model. In this review we first present a summary of the foundations of

homogeneous Loop Quantum Cosmology and we then revisit the hybrid quantization

approach, applying it to the study of Gowdy spacetimes with linearly polarized gravitational

waves on toroidal spatial sections, and to the analysis of cosmological perturbations in

preinflationary and inflationary stages of the Universe. The main challenge is to extract

predictions about quantum geometry effects that eventually might be confronted with

cosmological observations. This is the first extensive review of the hybrid approach in the

literature on Loop Quantum Cosmology.

Keywords: loop quantum cosmology, loop quantum gravity, quantum field theory on curved backgrounds, quantum

effects in cosmology, primordial perturbations

1 INTRODUCTION

Modern Physics has two basic pillars in Quantum Mechanics and Einstein’s theory of General
Relativity (GR). However, the latter is a geometric description of the gravitational field that does not
incorporate the principles of QuantumMechanics. Numerous attempts have been made to construct
a quantum theory of the spacetime geometry but, at present, there is still no proposal that the
scientific community accepts unanimously as fully satisfactory. One of the proposals for the quantum
description of gravity that has reached more impact with a robust mathematical development is Loop
Quantum Gravity (LQG) (Ashtekar, 1986; Ashtekar and Lewandowski, 2004; Thiemann, 2007). It is

a quantization formalism for globally hyperbolic spacetimes, based on a canonical and non-
perturbative formulation of the geometric degrees of freedom. The fundamental novelty with
respect to other pre-existing canonical proposals [such as theWheeler-DeWitt (WdW) quantization,
also called quantum geometrodynamics (DeWitt, 1967; Halliwell, 1991)] lies in the use of techniques
imported from Yang-Mills gauge theories (Yang and Mills, 1954), known by their success in
explaining non-perturbative regimes of the strong and electroweak interactions. In addition, the
formulation of LQG is independent of any spacetime background structure and is aimed to respect
the general covariance of Einstein’s theory (in its canonical formulation). To achieve this goal, LQG
adopts the quantization scheme proposed by Dirac for systems with constraints (Dirac, 1964). In
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particular, in GR the Hamiltonian is a linear combination of
constraints which, via Poisson brackets, generate diffeomorphism
transformations, that are the fundamental symmetries of the
theory. Dirac’s proposal consists in requiring that those

constraints are satisfied at the quantum level on the physical
states of the system. In more detail, the geometric degrees of
freedom in vacuo are described in LQG by pairs of canonical
variables that consist of the components of a densitized triad and
a gauge connection (Ashtekar and Lewandowski, 2004;
Thiemann, 2007). Their respective fluxes through surfaces and
holonomies form an algebra under Poisson brackets, which is the
algebra that one wants to represent quantum mechanically over a
Hilbert space, where the constraints of the theory should finally
be imposed.

A major obstacle that the different candidates for a theory of

quantum gravity have to face, regardless of their nature, is the
extreme difficulty that is found to confront them with
experimental data. Most of the possible effects of a quantum
spacetime are expected to occur in regimes of very high
curvatures or energies. In this sense, the Universe that we
observe appears to be very classical, and GR explains it almost
perfectly. However, there are observational windows to regimes of
the Universe in which traces of a phenomenology that exceeded
Einstein’s theory might be found. A relevant example is the so-
called Cosmic Microwave Background (CMB). This
approximately black-body radiation reaches us from regions so

far away that provides information about how the Universe was
like at the early times when it became transparent. Under certain
circumstances, this information might as well contain some
details about very previous stages of the Universe when the
spacetime geometry could have experienced quantum effects
(Di Tucci et al., 2019), especially if the observable Universe
had in those epoques a size of the order of the Planck scale. A
second obstacle for most of the quantum gravity proposals is the
complication to extract concrete predictions about those regimes
where quantum effects may have been important. Therefore,
from a physical point of view, it is greatly convenient to

consider the specialization of those formalisms to more
restricted scenarios that, even without contemplating all the
phenomena that may be accounted for in the full quantum
theory, are able to describe regions of the Universe of
particular interest. With this motivation, approximately at the
beginning of this century, it was suggested to apply LQGmethods
to cosmological systems that possess a finite number of degrees of
freedom, owing to the presence of certain symmetries. This effort
crystallized in the appearance of Loop Quantum Cosmology
(LQC) (Ashtekar et al., 2003; Bojowald, 2008; Ashtekar and
Singh, 2011), a branch of LQG aimed to deal with the

quantum analysis of cosmological systems.
The first cosmologies that were studied in LQC were

homogeneous and isotropic universes of the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) type, that classically
provide a good approximation to the behavior of the observed
Universe in large scales. The quantization of this type of
cosmological systems was consistently completed, providing
satisfactory results both from a formal and from a physical
point of view. Probably the most remarkable of these results is

the resolution of the Big Bang cosmological singularity, that is
replaced in this formalism with a quantum bounce, usually called
the Big Bounce. In addition to these investigations on
homogeneous and isotropic spacetimes, other homogeneous

cosmologies with a lower degree of symmetry have also been
considered in LQC to discuss the role of anisotropies. In
particular, a special attention has been devoted to the
quantization of Bianchi I models (Chiou, 2007a; Chiou, 2007b;
Martín-Benito et al., 2008; Ashtekar and Wilson-Ewing, 2009;
Martín-Benito et al., 2009b).

Although homogeneity and isotropy are very successful
hypotheses to describe our universe at large scales, it is
necessary to give an explanation to the existence and
evolution of the observed inhomogeneities. In fact, the
temperature of the CMB itself presents anisotropies that

contain information about the small inhomogeneities in the
geometry and matter content of the primeval Universe. Such
inhomogeneities should be ultimately responsible of having
given rise to the structures that we observe today (Liddle and
Lyth, 2000). As we have pointed out, it has been recently
proposed that the power spectrum of the CMB anisotropies
might even encode information about quantum effects that were
relevant in the very early stages of the Universe, if the scale of the
region that we observe nowadays was of the Planck order at that
time (Agullo and Morris, 2015; Di Tucci et al., 2019). Other
information about those epochs of the Universe with extremely

high curvature might be present in non-gaussianities of the
CMB, or in the spectrum of tensor cosmological perturbations.
Even if the information that we could extract from just one of
this kind of observations might be insufficient to falsify the
predictions of a candidate theory of quantum cosmology, such
as LQC, the combined set of a number of different types of
observations might increase the statistical significance of a
possible agreement with the predictions (Ashtekar et al.,
2020). With this motivation in mind to investigate quantum
effects of gravity in realistic cosmological spacetimes, a hybrid
strategy was proposed a decade ago in LQC for the quantum

description of scenarios that contemplate the presence of
inhomogeneities, both geometric and in the matter content.
On the one hand, this canonical strategy employs methods
inspired by LQC for the representation of the homogeneous
sector of the geometry. On the other, it uses Fock
representations, typical of Quantum Field Theory (QFT), to
describe the rest of degrees of freedom of the system. The
combination of both techniques must result in a consistent
quantization of the complete system. This formalism for the
quantization of inhomogeneous spacetimes implicitly assumes
that there is a regime in which the most important quantum

gravitational effects are felt by the homogeneous sector of the
system, an assumption that seems plausible in the early stages of
our universe. In the light of this hybrid approach, the advantages
of reaching an evolution of the inhomogeneities that is unitary
in the regime of QFT in a curved spacetime, applicable when the
behavior of the homogeneous sector can be considered
approximately classical, exceed the purely theoretical aspects
and appear essential to allow robust physical results, that are not
affected by the severe ambiguity that would imply the
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consideration of Fock representations that are not even unitarily
equivalent among them.

The hybrid quantization approach, using an LQC
representation for the homogeneous geometry, was first

implemented in one of the Gowdy cosmological models
(Martín-Benito et al., 2008; Mena Marugán and Martín-
Benito, 2009; Garay et al., 2010; Martín-Benito et al., 2010b).
These models describe spacetimes that, even if subject to certain
symmetry conditions (the presence of two spatial Killing vectors),
still include gravitational inhomogeneities (Gowdy, 1971; Gowdy,
1974). The hybrid quantization was completed for the model with
three-torus spatial topology and linearly polarized gravitational
waves (Martín-Benito et al., 2008; Martín-Benito et al., 2010a).
Although the physical Hilbert space was formally characterized, it
is perhaps impossible to find analytically any of these states.

Therefore, approximation techniques began to be developed for
the operators that appear in the resulting constraints, valid for
certain quantum states (Martín-Benito et al., 2014). On these
states, the Hamiltonian constraint operator adopted a particularly
simple approximate expression, formally corresponding to a
homogenous and isotropic cosmology with different types of
effective matter content, and possibly with higher-order
curvature corrections, once the average volume of the Gowdy
universe was identified with the isotropic volume (Elizaga
Navascués et al., 2015; Elizaga Navascués et al., 2015).

More interesting from a physical point of view is the

application of the hybrid quantization approach to
perturbed FLRW spacetimes coupled to a scalar field
(Fernández-Méndez et al., 2012; Fernández-Méndez et al.,
2013; Fernández-Méndez et al., 2014; Castelló Gomar et al.,
2014; Castelló Gomar et al., 2015; Benítez Martínez and
Olmedo, 2016; Castelló Gomar et al., 2016; Castelló Gomar
et al., 2017). Within the framework of GR, a model of this kind
can be employed to describe quite successfully the primordial
Universe, including small inhomogeneities that, after
undergoing an inflationary stage, are capable of explaining
the experimental observations about the anisotropies of the

CMB (Mukhanov, 2005). This application of hybrid LQC starts
with a classical formulation in which the physical degrees of
freedom of the cosmological perturbations are gauge
invariants, i.e. quantities that do not vary under a
perturbative diffeomorphism (Bardeen, 1980; Sasaki, 1983;
Kodama and Sasaki, 1984; Mukhanov, 1988; Castelló Gomar
et al., 2015). In fact, one can construct a canonical description
of the perturbations that includes such gauge invariants as a
subset of the canonical variables (Langlois, 1994; Pinho and
Pinto-Neto, 2007; Falciano and Pinto-Neto, 2009; Castelló
Gomar et al., 2015). However, the passage to a quantum

treatment of the whole cosmological system requires that
the homogeneous degrees of freedom, rather than being
considered as a fixed background, are also included in this
canonical description [see Refs. (Halliwell and Hawking, 1985;
Shirai and Wada, 1988) for considerations in WdW]. This is
actually possible at least at the lowest non-trivial order of
perturbative truncation of the action (Castelló Gomar et al.,
2015). In this way, the system is well prepared for its canonical
quantization following the hybrid quantization approach.

Despite the attention paid recently to cosmological
perturbations in LQC with scalar fields, it is also convenient to
introduce other types of matter content that are known to exist in
the Universe. This is the case of fermionic fields. The interest of

contemplating the presence of these fields in early cosmological
epochs goes beyond a formal analysis, because it is necessary to
confirm that their inclusion does not affect significantly the
quantum evolution of the cosmological scalar and tensor
perturbations (which are bosonic in nature).

In summary, the purpose of this work is to review the
foundations of hybrid LQC and its application to
inhomogeneous cosmological systems, with an emphasis put
on the analysis of the possible quantum geometry effects on
primordial perturbations. The final goal of the approach would be
to extract predictions about modifications with respect to

Einstein’s theory with the hope that, in this era of precision
cosmology, those modifications might be confronted with
observations in order to falsify the formalism. We would like
to remark that the focus of this review will be exclusively put on
the hybrid approach. The literature already contains detailed
reviews of homogenous LQC and of several other approaches
dealing with inhomogeneities in LQC (Bojowald, 2008; Ashtekar
and Singh, 2011; Banerjee et al., 2012; Ashtekar and Barrau, 2015;
Rovelli and Vidotto, 2015; Alesci and Cianfrani, 2016; Gielen and
Sindoni, 2016; Grain, 2016; Agullo and Singh, 2017; Wilson-
Ewing, 2017; Bojowald, 2020). This is the first extensive review

specifically devoted to hybrid LQC. We will concentrate our
discussion on the results achieved in the hybrid quantization, and
we will mention only marginally other approaches in the
conclusions, to comment on some distinctive properties of the
hybrid proposal. For other strategies to cope with infinite
dimensional systems in LQC, the existing reviews provide a
fairly complete amount of information that the reader can
directly consult.

The paper is organized as follows. We first review the
foundations of LQC in Section 2. In the first subsection we
explain the choice of Ashtekar-Barbero variables and some

questions about the construction of the theory of LQG with
them. In the remaining subsections of Section 2 we apply those
variables to the study of homogeneous and isotropic universes,
discussing their quantization and commenting in special detail
the quantum Hamiltonian that one obtains for those models. We
then pass to discuss the hybrid approach in LQC, studying in
Section 3 the cosmological system that was first analyzed in this
quantization scheme. In the rest of sections, we focus our
attention on the more interesting case (from a physical point
of view) of a perturbed homogeneous and isotropic spacetime, in
order to explore how quantum gravity effects may have affected

the cosmological perturbations in the primeval universe. With
this aim, we first review in Section 4 the procedure to construct a
canonical formulation for this cosmological system in terms of
gauge invariants and gauge constraints for the perturbations,
together with their momenta, and of suitable zero modes for the
background. In Section 5 we consider the possible introduction
of a Dirac field in the formalism.We then explain in Section 6 the
implementation of the hybrid LQC approach in this canonical
system. Next, in Section 7we discuss how we can derive modified
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propagation equations for the perturbations starting with the
quantum Hamiltonian constraint and introducing a convenient
ansatz for the quantum states, as well as some plausible
approximations. These modified equations for the gauge

invariants can be studied to deduce predictions that ultimately
might be confronted with observations. In doing this, a key piece
of information are the initial conditions that one must choose,
both for the background cosmology and for the perturbations, in
order to fix their vacuum state. These issues are discussed in
Section 8. Finally, in Section 9 we explore the possible
determination, or at least restriction, of the viable choices of a
vacuum for the gauge invariant perturbations that result from
demanding a good behavior in the quantum Hamiltonian
operators and the evolution of those perturbations, putting an
emphasis on a procedure of asymptotic diagonalization of their

Hamiltonians. Section 10 contains the conclusions. In the rest of
this work, we adopt units such that c � �h � 1, where c is the speed
of light in vacuo and �h is Planck reduced constant. Nonetheless,
we maintain Newton constant explicitly in all our formulas.
Owing to these conventions and to some convenient
redefinitions of quantities with respect to the notation
employed in previous works, special care must be taken when
comparing numerical factors in our equations with those
appearing in the published literature.

2 LOOP QUANTUM COSMOLOGY

Let us first introduce the formalism of LQC, applied in this work
to spacetime systems that in Einstein’s theory correspond to
homogeneous cosmologies. We will focus our attention on a flat
FLRW model, minimally coupled to a homogeneous scalar field.
In this section, we will review in detail the case of a massless field,
because then the quantum constraints can be solved exactly. Later

in our discussion, when we consider inflationary cosmologies, we
will introduce a potential in the action of the scalar field, that can
be viewed as the inflaton field of the system. An FLRW spacetime
is the model typically used to describe the evolution of an
expanding homogeneous and isotropic universe in GR. Here,
we will study only the case of flat spatial curvature. In the
following section we will also generalize our analysis to
globally hyperbolic spacetimes (that admit a foliation on
compact Cauchy hypersurfaces) of Bianchi I type.

LQC starts from a Hamiltonian formulation of the system
under consideration, selecting as canonical variables for the
geometry those used in LQG. In the Arnowitt-Deser-Misner

(ADM) formulation of GR, given an arbitrary Cauchy
hypersurface ∑, the dynamical degrees of freedom of the
spacetime metric can be captured by the spatial metric
induced on ∑, hab (we use lower case letters from the
beginning of the alphabet to denote spatial indices), and its
variation along the normal surface vector. This variation is
called the extrinsic curvature and is given by the tensor
Kab � Lnhab/2, where Ln is the Lie derivative along the
normal vector n. Taking the spatial metric hab as the
configuration variable, a linear function of the extrinsic
curvature determines its canonically conjugate momentum.

Starting from this canonical pair for the geometry and
canonical pairs corresponding to the matter content, if a
Legendre transformation is carried out in the Hilbert-Einstein
Lagrangian (with suitable boundary terms), one obtains a

Hamiltonian that is a linear combination of first-class
constraints. Their coefficients are non-dynamical Lagrange
multipliers, provided by the lapse function N and the three
components of the shift vector Na. Each of these constraints
vanishes on the solutions of GR. They are the generators of the
fundamental symmetries of GR: the spacetime difeomorphisms.
More specifically, the constraint that is multiplied by the lapse
function is called Hamiltonian or scalar constraint, and generates
time reparametrizations, modulo a spatial difeomorphism. The
three constraints that come multiplied by the components of the
shift vector are called momentum constraints, and generate

spatial difeomorphisms.

2.1 Ashtekar-Barbero Variables:
Holonomies and Fluxes
The Hamiltonian description of GR can be reformulated in terms
of geometric canonical variables that, involving a gauge
connection, simplify the functional form of the constraints
(Ashtekar, 1986). Under the quantization scheme proposed by

Dirac, these variables may seem more convenient for developing
the quantum theory. In addition, the introduction of a gauge
connection allows the controlled use of structures that are well
known in group theory, and that can facilitate the construction of
a well-defined Hilbert space. These variables can be introduced as
follows.

First, in the spatial sections we can make use of triads, which
are defined as a local basis of vectors eai of the considered Cauchy
hypersurface, and in terms of which the spatial metric can be
expressed locally as

hab � eiae
j
bδij (1)

where the co-triads eia are the inverse of e
a
i . Since the Kronecker

delta is the Euclidean metric in three dimensions, the relationship
(Eq. 1) is invariant under the transformation of the triadic basis

under three-dimensional rotations, at each point of the Cauchy
sections. Therefore, the use of co-triads for the description of the
spatial metric automatically introduces additional local symmetry
into the theory, provided by the group SO(3). Any Cauchy
hypersurface is thus supplied with a principal fiber structure
of three-dimensional reference systems, with SO(3) as the gauge
group (Isham, 1999). We employ lower case Latin letters from the
middle of the alphabet for indices corresponding to components
in a local triadic basis of orthonormal frames, or equivalently in a
basis of the three-dimensional Lie algebra so(3). A section of the
bundle is a locally smooth assignment of an element of the group

to each point of the manifold. Different choices of triads, related
to each other point to point by gauge transformations, can then be
understood as different sections of the bundle.

In order to define a notion of horizontality between the
different fibers, as well as the associated parallel transport, one
introduces a gauge connection, characterized by a one-form on
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the spatial hypersurfaces with components that take values in the
three-dimensional Lie algebra so(3). We will call this connection
Γia. Of all the possible connections, there is one that is uniquely
determined by the densitized triad through the metricity

condition

(3)
∇b E

a
i + ϵ

k
j Γ

j
b E

a
k � 0, (2)

where ϵijk is the totally antisymmetric Levi-Cività symbol (its
indices are raised and lowered using the Kronecker delta), (3)∇b

denotes the covariant derivative associated with the Levi-Cività
connection compatible with hab, and Ea

i �
��
h

√
eai is the densitized

triad, with h equal to the determinant of the spatial metric.

In adddition, taking into account that the extrinsic curvature
in triadic form

K i
a � Kabe

b
j δ

ij (3)

can be understood as a vector of so(3) with respect to the gauge
transformations, as well as a one-form in spacetime, it is possible
to consider, instead of Γia, the so-called Ashtekar-Barbero
connection (Barbero, 1995):

Ai
a � Γia + cK i

a. (4)

In this definition, γ is a real non-vanishing number, of arbitrary
value in principle, which is known as the Immirzi parameter
(Immirzi, 1997).

The pair formed by this connection and the densitized triad,
the so-called Ashtekar-Barbero variables, turns out to be
canonical for GR:

{Ai
a( �x), Eb

j ( �y)} � 8πGcδbaδ
i
jδ

3( �x − �y), (5)

where δ3( �x − �y) is the three-dimensional Dirac delta. LQG starts
with these variables in the attempt to construct a quantum theory

of gravity.
Actually, in order to allow the coupling to the gravitational

field of matter with a half-integer spin, Ai
a is considered as a

connection that takes values in the three-dimensional Lie algebra
su(2). That is, in practice the gauge group SO(3) of the principal
bundle is replaced by its double cover, SU(2).

In terms of the Ashtekar-Barbero variables, the Hamiltonian
constraintH and themomentum constraintsHa of GR (in vacuo)
take the form (Thiemann, 2007):

H � 1

16πG
��
h

√ [ϵijkFk
ab − (1 + c2)(K i

aK
j
b − K i

bK
j
a)]Ea

i E
b
j , (6)

Ha �
1

8πGc
Fi
abE

b
i , (7)

where Fi
ab is the curvature of the Ashtekar-Barbero connection:

Fi
ab � zaA

i
b − zbA

i
a + ϵ

i
jk
Aj

aA
K
B . (8)

Finally, the introduction of an additional gauge symmetry in
the theory translates into the appearance of three new constraints,
that generate spin rotations in SU(2) (once this is considered as
the cover of the group of three-dimensional rotations):

Gi �
1

8πGc
[zaEa

i + ϵ
k
ijA

j
aE

a
k]. (9)

Owing to their form as a divergence, given by the covariant
derivative of the triadic field with respect to the connection Ai

a

(Isham, 1999) and contracted in spacetime indices, these three
constraints resemble the Gauss law of electromagnetism, and,
accordingly, they are usually called the Gauss constraints. For the
type of spacetimes with homogeneous spatial surfaces that we
want to consider, and with a suitable choice of reference system,
the Gauss and the momentum constraints are automatically
satisfied, therefore involving no restriction on the system.

From a systematic point of view, the first step in the
construction of a quantum theory of gravity, based on the
introduced Hamiltonian formalism with a gauge connection,
would be to find a representation, as operators on a Hilbert
space, of an algebra that captures all the relevant information
about the canonical pair (Eq. 5). Now, the formulation of the
quantum theory must reasonably be such that physical results
turn out to be described by quantities that do not depend on the
choice of SU(2) gauge. With this purpose, it is convenient that
the elements of the algebra of classical variables to be quantized
do not vary, or vary as little as possible, under the SU(2)

transformations that change the sections of the bundle. A
well-known construction in Yang-Mills theories that
captures the gauge invariant information about the
connection is the holonomy. Given a curve ~c on a spatial
hypersurface ∑, the holonomy along it of the connection Ai

a

is defined as follows:

h
~c � P exp∫

~c

Ai
aτidx

a, (10)

where P denotes path ordering and τi provides a basis of the Lie
algebra su(2). Holonomies determine the parallel transport
defined by the Ashtekar-Barbero connection between the
SU(2) fibers that are assigned to each point of the manifold.
Given any section of the principal bundle and the curve ~c, the
holonomy dictates how this curve should be lifted to the fiber so
that its tangent vector is parallelly transported (Isham, 1999).
Under a change of section, the holonomy is only affected by the
gauge transformation evaluated at the end points of the curve.

On the other hand, it is clear that its construction does not
depend at all on any fixed spacetime structure, nor on the choice
of coordinate system. All these properties of the holonomies
make them good candidates to be the variables represented
quantum mechanically in order to capture the relevant
information about the configuration space of Ashtekar-
Barbero connections. In LQG, one considers holonomies
along edges e, typically piecewise analytic, defined as an
embedding of the interval (0,1) in our Cauchy hypersurface
(Ashtekar and Lewandowski, 2004). The variables that represent
the rest of the phase space must contain the densitized triad Ea

i .

Since this triad is a vector density in ∑, its Hodge dual can be
directly integrated over two-dimensional surfaces S. The result
is a flux through them, which again does not depend on any
additional spacetime structure nor on the choice of coordinates,
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E(S, f ) � ∫
S

f iEa
i ϵabcdx

bdxc, (11)

where f i is a function that takes values on the algebra su(2) and
can be treated as a vector with respect to gauge transformations.
The space of holonomies he and fluxes E(S, f) forms an algebra
under Poisson brackets that no longer possesses the distributional
divergences of the canonical relations (Eq. 5). This is the algebra
chosen in LQG to represent quantum mechanically the canonical
commutation relations of GR.

2.2 Homogeneous Cosmologies: Polymer
Quantization
We will now summarize the methodology used in LQC for the

quantization of flat FLRW cosmologies, following a strategy
inspired by LQG. First, let us recall that the momentum and
Gauss constraints are trivial in this homogeneous system, setting
at convenience the reference system for the description of the
spatial metric hab, as well as the internal gauge of the triads that
determine it (Eq. 1). For simplicity, we will choose spatial
coordinates adapted to the homogeneity of the spatial sections
and homogeneous diagonal triads, proportional to the Kronecker
delta δai . For these triads, the connection Γia vanishes. We will also
assume that the spatial hypersurfaces of the chosen foliation are
compact, with a three-torus topology (T3). This compactness

ensures that spatial integrations do not give rise to infrared
divergences [in non-compact cases, this problem can be
handled by introducing fiducial structures (Ashtekar et al.,
2003; Ashtekar and Wilson-Ewing, 2009)]. In addition,
restricting the study to compact hypersurfaces is very
convenient if these cosmologies provide the homogeneous
sector of other more general scenarios, because the application
of the hybrid strategy for their quantization would use QFT
techniques that are known to be well-posed and robust in the case
of compact Cauchy sections.

Taking all these considerations into account, and choosing the

compactification period in T3 of each of the orthogonal directions
adapted to homogeneity equal to 2π, the geometric sector of flat
FLRW cosmologies can be described using Ashtekar-Barbero
variables that adopt for them the specific form

Ai
a �

c

2π
δia, Ea

i �
p

4π2
δai , {c, p} � 8πGc

3
. (12)

For any global function of time t, the canonical variables p(t) and
c(t) can be classically related with the scale factor a(t), typically

used in cosmology, and with its temporal derivative a(t) by the
equations

∣∣∣∣c∣∣∣∣ � 2πc
∣∣∣∣ _a
N

∣∣∣∣, ∣∣∣∣p∣∣∣∣ � 4π2a2. (13)

Note that the geometric sector of the phase space has a finite
dimension (equal to two), a fact that will greatly facilitate its
quantum description. Inspired by the methodology of LQG, we
construct holonomies that describe the degree of freedom c
characterizing the connection. Thanks to the symmetries of
the spatial sections, it is sufficient to consider straight edges ea

of length 2πμ, with μ ∈ R, in the three orthogonal directions
adapted to the spatial homogeneity (Ashtekar et al., 2006). The
holonomies of the connection Ai

a along these edges have the
simple expression

hea(μ) � cos(cμ
2
)I + 2sin(cμ

2
)δiaτi, (14)

where I is the identity in SU(2). Similarly, spatial symmetries
allow us to restrict all our considerations just to fluxes of the
densitized triad through squares, formed by edges along two of
the reference orthogonal directions adapted to homogeneity.
These fluxes are then completely determined by the variable p,
that hence describes the geometric sector of the momentum
space. Holonomies, or equivalently their matrix elements,
describe the rest of the geometric sector of the phase space.
More specifically, the geometric configuration space consists of
the algebra formed by functions that depend on the connection

through finite linear combinations of the complex exponentials
N μ(c) � exp(iμc/2), with μ ∈ R. On the other hand, we recall
that the mater content of our FLRW cosmology is given by a
homogeneous (massless) scalar field ϕ. This scalar field is
minimally coupled to the geometry. We will call πϕ its
canonically conjugate momentum. The canonical algebra that
we want to represent has then the following non-trivial Poisson
brackets:

{N μ(c), p} � i
4πGc

3
μN μ(c), {ϕ, πϕ} � 1. (15)

In LQC, the quantum representation of this algebra parallels the
strategy adopted in LQG. In that theory, the geometric
configuration space is described by means of the so-called
cylindrical functions. These are functions that depend on the
Ashtekar-Barbero connection through holonomies along graphs
that are formed by a finite number of edges. The algebra of
cylindrical functions is completed with respect to the supreme
norm, obtaining a commutative C*-algebra with identity element.
Gel’fand’s theory guarantees that this algebra is isomorphic to an

algebra of continuous functions over a certain compact space,
called the Gel’fand spectrum, that contains the smooth
connections as a dense subspace. The Hilbert space for the
representation of the algebra of holonomies and fluxes in LQG
is then that of square integrable functions on the Gel’fand
spectrum, with respect to a certain measure (Ashtekar and
Lewandowski, 2004; Velhinho, 2007).

In the homogeneous and isotropic scenarios that we are
considering, on the other hand, the geometric sector of the
configuration space, when completed with respect to the
supreme norm, is the C*-algebra of quasi-periodic functions

over R. The complex exponentials that describe the
holonomies, N μ : R→ S1, where S1 is the circumference of
unit radius, form a basis in it (Velhinho, 2007). Its Gel’fand
spectrum is the Bohr compactification of the real line, RB, that
contains R as a dense subspace (Rudin, 1962). The space RB can
be characterized as the set of all homomorphisms between the
additive group of real numbers and the multiplicative group of
complex unit module numbers. That is, every x ∈ RB is a map
x : R→ S1 such that
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x(0) � 1, x(μ + μ′) � x(μ) x (μ′), ∀μ, μ′ ∈ R. (16)

This space RB admits a compact topological group structure
(Velhinho, 2007). All functions Fμ : RB → S1 such that
Fμ(x) � x(μ), for any μ ∈ R, are continuous with respect to
that topology. In addition, since it is a compact group, it
admits a unique Haar measure MH , which is invariant under
the group action. The Hilbert space for the representation of the
algebra of holonomies and fluxes in homogeneous and isotropic

LQC is then L2(RB,MH). It follows that the set of functions

{Fμ, μ ∈ R} are an orthonormal basis of this Hilbert space
(Velhinho, 2007), that is therefore not separable. Using Dirac’s
notation, we will denote this basis as {

∣∣∣∣μ〉, μ ∈ R}, where 〈μ
∣∣∣∣μ’〉 �

δμμ’ is the inner product on L2(RB,MH). The quantum
representation of the algebra (Eq. 15) that describes the
gravitational sector of the phase space is (Ashtekar et al., 2003;
Velhinho, 2007)

N̂ μ′

∣∣∣∣μ〉 �
∣∣∣∣μ + μ′〉, p̂

∣∣∣∣μ〉 � 4πGc

3
μ
∣∣∣∣μ〉. (17)

This representation is often called polymer representation, and its
Hilbert space is isomorphic to that of functions over R that are
square summable with respect to the discrete measure. Making
use of this isomorphism, it is clear that the states of the polymer
Hilbert space must have support only on a countable number of
points, and, when this number is finite, they are the direct
analogue of the cylindrical functions of LQG. Besides, note
that the representation of the basic operators that describe the
holonomies is not continuous. As a consequence, the operator

that would represent the Ashtekar-Barbero connection is not well
defined, a fact that also occurs in LQG.

At this point of our discussion, it may be worth noticing that
the construction of L2(RB,MH) as the Hilbert space of the
representation strongly depends on the choice of the Haar
measure. In fact, it is possible to find another measure in RB

that results in a standard Schrödinger representation for the
connections and triads (Velhinho, 2007). This alternate
representation, unlike the polymer one, is continuous and is
employed in the more familiar WdW quantization of this
cosmological system (DeWitt, 1967). However, owing to the

discrete character of MH , the two measures, and hence their
corresponding quantum theories, are not equivalent. It is
therefore not surprising that LQC can provide different
predictions than traditional geometrodynamics about the
quantum regimes of this cosmological model.

Finally, a standard continuous Schrödinger representation is
chosen for the matter sector of the phase space, that can be
described by the scalar field and its conjugate momentum. The
corresponding Hilbert space is L2(R, dϕ), where the scalar field
acts by multiplication and its momentum as the derivative π̂ϕ �
−izϕ.

2.3 LQC: Hamiltonian Constraint
The Hilbert space obtained by the tensor product of the polymer
space and L2(R, dϕ) does not necessarily contain the physical
states of the quantum theory. They should still satisfy the
Hamiltonian constraint, that is the only non-trivial constraint

that exists on the system, and which should be imposed à la Dirac
quantum mechanically (Dirac, 1964). For this reason, the
elements of the considered Hilbert space are often called
kinematic states. The next step in our quantization is then the

representation of the Hamiltonian constraint as an operator on
the kinematic Hilbert space. The gravitational part of this
constraint is given by

− π2

2Gc2
��
h

√ Ea
i E

b
j ϵ

ij
k
Fk
ab. (18)

Taking into account that the lapse function is homogeneous, we
have already considered the integrated version of the constraint
over the three spatial directions. In terms of the Ashtekar-Barbero
variables introduced before for the geometric sector, the
constraint HS that we obtain for homogeneous and isotropic
cosmologies, including the contribution of the homogeneous
massless matter field ϕ, has the following form:

HS �
∣∣∣∣p∣∣∣∣−3/2 (π2

ϕ

2
− 3

8πGc2
c2p2). (19)

The first evident obstruction for a polymer quantization of this
constraint is the absence of an operator to represent the
connection. However, this difficulty can be surpassed if the

following classical identity is taken into account:

F i
ab � −2 lim

A□ → 0
tr(h□ab

A□

τi), a≠ b, (20)

where the symbol tr(·) stands for the trace and h□ab
is the

holonomy along a certain circuit that encloses a coordinate
area A□. For spacetimes such as flat FLRW and Bianchi I
cosmologies, one can consider a rectangular circuit in the
plane formed by the directions a and b. Thus, in our specific
flat FLRW case, this holonomy can be written as

h□ab � hea(μ)heb(μ)h−1ea (μ)h−1eb (μ) (21)

and the enclosed coordinate area is AFLRW
□

� 4π2μ2.
If these holonomies are represented polymerically, the limit

contained in expression (Eq. 20) is not well defined, because

neither is the connection operator. Therefore, in LQC, the
enclosed coordinate area is not made to tend to zero, but
instead one appeals to the existence of a minimum value,
characterized by the minimum coordinate length 2πμ of the
edges that enclose it: AFLRW

□min
� 4π2μ2. It seems clear then that

this prescription for the quantum representation of the curvature
introduces a new scale. The arbitrariness in its choice can be fixed
by recurring to full LQG, where the geometric area operator has a
minimum non-zero eigenvalue ∆. Drawing inspiration from this
fact, in LQC one postulates that this value coincides with the
geometric physical area corresponding to AFLRW

□min
.

Recalling the (second) classical relation in (Eq. 13), one
concludes then that the minimum coordinate length should
satisfy (Ashtekar et al., 2006)

μ �
��
Δ∣∣∣∣p∣∣∣∣

√
. (22)
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Once we have determined the scale μ (now turned into a
dynamical variable) that sets the minimum coordinate area in
the FLRW cosmological model, we have to represent the classical
expression (Eq. 20) on the polymer Hilbert space, taking in it the

limit AFLRW
□

→AFLRW
□min

. In practice, this prescription amounts to
the replacement of c with the function sin(μc)/μ in the classical
expression of the Hamiltonian constraintHS before one proceeds
to its quantum representation. The dependence of the constraint
on the connection is thus captured by the complex exponentials
N ± 2μ(c), that in particular depend on p through μ. We must
then specify their representation on the polymer Hilbert space,
since the classical dependence ofN ± 2μ(c) on c and pmakes their
construction ambiguous in terms of the operators that we have
taken so far as basic for the FLRW geometry, namely N̂ μ and p̂.
With this aim, it is useful to introduce first the following operator,

constructed by means of the spectral theorem (Reed and Simon,
1980):

v̂ �
̂sign(p)∣̂∣∣∣p|3/2
2πGc

��
Δ

√ , v̂
∣∣∣∣μ〉 �

sign[p(μ)]∣∣∣∣p(μ)|3/2
2πGc

��
Δ

√
∣∣∣∣μ〉, (23)

where p(μ) is the eigenvalue of p̂ corresponding to the eigenstate∣∣∣∣μ〉, given in (Eq. 17). The direct classical counterpart of this
operator is proportional to the physical volume of the FLRW flat

and compact Universe. In addition, it has a Poisson bracket with
b � μc equal to minus two. If we relabel the orthonormal basis

{
∣∣∣∣μ〉, μ ∈ R} using the eigenvalues v of v̂, the operators N̂ ± μ are
then defined so that their action is simply a constant translation,
namely they simply shift the new label by a constant (Ashtekar
et al., 2006):

N̂ ± μ

∣∣∣∣ v〉 �
∣∣∣∣v ± 1〉. (24)

The square of these operators defines N̂ ± 2μ.
The prescription that we have explained in order to represent

the elements of holonomies that appear in the Hamiltonian of
LQC is commonly called the improved dynamics scheme1.

However, this scheme alone is not enough to complete the
representation of the constraint HS. The presence of the zero
eigenvalue in the spectrum of the operator p̂ creates problems
added to those already mentioned. Indeed, the Hamiltonian
constraint depends on the inverse of the geometric variable p
via ratios that involve the determinant of the spatial metric. The
quantum representation of this inverse cannot be defined in the
kinematic Hilbert space using the spectral theorem, because zero
is part of the discrete spectrum of p̂. This difficulty can be
circumvented again by appealing to the following classical
identity, employed as well in LQG adapted to a more general

context (Thiemann, 1996):

sign(p)∣∣∣∣p∣∣∣∣1/2 �
∣∣∣∣p|1/2

2πGc
��
Δ

√ tr⎛⎝τi∑
a

δiahea(μ){h−1ea (μ), ∣∣∣∣∣p∣∣∣∣1/2}⎞⎠. (25)

The quantum operators that correspond to inverse powers of the
triadic variable p are then defined by representing, on the
improved dynamics scheme, the variables appearing on the
right-hand side of this equality. In particular, Poisson brackets

are represented by −i times the commutator of the corresponding
operators. If one follows this quantization procedure, the
operator representing the homogeneous Hamiltonian
constraint HS in LQC is (Martín-Benito et al., 2009a)

ĤS �
̂[ 1��∣∣∣∣p∣∣∣∣√ ]3/2

ĤS

̂[ 1��∣∣∣∣p∣∣∣∣√ ]3/2

, (26)

where we have defined the densitized operator

ĤS �
π̂2
ϕ

2
− Ω̂

2

0

2
. (27)

Here

Ω̂0 �
3πG

2

��
|v̂

√
|[ ̂sign(v)ŝin(b) + ŝin(b) ̂sign(v)] ��

|v̂
√

|, (28)

ŝin(b) � 1

2i
(N̂ 2μ − N̂ −2μ). (29)

In these definitions, we have used a prescription for the factor
ordering of the involved operators proposed by Martín-Benito,
Mena Marugán, and Olmedo (Martín-Benito et al., 2009a),
known with the initials of these authors as the MMO
prescription. Its most characteristic feature is the
symmetrization of the sign of the orientation of the triad with

the holonomy elements in (Eq. 28). The operator ĤS defined in
this way presents certain interesting properties thanks to its
symmetric factor ordering, compared with the quantum
constraint obtained with another, frequently adopted
prescription, proposed by Ashtekar, Pawlowski, and Singh
(APS) (Ashtekar et al., 2006; Ashtekar et al., 2006; Ashtekar
et al., 2006). In particular, its action decouples the state of the
polymer basis with v � 0 from its orthogonal complement. This
allows for a neat densitization of the Hamiltonian constraint
(Martín-Benito et al., 2009a). Besides, the action of the operator
does not mix states with positive and with negative values of v

(Martín-Benito et al., 2009a) (namely, it does not change the
orientation of the triad). We can then restrict the quantum
analysis of the FLRW cosmologies to the linear subspace
generated by states |v〉 with v ∈ R

+, for example. Actually, the
action of the constraint leaves invariant smaller and separable
subspaces that are called superselection sectors, and that are
simpler with the MMO prescription than in the APS case
owing to the separation between sectors of different triad
orientation. In more detail, the action of ĤS (or, equivalently,
of ĤS) turns out to preserve every one of the linear subspaces
generated by states |v〉 with v belonging to the semilattice

L+
ε � {ε + 4k, k ∈ N}, entirely characterized by its smallest point

ε ∈ (0, 4]. Notice that the value of ε is always strictly positive, and
therefore the same is automatically true for the variable v in each
of the considered superselection sectors. Finally, a comment is
due about the imposition of the (densitized) Hamiltonian
constraint ĤS. Although the kernel of this operator is not a
proper subspace of the kinematic Hilbert space, the quantum

1An alternate way to define the Hamiltonian constraint operator using a

regularized expression for the extrinsic curvature has been explored recently

(Yang et al., 2009; Dapor and Liegener, 2018; Assanioussi et al., 2019; García-

Quismondo and Mena Marugán, 2019).
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constraint can be rigorously imposed in our representation by its
adjoint action, allowing in this way generalized solutions that
should provide the physical Hilbert space once they are supplied
with a suitable inner product, different from the kinematic one.

In fact, it has been possible to characterize the resulting
physical Hilbert space, together with complete sets of Dirac
observables. The resolution of the constraint is straightforward
once one completes the spectral analysis of the operator Ω̂

2

0. It has
been proven that this operator has a non-degenerate absolutely
continuous spectrum equal to the positive real line (Martín-
Benito et al., 2008; Martín-Benito et al., 2009a). The
eigenvalue equation of the operator Ω̂

2

0 can be regarded as a
second-order difference equation. With the MMO prescription
adopted in its definition, the generalized eigenfunctions turn out
to be entirely determined by their value at ε, point from which

they can be constructed by solving the eigenvalue equation.
Besides, up to a global phase, these eigenfunctions eεδ(v) are
real, because the second-order difference equation associated
with the action of the operator is a real equation. With the
eigenfunctions at hand, one easily obtains the solutions to the
Hamiltonian constraint, which take the form

ξ(v, ϕ) � ∫∞

0

dδ eεδ(v)[ξ+(δ)ei �δ√
ϕ + ξ−(δ)e− i

�
δ

√
ϕ]. (30)

Therefore, physical states can be identified, for instance, with the
positive frequency solutions ξ+(δ)exp(i

�
δ

√
ϕ) that are square

integrable over the spectral parameter δ ∈ R
+ (Martín-Benito

et al., 2009a) (negative frequency solutions provide essentially the
same Hilbert space). A complete set of Dirac observables is given
by π̂ϕ and

∣∣∣∣∣v̂|ϕ0, where this latter operator is defined as the action
of the operator v̂ when the scalar field equals ϕ0. On the Hilbert
space of physical states specified above, these observables are self-
adjoint, property that in fact characterizes the inner product on
the space of solutions described by the functions ξ+(δ).

On the other hand, a numerical analysis of the dynamics, with
respect to the homogeneous scalar field, of certain families of
states with a semiclassical behavior at large volumes shows that
they remain sharply peaked during the quantum evolution

(Ashtekar et al., 2006). Actually, the trajectories of their peaks
coincide, in the regions of low matter density, with those dictated
by Einstein’s equations in the considered FLRW cosmology.
However, when the matter density reaches values that are
comparable to the Planck density ρPlanck , the trajectory of the
peak separates from the classical solution and turns to describe a
transition from a Universe in contraction to an expanding one (or
vice versa) (Ashtekar et al., 2006). In particular, thematter density
reaches a critical value when it is equal to 0.41 ρPlanck [for the value
of the Immirzi parameter that leads in LQG to the Bekenstein-
Hawking law for the entropy of black holes (Ashtekar et al., 2001;

Domagala and Lewandowski, 2004; Meissner, 2004)]. As we
explained in the Introduction, this phenomenon of quantum
nature that eludes the cosmological singularity of the Big Bang is
known by the name of Big Bounce. There is also evidence that it
occurs in LQC beyond the context of homogeneous and isotropic
cosmologies, with indications that it is present as well in
anisotropic cosmologies such as Bianchi I models (Gupt and
Singh, 2012), or in inhomogeneous cosmologies such as the

linearly polarized Gowdy model with toroidal spatial sections
(Tarrío et al., 2013).

3 HYBRID LQC: THE GOWDY MODEL

Historically, hybrid LQC was first developed for the Gowdy
linearly polarized cosmological model, with spatial sections
with the topology of a three-torus, T3, and after carrying out a
partial gauge fixing that removes all constraints on the system
except for the zero mode of the Hamiltonian constraint and of
one of the momentum constraints (these zero modes are the

average of those constraints on the spatial sections, modulo a
constant numerical factor). Gowdy models are inhomogeneous
cosmological spacetimes with compact spatial sections and two
axial Killing vector fields (Gowdy, 1971; Gowdy, 1974). The case
with three-torus spatial topology is the simplest one. The linear
polarization restriction on the gravitational wave content of the
model amounts to require that the two Killing vectors are
hypersurface orthogonal. The Killing symmetries then imply
that the physical degree of freedom still present in those
gravitational waves can be thought of as varying in only one
spatial direction. After the mentioned partial gauge fixing, the

phase space of this Gowdy model can be identified with that of a
Bianchi I spacetime containing a linearly polarized wave.
Furthermore, given the spatial behavior of this wave, we can
describe it as a scalar field χ defined on the circle, S1, that
corresponds to the cyclic spatial direction in which the wave
propagates. In addition, we couple a massless scalar field Φ with
the same symmetries as those of the geometry (Martín-Benito
et al., 2010a). The hybrid quantization of this model will therefore
be based on the quantization of Bianchi I cosmologies according
to the LQC formalism [and the MMO prescription, see Refs.
(Martín-Benito et al., 2008; Mena Marugán and Martín-Benito,

2009; Garay et al., 2010; Martín-Benito et al., 2010b)], as well as
on a suitable Fock representation of the matter field Φ and of the
scalar field χ assigned to the linearly polarized gravitational wave.
For convenience, we extract the zero mode ϕ of the matter field,
that behaves as a homogeneous scalar field giving a non-trivial
matter content to the Bianchi I cosmology, and assume that χ has
vanishing zero mode (this assumption is only meant to simplify
the discussion and involves no relevant conceptual
consequences). The two sectors of the model, namely the
homogeneous Bianchi I sector and the inhomogeneous scalar
field sector, get mixed in a non-trivial way by the zero mode of the
Hamiltonian constraint, that must be imposed on the considered

system.
Let us describe the model in more detail. It is most convenient

to choose coordinates {t, θ, σ, δ} adapted to the Killing
symmetries, such that zσ and zσ are the Killing vectors. Then,
the degrees of freedom of the model only depend on the time t
and on the cyclic spatial coordinate θ ∈ S1. Starting with the
canonical formulation of GR, we can then peform a symmetry
reduction to take into account the Killing symmetries, as well as a
partial gauge fixing that removes the momentum and
Hamiltonian constraints except for the zero modes of the
latter and of the momentum constraint in the θ-direction
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(Mena Marugán and Martín-Benito, 2009). In this way, we get a
reduced phase space that is formed by four canonical pairs of
degrees of freedom (corresponding to the zero modes of the
model), a gravitational field (that describes the linearly polarized

gravitational wave of the model, and that we consider devoid of
zero mode), and the inhomogeneous part of the massless scalar
field. The homogeneous sector, composed of the four pairs of zero
modes, coincides with the phase space of a Bianchi I cosmology
coupled to a homogeneous massless scalar field ϕ. Besides, using a
Fourier transform, we decompose the gravitational and matter
scalar fields of themodel, χ andΦ respectively, passing to describe
them in terms of their Fourier (non-zero) modes. These modes
and the corresponding modes of the canonical momenta of the
two fields form the inhomogeneous sector of the system. The
obtained reduced phase space is subject to two constraints, that

were not eliminated in the process of partial gauge fixing. One of
them is the zero mode of the momentum constraint in the
θ-direction, Hθ . This constraint generates rigid rotations in the
circle coordinatized by θ, and imposes a restriction that affects
exclusively the inhomogeneous sector. The other constraint that
must be imposed is the zero mode HS of the Hamiltonian
constraint of the system. This constraint HS is the sum of a
homogeneous term Hhom, that is the Hamiltonian constraint of
the Bianchi I model, and an additional termHinh, that couples the
homogeneous and inhomogeneous sectors and vanishes when the
inhomogeneous sector is not present.

The next step in our analysis consists in describing the Bianchi
I cosmologies with three-torus spatial topology in terms of
Ashtekar-Barbero variables, in order to quantize them by
using LQC techniques. We can adopt a suitable internal gauge
and adopt a diagonal form for the triads and connections. In this
way, each of the Ashtekar-Barbero variables can be totally
characterized by three homogeneous functions, that determine
the diagonal components. We will call these functions pa and ca,
corresponding to the densitized triad and su(2)-connection,
respectively, and with a � θ, σ, δ. The only non-trivial Poisson
brackets for them are {ca, pb} � 8πcGδab, so they form canonical

pairs. We callHBI
kin⊗L

2(R, dϕ) the kinematic Hilbert space for the
Bianchi I model in LQC, where HBI

kin denotes the polymer
representation space of the Bianchi I geometries in LQC and
L2(R, dϕ) is the space of square integrable functions for the
homogeneous scalar field, defined on the real line (Ashtekar and
Wilson-Ewing, 2009) With this choice of Hilbert space, we adopt
again a standard Schrödinger representation for the zero mode of
the matter field, ϕ, so that its canonical conjugate momentum acts
as a derivative, π̂ϕ � −izϕ. The construction of HBI

kin, on the other
hand, is similar to that explained for the FLRW geometry in LQC,
except for the fact that we now have three pairs of canonically

conjugated Ashtekar-Barbero degrees of freedom instead of only
one. The inner product on this Hilbert space is discrete, so that
the triad operators p̂a have a point spectrum equal to the real line.
Defining the tensor product ⊗a

∣∣∣∣pa〉 (with a � θ, σ, δ) of the
eigenvectors of each of the triad operators we obtain
eigenstates

∣∣∣∣pθ, pσ , pδ〉 that form an orthonormal basis of the
Hilbert space HBI

kin.
On the other hand, we can extend the improved dynamics

proposal from the FLRW geometries to the Bianchi I model as

proposed in Ref. (Ashtekar and Wilson-Ewing, 2009),
introducing in this way minimum coordinate length scales μa
for each of the spatial directions. Explicitly, these length scales are

μa �
�����
Δ |pa

∣∣∣∣∣∣∣∣pb pc∣∣∣∣
√

, (31)

with a≠ b≠ c and a, b, c ∈ {θ, σ, δ}. We then introduce the
operators N̂ ± μa

to represent the holonomy elements N ± μa
�

exp(± iμaca/2) along an edge in the a-direction of coordinate
length 2πμa. These operators appear in the regularization of the
curvature operator in the Hamiltonian constraint and are defined
in a similar way as we did for the isotropic case in FLRW.

The action of these holonomy operators on the states∣∣∣∣pθ, pσ , pδ〉 is rather complicated, since each of the length
scales μa depends not only on pa, but also on the triad
variables in the other directions. To simplify the expressions,
it is convenient to relabel these states in the form |v, λσ , λδ〉, where

λa � sign(pa)
���∣∣∣∣pa∣∣∣∣√

(4πGc ��
Δ

√ )1/3, (32)

v � 2λθλσλδ . (33)

Apart from an orientation sign, v is equal to 1/(2πGc
��
Δ

√
)

multiplied by the physical volume of the Bianchi I Universe,
volume that we will often call also the homogeneous volume. The
action of the holonomy operators N̂ ± μθ

just scale λθ in such a
way that the label v is shifted by the unit (Ashtekar and Wilson-
Ewing, 2009). In full detail, we have

N̂ ± μθ

∣∣∣∣v, λσ , λδ〉 �
∣∣∣∣v ± sign(λσλδ), λσ , λδ〉. (34)

On the other hand, the holonomy operators N̂ ± μσ
and N̂ ± μδ

additionally produce state-dependent scalings of λσ and λδ ,
respectively. For example, we have

N̂ ± μσ

∣∣∣∣v, λσ , λδ〉 �
∣∣∣∣v ± sign(λσv), v−1[v ± sign(λσv)]λσ , λδ〉.

(35)

To complete the ingredients that are needed for the hybrid
quantization of the Gowdy model, we have to select a Fock
quantization of the inhomogeneous sector. Actually, it has been
proven that it is possible to single out a unique Fock quantization
(given by a Fock representation and a Heisenberg dynamics for the
background independent part of the fields), up to unitary
equivalence, by imposing certain natural conditions, that require
that the symmetry generated by Hθ and the quantum evolution of
the creation and annihilation operators be unitarily implementable
(Corichi et al., 2006; Cortez et al., 2007). In particular, this result
removes the freedom of choice among the infinite number of

inequivalent Fock representations, that may lead to different
physics. Besides, the unitarity of the Heisenberg dynamics also
imposes a concrete parametrization for the non-zero modes of
both the gravitational field χ and the matter field Φ in terms of the
background variables (namely the zero modes). Following these
criteria, we represent the inhomogeneous sector of our hybrid
model in Fock spaces F α (with α � χ,Φ) chosen in Refs. (Corichi
et al., 2006; Cortez et al., 2007). An orthonormal basis of each of
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these Fock spaces is provided by the n–particle states∣∣∣∣nα〉 �
∣∣∣∣/, nα−2, n

α
−1, n

α
1 , n

α
2 ,/〉, where nαl denotes the

occupation number of the field α in the mode l ∈ Z − {0}.
Let â(α)l and â(α)†l denote the annihilation and creation

operators of that mode, respectively. We can then reach a
kinematic Hilbert space for the hybrid quantization of the
Gowdy model by taking the tensor product
Hkin � HBI

kin⊗ L
2(R, dϕ)⊗F χ

⊗FΦ. Excluding the zero mode
of the matter field temporally from our considerations, an
orthonormal basis for the Hilbert space of the rest of the
system is formed by the states

∣∣∣∣v, λσ , λδ , nχ , nΦ〉 for all real
values of the three first labels and all sets nχ and nΦ of integers
with a finite number of non-vanishing elements.

Finally, we are in an adequate position to represent the
constraints of the system as densely defined operators on this

Hilbert space. Choosing normal ordering, the generator of the
translations in the circle reads (Martín-Benito et al., 2010a)

Ĥθ � ∑∞
l�1

∑
α�χ,Φ

l(â(α)†l â(α)l − â(α)†−l â(α)−l ). (36)

This constraint leads to the condition

∑∞
l�1

∑
α�χ,Φ

l(nα
l − nα−l) � 0 (37)

on n–particle states of the inhomogeneities. Those states that
satisfy the condition span a proper Fock subspace F p of
F χ

⊗FΦ. Let us now consider the quantum Hamiltonian
constraint. We choose again normal ordering for the creation
and annihilation operators of the inhomogeneous sector, while
for the part of the constraint that acts on the homogeneous
sector we choose a convenient symmetrization inspired by the
MMO prescription (Garay et al., 2010). Rational powers of the

norm of the triad variables are represented adopting an
algebraic symmetrization, which decouples the states of zero
homogeneous volume v from their orthogonal complement.
Like in the FLRW cosmology, this fact allows us to remove the
states with vanishing homogeneous volume from our kinematic
space, therefore eliminating the quantum kinematic analogues
of the classical singularities with v � 0. Moreover, again like in
the FLRW model, one finds that the action of the Hamiltonian
constraint does not mix states with different orientations of any
of the components of the triad or, equivalently, with different
signs of the variables v, λσ , and λδ . Hence, as far as the

constraints of the system are concerned, one can restrict all
considerations, e.g., to the sector of strictly positive labels for the
homogeneous geometry. Taking this into account, we redefine
Λa � ln(λa) for a � σ, δ so that the anisotropy labels continue to
take values over the real line.

The Hamiltonian constraint ĤS � Ĥhom + Ĥinh that one
obtains with this hybrid quantization, after performing a
densitization similar to that in the FLRW case, has the
following form (Garay et al., 2010; Martín-Benito et al., 2010b):

Ĥhom �
π̂2
ϕ

2
− πG

16
∑
a≠ b

∑
b

Θ̂aΘ̂b, (38)

Ĥinh � 2π(4πGc ��
Δ

√ )2/3 ê2Λθ ĤF +
πG4/3

16(4πc ��
Δ

√ )2/3 ê− 2Λθ D̂ (Θ̂δ

+ Θ̂σ)2D̂ĤI .

(39)

Here a, b ∈ {θ, σ, δ}. As we have already commented, Ĥhom is the
constraint operator for the Bianchi I model with a homogeneous
massless scalar field in LQC, according to the MMO prescription
(Martín-Benito et al., 2008). On the other hand, the operator
πGcΘ̂a is the representation of capa, which is a constant of motion
in the classical theory. We have defined

Θ̂a �
1

2i

�̂�
|v|

√ [(N̂ 2μa
− N̂ −2μa) ̂sign(pa) + ̂sign(pa)

(N̂ 2μa
− N̂ −2μa)] �̂�

|v|
√

, (40)

similar to the operator Ω̂0 introduced in the isotropic case (Eq.
28). In addition, the operator D̂ represents the product of the
volume by its inverse [which is regularized in the standard way
within LQC; (Eq. 25)]. Its action on the basis of volume
eigenstates is

D̂
∣∣∣∣∣v〉 � v( �����

|v + 1|
√

−
�����
|v − 1|

√ )2∣∣∣∣∣ v〉. (41)

The contribution of the inhomogeneities is captured by ĤF and
ĤI . The operator ĤF can be understood as a free-field
Hamiltonian, that leaves invariant the n–particle states. It is
given by

ĤF � ∑∞
l�1

∑
α�χ,Φ

l(â(α)†l â(α)l + â(α)†−l â(α)−l ). (42)

The operator ĤI may be interpreted as an interaction
Hamiltonian that creates and annihilates an infinite collection
of pairs of particles, while preserving the momentum constraint
Ĥθ . Explicitly,

ĤI � ∑∞
l�1

∑
α�χ,Φ

1

l
(â(α)†l â(α)l + â(α)†−l â(α)−l + â(α)†l â(α)†−l + â(α)l â(α)−l ). (43)

It is worth remarking that the inhomogeneities of both fields
contribute to the constraints in exactly the same way.

The action of the Hamiltonian constraint operator ĤS does
not relate all of the states with different values of v ∈ R

+ and
Λa ∈ R, with a � σ, δ. There are invariant subspaces in the Hilbert
space spanned by those states. Each of these subspaces provides a

superselection sector for the quantum theory. The superselection
sectors in the homogeneous volume v are semilattices of step four,
L+
ε � {ε + 4n, n ∈ N}, determined by the initial point ε ∈ (0, 4],

exactly as in the FLRWmodel. Note that, again, the homogeneous
volume is bounded from below by a strictly positive quantity in
each of these sectors. The superselection sectors in Λa are more
complicated. If we fix some initial data Λ*

a and ε, the values of Λa

in the corresponding sector (constructed by the repeated action of
the Hamiltonian constraint) take the form Λa � Λ*

a + Λε, where
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Λε is any of the elements of a certain setWε that is countable and
dense in the real line (Garay et al., 2010):

Wε �
⎧⎨⎩zln(ε − 2

ε
) + ∑

n,m ∈ N

knmln( ε + 2n

ε + 2m
)⎫⎬⎭. (44)

Here, knm ∈ N and z ∈ Z if ε> 2, while z � 0 when ε≤ 2.
Given that the action of Θ̂a is considerably complicated, it has

not been possible to elucidate yet whether this operator is self-
adjoint. In spite of this, it is common to assume that Ĥhom is
essentially self-adjoint (Ashtekar and Wilson-Ewing, 2009) and
that the same applies to ĤS (Garay et al., 2010; Martín-Benito
et al., 2010b). Regardless of this, one can try to formally solve the
constraints of the Gowdy model. The solutions turn out to be
completely determined by the data on the section of the v-space

defined by v � ε. Thanks to this fact, one can characterize the
physical Hilbert space as the Hilbert space of such initial data,
with an inner product that can be determined by imposing reality
conditions on a complete set of observables (Rendall, 1993;
Rendall, 1994). In this way, one arrives to the space
Hphys � HBI

phys ⊗ L
2(R, dϕ)⊗F p, where HBI

phys is the physical
Hilbert space for Bianchi I cosmologies derived in Ref.
(Martín-Benito et al., 2010b).

4 HYBRID LQC: COSMOLOGICAL
PERTURBATIONS

After testing the viability of the hybrid quantization strategy in
the Gowdy model, the approach was also applied to the
discussion of a much more relevant scenario in cosmology,
namely the study of primordial cosmological perturbations in
the very early stages of the Universe. Using that the
inflationary Universe is usually described as an FLRW

cosmology that plays the role of a background where the
perturbations develop and propagate, the idea was to
quantize this background in the framework of LQC and
treat the perturbations with the techniques of QFT in a
curved spacetime. The hybrid approach then transforms the
curved, FLRW classical background into a quantum spacetime
with which the quantum field excitations corresponding to the
perturbations coexist and interact by means of the
gravitational constraints. For simplicity and for a better
control of the mathematical techniques of QFT, we will
again assume that the spatial sections are compact, with a

three-torus topology. On the other hand, in order to isolate the
perturbative degrees of freedom that do not depend on a
possible perturbative diffeomorphism of the FLRW
spacetime, that would result in a new identification of the
background geometry, we will adopt a description in terms of
perturbative gauge invariants. For cosmological scalar
perturbations, one can employ the invariants introduced by
Mukhanov and Sasaki (MS) (Sasaki, 1983; Kodama and Sasaki,
1984; Mukhanov, 1988) (considered as a pair of canonical
fields). Gauge invariants are also the tensor perturbations, as
well as the degrees of freedom of a Dirac field if it is present
(Elizaga Navascués et al., 2017) (treating this field entirely as a

perturbation). The description of the phase space of the
perturbations can be completed with suitable redefinitions
of the generators of the perturbative diffeomorphisms and
canonical momenta of them. For the hybrid quantization, a

piece of information that is most relevant as far as the
inhomogeneities are concerned is the choice of a Fock
representation for the gauge invariant fields. To restrict this
choice and adopt a representation with especially appealing
physical properties, we will still adhere to the criterion that the
Fock quantization must allow a unitary implementation of the
spatial symmetries of the model and of the Heisenberg
dynamics associated with the creation and annihilation
operators. With these ingredients, we will proceed to
construct a hybrid quantum theory for the perturbed
system. On this system, we will see that the only non-trivial

constraint turns out to be the zero mode of the Hamiltonian
constraint. We will then discuss its quantum imposition.
Moreover, we will show how to extract from it (with a
convenient ansatz and plausible approximations)
Schrödinger equations for the perturbations, as well as
effective equations to describe the propagation of the
perturbations on the FLRW geometry subject to quantum
effects. These equations can be used to study modifications
to the power spectra of the cosmological perturbations,
originated from quantum gravitational effects. The program
that we have outlined will be implemented in this and the

following five sections.
We start by constructing a convenient canonical description of

the system formed by the FLRW cosmology and its perturbations
that contains a complete set of gauge invariants. As in the case
studied in our introduction to LQC, the FLRW spacetimes that
we will consider possess compact sections with the topology of a
three-torus. Their geometry can be described by a scale factor a
and its canonical momentum πa (or equivalently by the pair of
variables c and p that determine the Ashtekar-Barbero variables
in LQC). With the same choice of reference system for this
cosmological background that we employed in the previous

expositions about LQC, the coordinate volume of the spatial
sections equals 8π3. As before, these spacetimes will contain a
homogeneous scalar field, ϕ, responsible of the expansion and
that consequently will play the role of an inflaton. This inflaton
can be interpreted as the zeromode of a generally inhomogeneous
scalar field Φ, interpretation that will be especially useful at the
moment of introducing perturbations in the system. On the other
hand, the main difference with respect to our previous studies is
that we will now allow the possible existence of a potential V(ϕ)
for this inflaton.

The FLRW system is subject only to a non-trivial

homogeneous Hamiltonian constraint, as we have discussed
above. It can be written as H0 � 0 where2

H0 �
1

16π3a3
(π2

ϕ −
4πG

3
a2π2

a + 128π6a6V(ϕ)). (45)

2We reserve the notation HS for the constraint of the whole perturbed model.
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Let us next introduce perturbations in this system, both for the
geometry and for the matter scalar field. It is also possible to
introduce a Dirac field to describe fermions, regarded as
perturbations of the FLRW cosmology (Elizaga Navascués

et al., 2017). We postpone the consideration of these fermions
to the next section. We can separate the metric and inflaton
perturbations into scalar, vector, and tensor, depending on their
behavior under the symmetries of the spatial sections (notice that
these symmetries provide the Euclidean group in the limit in
which the sections become non-compact). In addition, using that
the spatial Laplacian (and the Dirac operator) corresponding to
the auxiliary Euclidean metric 0hab (with unit determinant)
defined on our toroidal sections respect these symmetries, we
can expand the different perturbations in eigenmodes of this
differential operator. Moreover, since the spatial sections are

compact, these modes are discrete. In this way, we can deal
with the spatial dependence of the perturbations by considering
infinite sequences of modes. For instance, choosing again
(orthogonal) spatial coordinates of period equal to 2π, we
expand the scalar perturbations of the metric and the matter
field in a Fourier basis of sines and cosines,

Q
�k,+ ( �θ) �

�
2

√
cos( �k · �θ), Q

�k,− ( �θ) �
�
2

√
sin( �k · �θ). (46)

Here, the vector notation �θ stands for the spatial coordinates
(θ, σ, δ), and the Euclidean scalar product has been denoted with

a dot symbol. Each mode is characterized by a wavevector
�k ∈ Z

3 − {0}, with strictly positive first non-vanishing
component. Note that, in this way, we are not including the
zero mode, that is part of the degrees of freedom considered in the
FLRW background. The eigenvalue of the spatial Laplacian
corresponding to �k is −ω2

k � − �k · �k. Scalar perturbations are
described then by the corresponding Fourier coefficients of
the scalar field Φ (without the zero mode, namely the
inflaton), the trace and traceless scalar parts of the spatial
metric hab (without the FLRW contribution), the lapse N
(without its homogeneous part), and the scalar part of the
shift Na.

Similarly, tensor perturbations are described by the Fourier-
like coefficients of the tensor part of the spatial metric, with two
possible polarizations. These coefficients arise from the expansion

in terms of the real tensor harmonics G
�k,ε, ±
ab , eigentensors of the

spatial Laplacian (Fernández-Méndez, 2014). As above, the tuple
�k can take here any value in Z

3 − {0}, with positive first non-

vanishing component, while ε is the dichotomic label that

specifies the polarization, and the superscripts ± indicate

whether the harmonic is even or odd under a periodic

translation of �θ, as in the scalar case. Vector perturbations, on

the other hand, are described by the remaining parts of the shift

and the spatial metric, that can be expanded in Fourier-like

coefficients in terms of eigenvectors S
�k
a of the Laplace operator

and of tensors obtained from those by spatial covariant

derivatives (Halliwell and Hawking, 1985). Here, �k is again

any non-vanishing tuple of integers. It is convenient to

parametrize all of these mode coefficients as follows:

hab(t, �θ) � a2(t) 0hab( �θ)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 + 2∑
�k, ±

a �k, ± (t)Q
�k, ± ( �θ)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 6a2(t)∑
�k, ±

b �k, ± (t)[ 1

ω2
k

Q
�k, ±
|ab ( �θ) + 1

3
0hab( �θ)Q �k, ± ( �θ)]

(47)

+ a2(t)∑
�k

c �k(t)S
�k
(a|b)( �θ) + 2

�
6

√
a2(t) ∑

�k,ε, ±

d �k,ε, ± (t)G
�k,ε, ±
ab ( �θ), (48)

N(t, �θ) � N0(t) +
6π2

G
a3(t)∑

�k, ±

g �k, ± (t)Q
�k, ± ( �θ), (49)

Na(t, �θ) � a2(t)∑
�k, ±

1

ω2
k

l �k, ± (t)Q
�k, ±
|a ( �θ) + a(t)∑

�k

v �k(t)S
�k
a( �θ),

(50)

Φ(t, �θ) � ϕ(t) +
����
3

4πG

√ ∑
�k, ±

f �k, ± (t)Q
�k, ± ( �θ). (51)

A vertical bar stands for the spatial covariant derivative with
respect to the Euclidean metric 0hab, and a parenthesis enclosing
two spatial indices indicates symmetrization. Thus, the scalar
perturbations are determined by a �k, ± , b �k, ± , g �k, ± , l �k, ± , and f �k, ± ,

whereas the tensor perturbations are described by the coefficients
d �k,ε, ± , and the vector perturbations by c �k and v �k. We have
normalized some of these coefficients in a convenient way to
absorb several factors in the formulas that we will use in our
discussion.

Inserting these expressions in the Hilbert-Einstein action
minimally coupled to the scalar field Φ (with suitable
boundary terms) and truncating the result at quadratic order
in the coefficents of the perturbations, it is possible to reach a
Hamiltonian formulation for our system (Halliwell and Hawking,
1985; Fernández-Méndez, 2014). In this formulation, the above
coefficients for the perturbations either play the role of Lagrange

multipliers of some of the constraints, or form a canonical set
together with the FLRW scale factor, the inflaton, and suitable
momenta for all of them. In other words, at the order of our
truncation in the action, the system formed by the FLRW
cosmology and its perturbations is a totally constrained system
that admits a canonical symplectic structure (Castelló Gomar
et al., 2015). It is worth emphasizing that, at the considered
truncation order, we are treating exactly the zero modes that
determine the FLRW background, so that the perturbations that
we have expressed explicitly do not contain zero modes. On the
other hand, with the kind of matter content considered in our

discussion, it is possible to show that the vector perturbations do
not include any physical degree of freedom, but are pure gauge.
To simplify our exposition, we will therefore eliminate them from
our analysis in the following.

The perturbed system that we have constructed is subject to
two types of constraints. On the one hand, the perturbations of
the momentum and Hamiltonian constraints lead to a collection
of constraints that are linear in the perturbations, and that appear
accompanied by Lagrange multipliers that are also linear

perturbative factors. Explicitly, the mode H
�k, ±
↑1 of the linear

perturbative momentum constraint has Lagrange multiplier
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given by the coefficient l �k, ± of the perturbations of the shift

vector, while the mode H
�k, ±
1 of the linear perturbative scalar

constraint adopts as Lagrange multiplier the coefficient g �k, ± of

the perturbation of the lapse. These constraints depend

exclusively on the scalar perturbations of the metric, once the

vector perturbations have been gauged away. A different type

of constraint is the zero mode of the Hamiltonian constraint,

which can be considered a global restriction on the system

formed by the FLRW cosmology and the perturbations.

This constraint has a Lagrange multiplier given by the

homogeneous lapse function N0, and is the sum of two

contributions: a term that reproduces what would have been

the constraint H0 of the FLRW cosmology in the absence of

perturbations, and an additional term H2 that contains the

perturbative contribution and that is quadratic in the

perturbations. This latter term is composed in turn of two

parts, (s)H2 and
(T)H2, respectively formed by the contributions

of the scalar and the tensor perturbations. In this way, the total

Hamiltonian takes the expression

H � N0[H0 + (s)H2 + (T)H2] +∑ g �k, ± H
�k, ±
1 +∑ l �k, ± H

�k, ±
↑1 . (52)

Moreover, the quadratic perturbative contributions to the zero
mode of the Hamiltonian constraint can be decomposed as the
sum of the contributions of each of the modes of the
perturbations as follows:

(s)H2 � ∑
�k, ±

(s)H
�k, ±

2 , (T)H2 � ∑
�k,ε, ±

(T)H
�k,ε, ±

2 . (53)

The variables that we have chosen to describe the perturbative
degrees of freedom have the drawback that they do not

commute with the linear perturbative constraints, even
when the FLRW cosmology is taken as a fixed entity with
vanishing Poissson brackets. As a consequence, those variables
would change if one performs a perturbative diffeomorphism,
that would alter the form of the FLRW background
without affecting the physics. To avoid this problem with
the physical identification of the background, it is most
convenient to use a set of variables that indeed commutes
with the linear perturbative constraints when the zero modes
are frozen in the computation of Poisson brackets. This leads
us to consider gauge invariants for the perturbations. In the

case of flat spatial sections, the gauge invariant degrees of
freedom of the scalar perturbations are usually described in
cosmology employing MS invariants, because they are
straightforwardly related to the co-moving curvature
perturbations. The variables that we have introduced for the
tensor perturbations, on the other hand, are directly gauge
invariant, and we will only redefine them linearly to re-express
their dynamical contribution to the Hamiltonian in a
convenient way.

With this motivation, we are going to introduce a change of
variables for the perturbations, from the canonical set that we

have been using to a new set formed by the following variables
(Langlois, 1994; Castelló Gomar et al., 2015):

• The mode coefficients of the MS gauge invariant field, ] �k, ± .

Explicitly, they are given by the formula (Fernández-
Méndez et al., 2013; Castelló Gomar et al., 2014)

] �k, ± �
���
6π2

G

√
a[f �k, ± +

����
3

4πG

√
πϕ

aπa

(a �k, ± + b �k, ± )]. (54)

We notice that these coefficients mix the scalar perturbations
of the metric and the perturbations of the matter scalar field.
• The mode coefficients of the tensor perturbations
conveniently rescaled (Benítez Martínez and Olmedo,
2016):

~d �k,ε, ± �
���
6π2

G

√
a d �k,ε, ± . (55)

This rescaling simplifies the dependence of the Hamiltonian
on the tensor perturbations.

• The mode coefficients π] �k, ±
and π~d

±

�k,ε
of the canonical

momenta of the above fields, defined also as gauge
invariants. There exists a certain ambiguity in the
specification of these momenta, since once can
always add a contribution that is linear in the

configuration fields, multiplied by any function of
the FLRW background. A convenient criterion to fix
this contribution is to require that the time derivative of
each of these momenta, as dictated by Hamilton’s
equations, is proportional to the corresponding
configuration variable. This condition amounts to
demand that the Hamiltonian that generates the
dynamics of the scalar and tensor perturbations
should not contain cross terms between the
configuration fields and their momenta, and turns
out to determine the latter of these variables
completely.

• An Abelianization of the linear perturbative constraints.
Actually, at the order of our perturbative truncation in
the action, it is possible to modify these constraints on
the scalar perturbations with terms that are linear in
those perturbations and such that the new constraints
that one obtains commute under Poisson brackets
among them, as well as with the MS field and its
momentum, after freezing the zero modes. To achieve
this Abelianization, it suffices to introduce the
replacement

H
�k, ±
1 → �H

�k, ±

1 � H
�k, ±
1 − 18π2

G
a3H0a �k, ± . (56)

This new linear perturbative scalar constraint is used together
with H

�k, ±
↑1 as additional variables in our canonical set.

• Suitable momenta of the Abelianized linear perturbative
constraints. As far as those constraints generate gauge
transformations consisting of perturbative diffeomorphisms,
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their momenta can be interpreted as variables that
parametrize possible gauge fixations for the perturbations.
A especially simple choice is

π
�H

�k, ±
1

� 1

aπa

(a �k, ± + b �k, ± ), π
H

�k, ±
↑1

� −3b �k, ± . (57)

Remarkably, the introduced change of variables for the scalar
and tensor perturbations can be completed into a canonical
transformation for the entire system (that is, without freezing
the background), at the considered truncation order, by
modifying the zero modes with terms that are quadratic in
the perturbations (Pinho and Pinto-Neto, 2007; Falciano and
Pinto-Neto, 2009; Castelló Gomar et al., 2015). For this, we

can proceed as follows. We substitute the old perturbative
variables in the Legendre term of the action (or, equivalently,
in the symplectic potential) as functions of the new ones and,
after several integrations by parts and convenient
identifications of factors, we find new zero modes that keep
the canonical form of the Legendre term up to perturbative
contributions that are negligible in our truncation scheme.
The new configuration variables obtained in this way adopt
the generic expression

~wι
q � wι

q +
1

2
∑

m, �k, ±

⎡⎢⎢⎢⎢⎢⎢⎢⎣X �k, ±
qm

zX
�k, ±
pm

zwι
p

−
zX

�k, ±
qm

zwι
p

X
�k, ±
pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (58)

where we have called {wι
q} � {a, ϕ} the configuration variables of

the zero mode sector, {wp
ι } are their momenta (ι � 1, 2), and

{X �k, ±
qm

,X
�k, ±
pm

} are the old variables for the scalar and tensor

perturbations, each of which is given by a different value of

the label m. A tilde on top of any of these canonical quantities

indicates its new counterpart, defined according to the above

procedure.
In the case of the momentum variables for the zero modes, the

change is given by a formula of the same kind, but with a flip of
sign in the term that provides the corrections quadratic in the
perturbations,

~wι
p � wι

p −
1

2
∑

m, �k, ±

⎡⎢⎢⎢⎢⎢⎢⎢⎣X �k, ±
qm

zX
�k, ±
pm

zwι
q

−
zX

�k, ±
qm

zwι
q

X
�k, ±
pm

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (59)

The availability of a canonical set for the entire perturbed system,
formed by the FLRW cosmology and the perturbations, is of the
greatest importance. In particular, it makes possible an easy
implementation of the hybrid strategy following canonical
quantization rules. But, in order to proceed to this
quantization, we still have to determine the form of the zero
mode of the Hamiltonian constraint (the only non-linear
perturbative constraint of the system) in terms of the new
canonical set, keeping the quadratic truncation order. In order

to do this, we notice that, since the change of zero modes is
quadratic in the perturbations, an expansion of the FLRW
contribution H0 around the new zero modes leads
immediately to the desired constraint if we only include the

first derivative contribution. Let us introduce the compact
notation

{wι} � {wι
q,w

p
ι }, {~wι} � {~wι

q, ~w
p
ι }, (60)

{~X �k, ±

m } � {~X �k, ±

qm
, ~X

�k, ±

pm
}. (61)

Then, according to our comments, the expression of the new
global scalar constraint at our truncation order is (Castelló
Gomar et al., 2015; Benítez Martínez and Olmedo, 2016)

H0 +∑
ι

(wι − ~wι) zH0

zwι
+ ∑

�k, ±

s( )H
�k, ±
2 + ∑

�k,ε, ±

T( )H
�k,ε, ±
2 , (62)

with the phase space dependence of H0, its derivatives,
s( )H

�k, ±
2 ,

and T( )H
�k,ε, ±
2 evaluated directly at (~wι, ~X

�k, ±

m ). Namely, in

(Eq. 62), the evaluation of the Hamiltonian functions must be

made as if one identified the old and the new set of variables. As a

consequence, the contribution of each of the modes of the

perturbations to the new global scalar constraint is

s( )H
�

2

�k, ±
∼

(s)H2

�k, ± +∑
ι

(s)Δ~wι
�k, ±

zH0

zwι
, (63)

T( )H
� �k,ε, ±
2 ∼

T( )H
�k,ε, ±
2 +∑

ι

T( )Δ~wι
�k,ε, ±

zH0

zwι
, (64)

where the symbol ∼ indicates equality modulo the Abelianized
linear constraints and up to the relevant perturbative order in our
truncation. Besides, we have called

wι − ~wι � ∑
�k, ±

(s)Δ~wι
�k, ±

+ ∑
�k,ε, ±

T( )Δ~wι
�k,ε, ±

, (65)

where the superscripts (s) and (T) stand for the quadratic
contributions of scalar and tensor nature, respectively. It is
possible to prove that the sum of contributions in the left-
hand side of (Eq. 63) gives precisely the MS Hamiltonian
(Castelló Gomar et al., 2015), i.e., the Hamiltonian that
generates the dynamical evolution (in proper time) of the MS

field on the FLRWbackground. Likewise, the sum T( )H
� �k,ε, ±
2 of the

tensor contributions to the constraint provides a dynamical

Hamiltonian of harmonic oscillator type for the tensor

perturbations on the FLRW cosmological background.
It is worth pointing out that, in the definition of these

perturbative Hamiltonians, we can replace the squared

momentum of the inflaton with π2ϕ − 16π3a3H0. This is so

because all the new terms proportional to H0 that are

produced in this way are quadratic in the perturbations and

can thus be absorbed in a redefinition of the zero mode of the

lapse function up to a modification of the total scalar constraint

that is at least quartic in those perturbations. Hence, such a

modification is negligible at our truncation order. The freedom

available in using this replacement can be fixed by requiring that

the perturbative contribution to the Hamiltonian constraint be at

most linear in the inflaton momentum, because one can always

use the commented replacement to decrease the polynomial order
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in πϕ by two units until one reaches either a linear contribution of

the inflaton momentum or a term that is independent of it. The

total Hamiltonian of the system then becomes (Castelló Gomar

et al., 2015)

H � N0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣H0 + ∑
�k, ±

s( )H
� �k, ±
2 +∑

�kε

T( )H
� �k,ε, ±
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + ∑
�k, ±

g
�

�k, ± H
� �k, ±

1

+ ∑
�k, ±

l
�

�k, ± H
�k, ±
↑1 , (66)

where N0 is the suitably redefined homogeneous lapse function
that differs from the original one, N0, in perturbative terms that

are quadratic. Similarly, g
�

�k, ± and l
�

�k, ± are Lagrange multipliers
that differ from the original ones, g �k, ± and l �k, ± respectively, by

linear perturbative contributions. Their explicit expressions can

be found in Ref. (Castelló Gomar et al., 2015), but they are not

especially relevant for the rest of our discussion.
Notice that this total Hamiltonian, imposed as a collection of

constraints on the system, would include backreaction at the
considered perturbative order. As we have commented, the
contribution of the scalar perturbations to the global

Hamiltonian constraint is nothing but the MS Hamiltonian,
which is a sum of terms that are quadratic in the MS
configuration variables and of quadratic terms in their
momenta, but without terms that mix these two types of
variables. This is a consequence of our choice of MS
momentum field, as we explained when we introduced the
new perturbative variables. A similar behavior is found in the
contribution of the tensor perturbations to the Hamiltonian
constraint. In more detail,

s( )H
� �k, ±
2 � 1

2~a
[(ω2

k + s(s) + r(s)π~ϕ)]2�k, ± + π2
] �k, ±

], (67)

T( )H
� �k,ε, ±

2 � 1

2~a
[(ω2

k + s(T))~d2�k,ε, ± + π2
~d �k,ε, ±

]. (68)

Here, s(s) + r(s)π~ϕ and s
(T) play the role of effective background

dependentmasses for the scalar and the tensor perturbativemodes,
respectively. The expressions of these background functions are

s(s) � H2
0

32π6~a4
(38πG

3
− 9

H2
0

~a2π2
~a

) + ~a2(V″(~ϕ) − 16πG

3
V(~ϕ)),

(69)

s(T) � G

48π5

H(2)
0

~a4
− 16πG

3
~a2V(~ϕ), (70)

r(s) � −12 ~a

π
~a

V ′(~ϕ). (71)

The prime symbol denotes de derivative of the potential V with

respect to the inflaton ~ϕ, and

H(2)
0 � 4πG

3
~a2π2

~a
− 128π6

~a6V(~ϕ). (72)

We notice that

s(s) � s(T) + 9H(2)
0

32π6~a4
(4πG

3
− H(2)

0

~a2π2
~a

) + ~a2V″(~ϕ). (73)

In particular, substituting (Eq. 72), we see that s(s) � s(T) when
the inflaton potential ν vanishes.

In total, after a convenient change of densitization similar to
that explained in homogeneous and isotropic LQC (via
multiplication by the homogeneous physical volume
V � 8π3

~a3), we obtain a Hamiltonian constraint that can be
written in the form

HS �
1

2
[π2

~ϕ
− H(2)

0 − Θe − Θoπ~ϕ], (74)

where we have introduced the notation

Θe � ∑
�k, ±

s( )Θ
�k, ±
e + ∑

�k,ε, ±

(T)Θ
�k,ε, ±

e , (75)

Θo � ∑
�k, ±

s( )Θ
�k, ±
o , (76)

s( )Θ
�k, ±
e � −[(ϑeω2

k +
(s)ϑqe)]2�k, ± + ϑeπ

2
] �k, ±

], (77)

(T)Θ
�k,ε, ±

e � −[(ϑeω2
k +

(T)ϑ
q

e)~d2
�k,ε, ± + ϑeπ

2
~d �k,ε, ±

], (78)

s( )Θ
�k, ±
o � −(s)ϑo]

2
�k, ±

, (79)

that explicitly separates the linear term in the inflaton
momentum. Clearly, we have the identities

(s)ϑ
q

e � ϑes
(s), (T)ϑ

q

e � ϑes
(T), (s)ϑo � ϑer

(s), (80)

with ϑe � 8π3
~a2.

We note that there is no tensor contribution to Θo. It is also
worth remarking that all the ϑ-functions are independent of the
particular mode that one considers. Besides, the part of the
Hamiltonian constraint that contains the perturbative
contribution is the same for the scalar and for the tensor

perturbations except for the difference in their background
dependent mass. This shows up in the appearance of the

terms s( )Θ
�k, ±
o and in the difference between (s)ϑ

q

e and (T)ϑ
q

e .

5 HYBRID LQC: INCLUSION OF FERMIONS

In the matter content of our cosmological system, we can also
include fermionic fields, e.g. a Dirac field. Their pressence does
not modify much our treatment if we consider them as
perturbations, including the possible fermionic zero modes, so
that they do not alter the dynamics of the homogeneous
background cosmology in the linearized theory. Since the
Dirac action is quadratic in the fermionic field, as a

perturbation it couples directly only to the background FLRW
geometry, but not to the perturbations of the metric, nor to the
matter scalar field (Elizaga Navascués et al., 2017). Moreover, for
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the same reason, the fermionic field does not contribute to the
linearized perturbative constraints, that arise from the
perturbation of the Hamiltonian and momentum constraints.
As a consequence, the fermionic field can be treated as a gauge

invariant perturbation at the considered order of truncation. This
simplifies the formulation considerably.

If we adopt a Weyl representation (D’Eath and Halliwell,
1987), the Dirac field can be described by a pair of two-
component spinors of definite chirality. We will call φA and
χ*A’ the respective left-handed and right-handed spinors
associated with the field. Capital Latin letters from the
beginning of the alphabet, both primed and unprimed, take
values equal to 1 or 2, corresponding to the two components
of the chiral spinors. These indices will be raised and lowered
using the antisymmetric symbols ϵAB and ϵAB (with e.g., ϵ12 � 1) ,

as well as their counterparts for right-handed chirality. It is most
convenient to adopt an internal gauge such that the spatial part of
the tetrad has vanishing temporal Lorentz components, namely
ea0 � 0. As a consequence of this gauge fixation on the spin
structure in four dimensions, the two-component spinors of
the Dirac field can be viewed as families of cross-sections of a
spinor bundle defined on the compact spatial sections. On the
other hand, the Hamiltonian formalism of the Dirac field is
initially complicated by the existence of second-class
constraints that relate the field with its momentum.
Nevertheless, one can eliminate these constraints and capture

the canonical anticommutation relations of the Dirac field in
anticommutators of its two-component spinors. To take into full
account this anticommuting character, we will treat these
components as Grassmann variables (Berezin, 1966).

In a similar way as we did with the metric and the scalar field
perturbations, we can decompose the spinors of the Dirac field in
modes. Since the spatial differential operator that appears
naturally in the dynamical equation of our fermionic field is
the Dirac operator constructed with the auxiliary Euclidean triad
0eai on the toroidal spatial sections of our model (with 0eia

0e
j
b δij �

0hab being the Euclidean metric introduced above), it is logical to

treat the spatial dependence of the field by an expansion in
eigenmodes of this Dirac operator. The spectrum of this
operator is discrete, owing to the compactness of the sections.

The eigenvalues are ± ωk, where ω2
k � �k · �k and �k ∈ Z

3 is any

tuple of integers. We are assuming a trivial spin structure on the

spatial sections. Otherwise, the definition of ωk would include a

constant displacement of �k characteristic of the specific spin

structure chosen for the fermions (Friedrich, 1984). Using

these modes, we can express the two-component spinors of

the Dirac field in the form

φA(x) �
1

(2π)3/2~a3/2
∑
�k,( ± )

[m �kw
�k,(+)
A + r*�kw

�k,(−)
A ], (81)

χ*A′(x) �
1

(2π)3/2~a3/2
∑
�k,( ± )

⎡⎢⎣s*�k(w �k,(+))*

A′
+ t �k(w �k,(−))*

A′

⎤⎥⎦. (82)

Here w
�k,( ± )
A are the left-handed Dirac eigenspinors with

respective eigenvalue equal to ± ωk. With our choice of the

auxiliary Euclidean triad, and recalling that we have assumed a
trivial spin structure, these eigenspinors take the expression

w
�k,( ± )
A � u

�k,( ± )
A ei

�k· �θ, (83)

where the spinors u
�k,( ± )
A are constant and normalized (including

a choice of phase) so that

(u �k,( ± ))p

1′
u

�k,( ± )
1 + (u �k,( ± ))p

2′
u

�k,( ± )
2 � 1, (84)

∫ d3θw
�k′,(+)
A ϵ

ABw
�k,(−)
B � 0, (85)

∫ d3θw
�k′,( ± )
A ϵ

ABw
�k,( ± )
B � 8π3δ �k′,− �k ,

 (86)

with d3θ denoting the volume element dθdσdδ. The two last
equations are not valid for zero modes. In that case, one can

directly define u
�0,( ± )
A as the spinors with

u
�0,(+)
1 � 1, u

�0,(−)
1 � 0, (87)

u
�0,(+)
2 � 0, u

�0,(−)
2 � 1. (88)

On the other hand, the complex conjugate of (Eq. 83) provides
a basis of right-handed modes, with the chirality of χ*A’.

Each of the coefficients m �k, s �k, t �k, and r �k forms a Grassmann
canonical pair with its respective complex conjugate (D’Eath and
Halliwell, 1987). Furthermore, in this sense they provide a
canonical set together with the variables introduced in the
previous section for the metric and scalar field perturbations
and for the FLRW cosmology, once we have adopted a
description of the cosmological perturbations in terms of gauge
invariants (Elizaga Navascués et al., 2017). For convenience, in the
following we will employ the notation (x �k, y �k) to refer to any of the
ordered pairs of coefficients (m �k, s �k) or (t �k, r �k).

As we have already commented, there is no fermionic term in

the linear perturbative constraints of our system, so that the only

contribution of the Dirac field to the total Hamiltonian is

included in the zero mode of the Hamiltonian constraint. This

contribution is given by the Dirac Hamiltonian, evaluated at the

variables for the cosmological zero modes defined in the previous

section and at the fermionic perturbations determined by the

variables (x �k, y �k), as far as the respective dependence on the

FLRW cosmology and the Dirac field is concerned. Motivated by

previous works on this subject (D’Eath and Halliwell, 1987), the

first approach to the treatment of fermions in hybrid LQC was to

carry out a change of fermionic variables that produces a

diagonalization of the Dirac Hamiltonian. To reach this

diagonalization, the change of variables must depend on the

FLRW geometry, a situation that is similar to that studied when

we introduced gauge invariants to describe the relevant degrees of

freedom of the scalar perturbations. This has two consequences,

as we know. First, the zero modes have to be corrected to

maintain the canonical structure in the set of variables that

describe the whole of the cosmological system. Second, the

fermionic contribution to the Hamiltonian constraint gets an

additional term, up to quadratic order in the perturbations, owing

to the background dependence of the change of variables. Even if
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this change was designed to diagonalize the Dirac Hamiltonian, it

will generally not diagonalize the new fermionic contribution,

and therefore the resulting fermionic Hamiltonian will still

contain interacting terms. Actually, the new fermionic

variables have Poisson brackets of the creation-annihilation

type, so that we can view these fermionic interactions as the

creation or annihilation of pairs of particles. Finally, we will treat

the fermionic zero modes on their own, keeping their description

in terms of the original variables (x �0, y �0) to avoid problems with

the particularization of our formulas to a vanishing Dirac

eigenvalue (i.e., for ωk � 0).
Explicitly, and leaving aside those zero modes, the new

variables are given by

a
(x,y)
�k

�
������
ξk − ωk

2ξk

√
x �k +

������
ξk + ωk

2ξk

√
y*− �k

,

(b(x,y)�k
)*

�
������
ξk + ωk

2ξk

√
x �k −

������
ξk − ωk

2ξk

√
y*− �k

, (89)

where

ξk �
���������
ω2
k +M2~a2

√
, (90)

withM denoting the mass of the Dirac field. Notice that the sum
of the square modulus of the coefficients in each of the above
linear combinations of the variables (x �k, y �k) equals the unit. This
ensures that the transformation is canonical in the fermionic
phase space (Elizaga Navascués et al., 2017). In a Fock
representation with a standard interpretation, the operators
representing a

(x,y)
�k

and b
(x,y)
�k

would annihilate particles and
antiparticles, respectively, while their adjoints (representing the

complex conjugate variables) would create them.
The fact that our change of fermionic variables depends only

on the scale factor implies that we only need to modify the
momentum of that background variable in order to recover a
canonical set for the entire cosmological system. The
modification of the momentum π

~a consists in adding to it the
following terms that are quadratic in the fermionic perturbations,
obtained in a similar way as it was explained in the previous
section for the scalar and tensor perturbations (Elizaga Navascués
et al., 2017):

− iM

2
∑

�k≠ �0,(x,y)

ωk

ξ2k
[a(x,y)�k

b
(x,y)
�k

+ (a(x,y)�k
)*(b(x,y)�k

)*]. (91)

For simplicity in our notation, we will denote the newmomentum
of the scale factor with the same symbol as before. From the
context, it must be clear in our discussion whether we are
referring to the original momentum or to the momentum that
has been changed with the addition of fermionic contributions.

On the other hand, we also notice that the variables for the scalar
and tensor perturbations need not be altered at this stage, because
our change of fermionic variables is independent of them.

In terms of this new canonical set, the total Hamiltonian has
the same expression (Eq. 66) as before except for two things. First,
its dependence on π

~a must be evaluated at the new momentum
of the FLRW scale factor, which includes the fermionic

modification. And second, the zero mode of the Hamiltonian
constraint includes one additional contribution (F)H2 which is
due to fermions,

H0 + (S)H2 + (T)H2 + (F)H2 � 0. (92)

In consonance with our comments above, this fermionic
contribution is given by the sum of the Dirac Hamiltonian
(F)HD, once it is expressed in terms of the new fermionic
variables, and an interaction term (F)HI , arising from the
correction to H0 caused by the change of momentum for the
scale factor [like in (Eq. 62)]. In detail, their expressions are

(F)H2 � (F)HD + (F)HI , (93)

(F)HD � (F)H �0 +
1

2~a
∑

�k≠ 0,(x,y)
ξk[(a(x,y)�k

)*

a
(x,y)
�k

− a
(x,y)
�k

(a(x,y)�k
)*]
(94)

+ 1

2~a
∑

�k≠ 0,(x,y)
ξk[(b(x,y)�k

)*

b
(x,y)
�k

− b
(x,y)
�k

(b(x,y)�k
)*],

(F)H �0 � M[s �0r*�0 + r �0s
*
�0
+m �0t

*
�0
+ t �0m

*
�0], (95)

(F)HI � −iπ~aGM

12π2~a
∑

�k≠ 0,(x,y)

ωk

ξ2k
[a(x,y)�k

b
(x,y)
�k

+ (a(x,y)�k
)*(b(x,y)�k

)*].
(96)

6 HYBRID QUANTIZATION OF
COSMOLOGICAL PERTURBATIONS:
IMPLEMENTATION

Once we have at our disposal a canonical set of variables for the
description of our perturbed cosmological model in which the
variables that describe the perturbations are either gauge
invariants, perturbative gauge generators, or associated gauge
degrees of freedom, we are in an appropriate situation to face the
quantization of the system. We will carry out this quantization

adopting the hybrid approach within the framework of LQC. As
we have already commented, this hybrid strategy is based on the
hypothesis that the most relevant effects of quantum geometry for
cosmology are those that affect the FLRW substrate, namely the
behavior of the scale factor, while the purely quantum geometric
effects on the perturbations can be approximately ignored, and
handle the quantum description of those anisotropies and
inhomogeneities using techniques directly related with the
formalism of QFT in a curved spacetime, generalized to the
case in which such a spacetime is quantum mechanical as
well. In practice, we quantize the FLRW cosmology using the

methods of LQC and the perturbations (essentially) with Fock
quantization methods, then combine both types of quantum
descriptions by adopting a tensor product representation space
for the system, and finally impose on it the diffeomorphism
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constraints that are present in the system.We will see that, among
them, the only intrincate constraint is the zero mode of the
Hamiltonian constraint, that relates in a complicated way the
FLRW cosmology with the scalar and tensor gauge invariant

perturbations (as well as with the fermionic ones if we also
consider a Dirac field). Thus, the hybrid quantization is non-
trivial precisely because of the imposition of this constraint.

The linear perturbative constraints obtained from the
Abelianization of the perturbations of the diffeomorphism
constraints can be imposed straightforwardly by representing
them as derivative operators with respect to their canonically
conjugate degrees of freedom (or, if one considers an integrated
version of these constraints, as operators that displace the values
of such canonically conjugate degrees of freedom, resulting in
transformations that should be symmetries). With this

representation, the states that satisfy such constraints à la
Dirac are simply those that are independent of the gauge
degrees of freedom π

�H
�k, ±

1

and π
H

�k, ±
↑1

(Eq. 57). In other words,

physical states depend only on (a complete set of compatible) zero

modes and gauge invariants. Note that this result is obtained

without the need to introduce any perturbative gauge fixing.

Physical states must still satisfy one constraint, that is the only one

remaining at this stage, namely the zero mode of the Hamiltonian

constraint, as we anticipated.
The desired quantum formulation is then reached by choosing

the representation space of the improved dynamics scheme of
homogeneous and isotropic LQC, H

grav
LQC , for the perturbatively

corrected volume and its momentum (namely, the zero modes of
the FLRW geometry once they have been suitably modified with
terms that are quadratic in the perturbations in order to maintain
the canonical symplectic structure of the entire cosmological
system). For the perturbatively corrected inflaton and its
momentum, we use a standard Schrödinger representation
L2(R, d~ϕ). On the other hand, for the MS and tensor gauge

invariants, we adopt Fock representations F s and F T , chosen
within a unique privileged family of unitarily equivalent
representations that are characterized by (Castelló Gomar
et al., 2012; Cortez et al., 2012):

• The invariance of the vacuum under the symmetries of the
spatial hypersurfaces.

• A unitarily implementable Heisenberg evolution of the
creation and annihilation operators, in the context of QFT
in a curved background. This Heisenberg evolution is
determined by the dynamics of the gauge invariant modes

that we have picked out for the description of the perturbations.

In addition, if the system contains a Dirac field, viewed as a

fermionic perturbation, we employ for it a Fock representation
FD in the equivalence class of the one that is naturally associated
with the previously introduced choice of creation and
annihilationlike variables proposed by D’Eath and Halliwell
(D’Eath and Halliwell, 1987). This again belongs to a uniquely
distinguished class of unitarily equivalent representations
characterized by the same two conditions that we have listed
above, together with the requirement of recovering a standard
notion of particles and antiparticles. It is worth emphasizing that

the choice of Fock representation (or of a family of unitarily
equivalent representations) does not determine a concrete choice
of vacuum state. Any Fock state in our representation is valid for
this purpose. Therefore, in order to fix a unique vacuum state,

more restrictions are needed, either in the form of additional
requirements about the physical properties of the subsequent
quantum theory or in the form of conditions on a particular
spatial section able to specify the state there.

Let us continue with our hybrid approach, thus
adopting as representation space the tensor product
H

grav
LQC ⊗ L2(R, d~ϕ)⊗F s ⊗FT ⊗FD. We construct our quantum

representation so that the zero modes commute with the
perturbations, as it happens under Poisson brackets in the
classical theory, and so that all functions of the inflaton ~ϕ act
by multiplication. As we have commented, the zero mode of the

Hamiltonian constraint results in a non-trivial coupling between
the various factors of our tensor product. The quantization
proposed for this constraint is based on the representation
adopted in homogeneous LQC3. For the FLRW contribution
H0 we adopt the same prescription as in LQC. In particular,
we adhere to the improved dynamics proposal, so that quantities
that depend on the momentum of the scale factor are represented
in terms of holonomies defined employing squares with a fiducial
length that guarantees that the physical area enclosed by them
coincides with the area gap ∆, determined by the area spectrum of
LQG. Using the resulting basic operators of homogeneous LQC,

as well as the homogeneous physical volume operator V̂ �
2πGc

��
Δ

√ ∣∣∣∣v̂∣∣∣∣ and the regularized inverse volume operator
obtained from them, we get

Ĥ
(2)
0 � Ω̂

2

0 − 2V̂
2
V (~ϕ). (97)

We recall that V(~ϕ) is the inflaton potential, and that Ω̂0 was
defined in (Eq. 28).

As for the functions of zero modes of the FLRW cosmology
that appear in the perturbative part of the constraint, we adopt a
symmetric factor ordering that tries and respects, as far as
possible, the assignation of representation from homogeneous
and isotropic LQC. In more detail, we adopt the following rules
for their quantum representation:

• We symmetrize à la Weyl the representation of the product
Θoπϕ, to deal with the presence of functions of ϕ in Θo that
do not commute with the inflaton momentum.

• We adopt an algebraic symmetrization for factors of the
form V rg(b), that are promoted to the operators

V̂
r/2
ĝLQCV̂

r/2
, where r is any real number and g(b) a

function of the variable b, with ĝLQC its operator

counterpart in the improved dynamics scheme of LQC.

This algebraic symmetric factor ordering is adopted as well

for powers of the inverse volume.

3The quantum constraint that corresponds to the alternate regularization proposed

for homogeneous LQC in Ref. (Dapor and Liegener, 2018) and its associated

dynamics have been studied in Refs. (Castelló Gomar et al., 2020; García-

Quismondo et al., 2020).
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• Even powers of −~aπ
~a

������
4πG/3

√
are promoted to even powers

of the operator Ω̂0, which represents this quantity in LQC,
whereas odd powers, let’s say, of order 2z + 1, with z any
integer, are represented as

∣∣∣∣Ω̂0|zΛ̂0

∣∣∣∣Ω̂0|z . Here
∣∣∣∣Ω̂0

∣∣∣∣ is the

square root of the positive operator Ω̂
2

0, and Λ̂0 is defined

exactly as Ω̂0, but with holonomies of double length. The

result can be obtained by dividing the right-hand side of

expression (Eq. 28) by 2, and replacing b in that expression

with 2b. The operator Λ̂0 defined in this way only shifts v in

multiples of four units, and hence preserves the

superselection sectors of the homogeneous and isotropic

geometry.

With these prescriptions, we arrive at the following operator
representation of the functions (Eq. 80) that appear in the
densitized Hamiltonian constraint:

ϑ̂e � 2πV̂
2/3
, (98)

(s)
ϑ̂
q

e �
2G

3
[̂1
V
]1/3Ĥ(2)

0 (19 − 18Ω̂
−2
0 Ĥ

(2)
0 )[̂1

V
]1/3 + V̂

4/3

2π
(V ′(~ϕ)

− 16πG

3
V(~ϕ)),

(99)

(T)
ϑ̂
q

e �
2G

3
[̂1
V
]1/3H(2)

0 [̂1
V
]1/3 − 8G

3
V̂

4/3
V(~ϕ), (100)

(s)
ϑ̂o � 12

���
G

3π

√
V ′(~ϕ)V̂2/3 ∣∣∣∣Ω̂0

∣∣∣∣−1 Λ̂0

∣∣∣∣Ω̂0

∣∣∣∣−1 V̂2/3
. (101)

According to these formulas, the counterpart of relation (Eq. 73)
between the scalar and tensor background dependent masses is

(s)
ϑ̂
q

e �
(T)

ϑ̂
q

e + 12G[̂1
V
]1/3Ĥ(2)

0 (1 − Ω̂
−2
0 Ĥ

(2)
0 )[̂1

V
]1/3 + V̂

4/3

2π
V″(~ϕ).
(102)

It is worth remarking that
(s)
ϑ̂o is proportional to the

derivative of the inflaton potential, so that one expects its
contribution to be negligible when the dependence of the
potential on the inflaton is not important. The operators
representing the phase space functions (Eq. 75) can be
constructed with the above operators and the Fock
representation adopted for the modes of the MS and the
tensor gauge invariants. In a completely similar manner, one

can construct an operator representation for the fermionic
contribution HF to the densitized zero mode of the
Hamiltonian constraint (obtained from the original one by
multiplication with the homogeneous volume), that depends
only on the FLRW geometry and the Dirac field, but not on
the inflaton nor on its momentum. For more details about this
fermionic contribution, we refer the reader to Refs. (Castelló
Gomar et al., 2015; Elizaga Navascués et al., 2017). In this way, we
finally get

ĤS �
1

2
[π̂2

~ϕ
− Ĥ

(2)
0 − Θ̂e −

1

2
(Θ̂oπ̂~ϕ + π̂~ϕΘ̂o) + ĤF]. (103)

7HYBRID LQC:MODIFIED PERTURBATION
EQUATIONS

Although we have been able to handle all the constraints of our
perturbed model except the zero mode of the Hamiltonian
constraint, this constraint is still so intrincate that, in the
presented form, it does not seem possible to obtain its general
solution analytically. In order to investigate the properties of the
physical states, we will now introduce an ansatz that contemplates
a situation of special interest. We will consider states in which the

dependence on the FLRW geometry and on each of the gauge
invariant fields can be separated. In this separation, all parts are
allowed to depend on the inflaton. In more detail, from now on
we analyze states of the form

ξ(v, ~ϕ)ψs(Ns, ~ϕ)ψT(NT , ~ϕ)ψF(NF , ~ϕ), (104)

where we have adopted the abstract notation Ns, NT , and NF to
denote the dependence on the degrees of freedom of the
corresponding Fock space, via a set of occupation numbers in
the respective basis of n-particle states. In addition, ξ(v, ~ϕ)
designates a state in the kinematic Hilbert space of
homogeneous and isotropic LQC, such that it is normalized
and evolves unitarily with respect to ~ϕ as

ξ(v, ~ϕ) � Û(v, ~ϕ) χ(v), (105)

where Û is an evolution operator with generator ~̂H0 that is close
to the unperturbed one, determined by Ĥ

(2)
0 . This last condition

can be understood as the requirement that the action of Ĥ
(2)
0 −

( ~̂H0)2 − [π̂~ϕ,
~̂H0] on ξ(v, ~ϕ) be at most of the order of the

perturbative contributions when imposing the Hamiltonian
constraint. Moreover, in the following, for simplicity, we will
assume that this term is actually negligible in the action of the
Hamiltonian constraint on the considered state, assumption

that can always be checked for consistency once ξ(v, ~ϕ) is
specified.

On this family of states, we still must impose à la Dirac the
Hamiltonian constraint operator ĤS, that couples the FLRW
background cosmology with the gauge invariant perturbations.
To get solutions in physically relevant regimes, we can employ
certain approximations that facilitate the resolution of the
constraint. First, we consider regimes in which the transitions
in the FLRW geometry mediated by the Hamiltonian
constraint can be ignored as negligible on ξ(v, ~ϕ). In this
situation, the relevant part of the Hamiltonian constraint is

provided by its expectation value on ξ(v, ~ϕ) over the FLRW
geometry (with the integration measure of the inner product of
LQC). This expectation value provides a constraint equation
on the gauge invariant perturbations of the form

π̂2
~ϕ
ψ + (2〈 ~̂H0〉ξ −〈Θ̂o〉ξ)π̂~ϕψ � [〈Θ̂e +

1

2
(Θ̂o

~̂H0 + ~̂H0Θ̂o)
− ĤF〉

ξ
+1
2
〈[π̂~ϕ − ~̂H0, Θ̂o]〉ξ]ψ,

(106)
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where we have called ψ � ψs(Ns, ~ϕ)ψT(NT , ~ϕ)ψF(NF , ~ϕ). In what
follows, we will neglect the perturbative operator 〈Θ̂o〉ξ when
compared to 〈 ~̂H0〉ξ on the left-hand side of this equation,
according to our perturbative scheme.

Suppose for the moment that in (Eq. 106) we can also
neglect the first term, equal to the second derivative of the
wave function of the perturbations with respect to the inflaton.
This can be regarded as a kind of Born-Oppenheimer
approximation, in the sense that one neglects the variation
of certain degrees of freedom of the considered quantum state
in comparison with the variation of others. Explicitly, we ignore
the variation of the perturbations with respect to the inflaton in
favor of the variation of the FLRW state, that is given in average
by the expectation value 〈 ~̂H0〉ξ. Additionally, it is worth
noticing that the last term in the constraint (Eq. 106) affects

only the scalar perturbations, because Θ̂o depends only on
them. Let us assume that this term for the scalar
perturbations is negligibly small. Taking into account that,
in our representation, π̂~ϕ acts as the derivative with respect
to the explicit dependence on the inflaton ~ϕ (multiplied by −i),
and that ~̂H0 has been chosen to be close to the generator of the
homogeneous and isotropic quantum dynamics with respect to
the inflaton, the term under consideration can be understood as
the total derivative of the operator Θ̂o with respect to the
inflaton, both in its explicit and in its implicit dependence.
Thus, we expect that the analyzed contribution to the scalar

perturbations can be ignored when the variation with respect to
the inflaton is not significantly relevant. With these two
approximations, the studied constraint amounts to the sum
of a set of Schrödinger equations, one for each of the considered
perturbations (scalar, tensor, and fermionic). Specifically, we
get the following equations for the gauge invariant
perturbations:

π̂~ϕψs �
〈2(s)Θ̂e + (Θ̂o

~̂H0 + ~̂H0Θ̂o)〉ξ
4〈 ~̂H0〉ξ

ψs, (107)

π̂~ϕψT �
〈
(T)

Θ̂e〉ξ

2〈 ~̂H0〉ξ

ψT , (108)

π̂~ϕψF � − 〈ĤF〉ξ

2〈 ~̂H0〉ξ

ψF . (109)

Note that the separation of variables can actually be made
mode by mode in each of the gauge invariant perturbations,
since these modes are not coupled by the Hamiltonian
constraint.

Had we not neglected the contribution of
Ĥ

(2)
0 − ( ~̂H0)2 − [π̂~ϕ,

~̂H0], but considered instead that its action
on the wave function of the FLRW geometry is of the same order
as that of the perturbative contributions, we would have obtained
an equation similar to the constraint (Eq. 106) although with an
additional term, given by the expectation value on ξ(v, ~ϕ) of the
discussed difference of operators. Then, we should have added to
the right-hand side of each Schrödinger equation a backreaction
term, which could only depend on the inflaton. The balance
between these backreaction terms C(ξ)(~ϕ) would require that

〈( ~̂H0)2 − Ĥ
(2)

0
+ [π̂~ϕ,

~̂H0]〉ξ

2〈 ~̂H0〉ξ

� C(ξ)
s (~ϕ) + C(ξ)

T (~ϕ) + C(ξ)
F (~ϕ),

(110)

where the subscript on the backreaction tells us whether the term
corresponds to the scalar (s), tensor (T), or fermionic (F) contribution.
From this balance, we see that the sum of all the backreaction terms
gives us information, in mean value and within our approximations,
about howmuch the state ξ(v, ~ϕ) departs froman exact solution of the
unperturbed homogeneous and isotropic cosmology in LQC.

Moreover, let us return to (Eq. 106) and let us assume now only

that the gauge invariant perturbations admit a direct (effective)
counterpart of the Heisenberg dynamics that results for their
operator analogs from this Hamiltonian constraint equation,
something that seems reasonable because the considered
Hamiltonian is quadratic in the perturbative variables. Then, it is
immediate to realize that we get a set of modified propagation
equations for the MS modes, the tensor perturbations, and the
fermionic perturbations. For instance, the modified MS equations are

d2
ηξ
] �k, ± � −] �k, ±

⎡⎢⎢⎢⎢⎣ω2
k + 〈2(s)ϑ̂

q

e
+ (s)

ϑ̂o((s)ϑ̂o ~̂H0 + ~̂H0

(s)
ϑ̂o) + [π̂~ϕ − ~̂H0,

(s)
ϑ̂o]〉ξ

2〈ϑ̂e〉ξ

⎤⎥⎥⎥⎥⎦,
(111)

where the conformal time ηξ is defined by the equation

〈 ~̂H0〉ξdηξ � 〈ϑ̂e〉ξd~ϕ. (112)

Therefore, this time depends on the state ξ(v, ~ϕ) of the FLRW
geometry. Similarly, for the modes of the tensor perturbations we
obtain

d2ηξ
~d �k,ε, ± � −~d �k,ε, ±

⎡⎢⎣ω2
k +

〈
(T)

ϑ̂
q

e〉ξ

〈ϑ̂e〉ξ

⎤⎥⎦. (113)

The conformal time is the same as for the scalar perturbations,

thanks to the fact that the operator ϑ̂e that multiplies the squared
momenta in the Hamiltonian constraint (and that represents the
squared scale factor, up to a constant) coincides both for tensor
and scalar gauge invariants and, furthermore, for all the modes of
these perturbations. In a similar way, an equation with quantum
geometry corrections and in the same conformal time can be
obtained as well for the femionic perturbations [see Ref. (Elizaga
Navascués et al., 2017)].

In the above propagation equations, the ratio of expectation values
on the right-hand side gives the quantum corrected mass for the
specific gauge invariant perturbation under consideration. We notice

that this corrected mass is actually mode independent, because this is
the case for the corresponding operators. Also, note that the equations
contain no dissipative term. Much more important, the deduced
effective equations are hyperbolic in the ultraviolet regime,
regardless of the concrete behavior of the quantum state for the
FLRW geometry, provided that our approximations are valid.

In order to extract predictions from the above equations
about quantum geometry effects on the primordial
perturbations, one needs to compute the expectation values
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that give the corrected masses for the MS and tensor
perturbations. There are several possible strategies to reach
this goal. Let us list three of these strategies, in decreasing order
of accuracy but increasingly easier to implement. First, one

could compute the quantum expectation values numerically.
For this, one may try and ignore the backreaction (checking the
validity of this approximation afterwards) and integrate
numerically the quantum evolution of the FLRW state with
respect to the inflaton. With the FLRW state obtained in this
way, one can calculate with numerical methods the desired
expectation values at each given value of ~ϕ. The more difficult
part of this program is the integration of the FLRW dynamics in
the presence of non-trivial inflaton potentials. Second, taking
into account the commented complication that the potential
introduces, one can compute the evolution of the FLRW state

not numerically, but in an interaction picture in which the
potential (or part of it) is regarded as an interaction added to
the homogeneous and isotropic Hamiltonian of LQC (Castelló
Gomar et al., 2016), and treated as a perturbation of that
Hamiltonian using a Dyson series expansion (Galindo and
Pascual, 1990). And third, for suitable FLRW states, one can
directly adhere to the effective dynamics description of LQC,
integrating numerically only the trajectory of the peak of the
state, rather that the quantum dynamics strictly speaking.
Furthermore, this integration can be simplified by
identifying regimes with universal behavior in the evolution

from the bounce for the background solutions of interest in
LQC (Agullo and Morris, 2015; Zhu et al., 2017; Zhu et al.,
2017; Elizaga Navascués et al., 2018). For instance, the most
interesting situations to get quantum geometry corrections on
the primordial spectra that can be observed nowadays are
found for background solutions that are kinetically
dominated around the bounce, so that the potential there
has little influence. This allows us to introduce further
simplifications in the integration of the FLRW trajectories
that, at the end of the day, facilitate the calculation of the
quantites that determine the studied masses of the

perturbations.
Most of the work in the literature has indeed been done

assuming an effective dynamics for the description of the
FLRW cosmology in LQC. Even if, with this approximation,
the problem of computing the evolution of the primordial
perturbations is handleable, the results (and hence the
predictions obtained from them) depend critically on the
initial conditions that one chooses for the FLRW background
in this effective dynamics, as well as on the initial conditions that
determine the state of the perturbations subject to the
propagation equations that we have derived. We will discuss

these issues in the next section.
Let us point out that, adopting this effective dynamics for the

description of the FLRW states, it has been proven (Elizaga
Navascués et al., 2018) that the corrected mass that appears in
the modified propagation equations for the scalar and tensor
perturbations is positive around the Big Bounce, at least for the
most interesting ranges of energy density contribution of the
inflaton potential. Since the Big Bounce is precisely the region
where the quantum effects on the geometry are more significant,

one would expect that the largest departures from the classical
situation described by GR cosmology happen there. This
positivity of the quantum corrected mass is important to be
able to define adiabatic vacua as initial states around the bounce

for all the perturbative modes (Martín de Blas and Olmedo, 2016;
Elizaga Navascués et al., 2018; Elizaga Navascués et al., 2018). A
negative mass involves a breakdown of the adiabatic
approximation around the bounce at least for values of ωk

that are not sufficiently large, invalidating the construction of
adiabatic states as natural candidates for a vacuum at frequencies
that can be of physical interest, for instance because they cover
part of the observed spectrum in the CMB. Moreover, the
positivity of the mass at the bounce is not shared by other
proposals for the quantization of cosmological perturbations
within the framework of LQC, like the so-called dressed

metric approach that has been put forward by Agullo,
Ashtekar, and Nelson (Agullo et al., 2012; Agullo et al., 2013;
Agullo et al., 2013).

Finally, in our discussion above, and owing to the
compactness of the spatial sections, the modes that we have
considered possessed a discrete spectrum of Laplace
eigenvalues, ωk, that play the role of frequencies in the
modified propagation equations for the perturbations even
after the introduction of quantum geometry corrections.
Nonetheless, it is possible to reach the continuum limit for
this set of frequencies in the following form. One first extracts a

length scale of reference from the scale factor. All observable
quantities are defined with respect to this reference scale, that
becomes physically irrelevant. One may choose as such scale the
value of the scale factor today, or at the moment of the bounce,
for instance. Then, the desired continuum limit is reached as the
limit in which we make the reference scale tend to infinity. We
refer the reader to Ref. (Elizaga Navascués and Mena Marugán,
2018) for more details.

8 INITIAL CONDITIONS

As we have commented, even if we have succeeded in deriving
propagation equations for the primordial perturbations that
contain modifications caused by quantum geometry effects
and even if we assume FLRW states that can be described
within the effective dynamics approach to LQC, in order to
extract predictions about the primordial cosmological
perturbations we need to specify the particular FLRW effective
solution that plays the role of a background and, in addition, the

vacuum state that determines the conditions on the
perturbations. Both pieces of information can be supplied by
giving convenient initial data on a certain spatial section. An
appealing possibility is to choose this section precisely at the Big
Bounce. We will concentrate our discussion on this case. Other
possibilities are equally valid, for instance a section in the
asymptotic past, if the effective dynamical evolution previous
to the bounce connects with amanageable asymptotic region (Wu
et al., 2018).

Let us consider first the initial conditions for the FLRW
background, solution to the effective dynamics of LQC. The
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FLRW cosmology is described by two pairs of canonical zero
modes, namely four variables. But we have chosen to impose
initial conditions at the bounce, where the time derivative of the
scale factor vanishes, reducing the liberty in one degree of

freedom4. In addition, the Hamiltonian constraint associated
with the effective dynamics reduces the degrees of freedom in
one more variable. Moreover, we have also commented that we
can employ the value of the scale factor at the bounce as a
reference scale, depriving it of physical relevance. In practice, this
allows us to set that value equal to the unit, for instance. In total,
we see that only one variable must be fixed at the bounce by the
initial conditions there. We choose the value of the inflaton as this
piece of initial data. On the other hand, we can consider also as
free data the parameters that determine the inflaton potential.
Focusing our attention on the most studied case of a quadratic

potential, we find only one parameter, given by the inflaton mass.
From this perspective, the FLRW effective background turns out
to be completely fixed if we provide the value of the inflaton at the
bounce and the value of the inflaton mass.

Actually, we are only interested in effective solutions that lead
to power spectra for the perturbations that are compatible with
the observations, but that still retain some quantum geometry
corrections. One expects that, if these corrections have survived,
they should be present in the region of large angular scales or its
nearby region, because it is only in this region that the agreement
between GR and observations may not be completely solid

(Planck Collaboration, 2016a; Planck Collaboration, 2016b).
This requirement determines a relatively narrow interval of
values for the initial condition on the inflaton ϕB and the
inflaton mass m, around ϕB � 0.97 and m � 1.2 × 10− 6 (in
Planck units). For this latter choice of specific values, we show
in Figure 1 the evolution of the Hubble parameter H multiplied
by the scale factor. This rescaled Hubble parameter aH vanishes
at the bounce and then increases in a very short superinflationary
epoch in which H grows to a value of the Planck order. This
happens so fast that the scale factor remains almost constant in
the process. Since we have taken the scale factor at the bounce

equal to one, then aH at its maximum should be of the order of
one as well in Planck units (like H). This maximum sets a scale,
that we denote KLQC in terms of wavenumbers, and that should be
of Planck order according to our previous arguments. From that
moment on, the rescaled Hubble parameter starts to decrease
until it reaches a minimum. Besides, the quantum corrections in
the effective dynamical equations of the background become
negligibly small, and the effective trajectory gets totally
adapted to a GR cosmological solution.

For solutions that allow for quantum geometry corrections in
the spectra of the perturbations at large scales, the inflaton

dynamics around the bounce is dominated by its kinetic
energy density, which is of Planck order, with an ignorable
contribution of the potential. Since the potential is almost
negligible, the effective solution behaves as if the scalar field

were massless, situation in which the inflaton momentum is a
constant of motion and the kinetic energy density decreases
rapidly, as a−6. The kinetic energy density continues to
diminish until it becomes of the order of the potential. Given

that _a increases when the potential drives the evolution of the
scale factor (both in GR and in the effective dynamics of LQC),
the coincidence between the kinetic energy density and the
potential of the inflaton occurs approximately when aH
reaches its minimum. On the other hand, during the evolution
from the bounce to this minimum of aH, the inflaton typically
increases only by a few orders of magnitude. As a result, the
potential, quadratic in the inflaton, varies as well only in a few
orders. Taking this into account, and since the potential at the
bounce ism2ϕ2B/2, with values around 10

−12 in Planck units, when
the kinetic and potential energies coincide we expect a density in

the range (10−12, 10−9). This energy density determines yet
another scale in the system, that we call KK−P expressed as a
wavenumber.

In total, the influence of the effective background solution on
the perturbations is characterized by two (wavenumber) scales,
that we have already mentioned, KLQC and KK−P. In a first
approximation to the problem, these scales determine the
regions where the quantum geometry effects may cause
departures from the standard model of inflation in GR. As we
have argued, KLQC is of the order of the unit, because it is related
to quantum gravity phenomena. To estimate KK−P in our

solutions, note that during the epoch of kinetic dominance,
the energy density decreases as a−6 from a value of the Planck
order to values in the interval (10−12, 10−9) as we have pointed
out. Recalling the Hamiltonian constraint of effective LQC (or of
FLRW cosmology in GR, once one is away from the immediate
vecinity of the bounce), one concludes that H2 must be
proportional to the discussed energy density in the considered
region, and thus decrease during kinetic dominance also as a−6.
Consequently, aH must evolve as a−2, decreasing from the Planck
order as the cubic root of the energy density, and hence reaching
values in the range [10− 4, 10− 3]. In Figure 1 we see that

wavenumbers larger than KLQC only intersect aH once in the
evolution. Note that this intersection is the moment when the
associated physical length a/k coincides with the Hubble scale
1/H, and therefore can be taken as the moment of horizon
crossing. For modes between KLQC and KK−P , there exist three
intersections. Essentially, the modes exit the horizon immediately
after the bounce, reenter in the phase of kinetic dominance, and
exit again during the inflationary expansion. We expect these
modes to be severely affected by the quantum geometry effects
around the bounce, and that their evolution differs considerably
from that experienced in GR for a background solution with the

same behavior in the classical region. Finally, modes with
wavenumbers below KK−P do not exit the horizon during
inflation but much before, a fact from which one may expect
important departures from the predictions of standard inflation.

After the potential equals the kinetic energy density, the latter
rapidly decreases while the potential becomes essentially constant
and generates inflation. We are interested in effective background
solutions such that the modes that experience quantum geometry
effects (roughly, those with wavenumbers between KLQC and

4This is only a reflection of the fact that, as it happens in classical FLRW cosmology

with homogeneous matter content, one of Hamilton’s equations of motion

contains redundant information in effective LQC.
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KK−P) are entering the horizon today. If they had entered much
long ago, they would correspond to scales of the power spectra
where there is no discrepancy with GR, raising the problem of
explaining the absence of departures from the Einsteinian
predictions or implying that quantum gravity effects are too
tiny to be observable in those circumstances. On the other
hand, if they had not entered the horizon again (nor were
about to do it), they could not be observed in the power
spectra. The interesting situation is when the modes are

entering the horizon at present, as we have said. But the
effective FLRW backgrounds for which this happens turn out
to experience a short-lived inflation. As a consequence, during the
first moments of the inflationary expansion, there is still some
influence of the kinetic energy density, producing departures
from a genuine slow-roll behavior. This will affect the power
spectra if the modes that were exiting the horizon at those
moments are observed today [see e.g., the discussion of Ref.
(Contaldi et al., 2003) in the framework of GR]. Therefore, the
slow-roll approximation will not be good, at least, for modes that
exited the horizon during those first stages of inflation (Contaldi

et al., 2003). Such modes are precisely those close to the scale
KK−P. Hence, those modes will experience two types of
corrections from a standard inflationary scenario with slow-
roll in GR: quantum geometry effects, accumulated around the
bounce, and short-lived inflation effects. One of the most
important challenges for LQC nowadays is to be able to
separate these two kinds of effects and prove that it is possible
to identify and falsify the quantum modifications in cosmological
observations.

In summary, the LQCmodifications in the FLRW background
with respect to the standard inflationary solutions of GR may

have a relevant influence on modes between the typical scale of
the quantum geometry effects and the scale KK−P, close to the
onset of inflation. If these include the modes that are now re-
entering the horizon, so that the scale of the Universe that we
observe today was at the very early stages in the range affected by
the quantum effects, some traces of those quantum modifications
may have survived in the CMB in spite of the later inflationary
expansion, and they might be observable. The fact that the
background which those modes feel effectively differs

substantially from a de Sitter expanding phase should imply
that the natural vacuum for them ought to differ from the
standard Bunch-Davies vacuum (Bunch and Davies, 1978). As
a result, the power spectra of the perturbations at those scales
changes from the conventional predictions based on the choice of
a Bunch-Davies state. Suppose that the new vacuum state is
related to the standard one by a Bogoliubov transformation that
does not mix modes with different values of ωk, something that is
ensured if the invariance under the symmetries of the spatial

sections is respected. Let us call αk and βk the coefficients of this
Bogoliubov transformation, with

∣∣∣∣αk|2 − ∣∣∣∣βk|2 � 1. Recall that the
beta-coefficient determines the antilinear part of the Bogoliubov
transformation, i.e., the part that mixes creation and annihilation
operators. These coefficients can be determined, e.g., at the initial
time chosen in our analysis, if we know there the initial data that
specify the two bases of solutions of the gauge invariant field
equations, {~μk} and {μk}, that characterize respectively the new
and the old vacua. Then, if the primordial power spectrum of the
standard vacuum is PR(k), the power spectrum of the new
vacuum state does not need to be calculated from scratch: it is

given by the formula

~PR(k) � [∣∣∣∣∣αk
2 +

∣∣∣∣∣βk 2 + 2
∣∣∣∣∣αk∣∣∣∣∣∣∣∣∣∣βk∣∣∣∣∣cos (ϕα

k − ϕ
β
k + 2ϕ

μ
k)]PR(k).

∣∣∣∣∣∣∣∣∣∣
(114)

Here, ϕαk and ϕ
β
k are the phases of the respective Bogoliubov

coefficients, treated as complex numbers, and ϕ
μ
k is the phase of

the solution μk evaluated at the time of computation of the power
spectrum (typically by the end of inflation).

The second problem related with the choice of initial data is,
therefore, the selection of conditions that determine the vacuum
state of the perturbations. Clearly, from the above formula, a
change of vacuum state may result in a radical variation of the
power spectrum. The predictive power of the formalism is lost
unless we have a way to select a vacuum as the preferred state for
the gauge invariant perturbations. While, in situations like de
Sitter inflation, the high degree of symmetry of the background
can help us in picking out a unique state, invariant under the

symmetries and with a local Minkowskian behavior, this does not
seem possible in more general situations, like those experienced

FIGURE 1 | Solution of the rescaled Hubble parameter aH in the effective dynamics of LQC for a matter content given by an inflaton with mass equal to 1.2 × 10−6

and a value at the bounce equal to 0.97 (both quantities in Planck units). The plot shows several wavenumbers to illustrate the different numbers of intersections that are

possible.
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by the modes affected by quantum geometry effects in the kind of
effective backgrounds that appear in LQC. In these
circumstances, several proposals have been suggested in order
to single out a unique Fock state that could then be viewed as

privileged in the system.
Among these proposals, the attempt to use adiabatic states

(Parker, 1969; Lüders and Roberts, 1990) has received a
considerable attention (Agullo et al., 2013; Agullo et al., 2013;
Agullo and Morris, 2015; Martín de Blas and Olmedo, 2016).
Nonetheless, their construction may find some obstructions,
especially if the effective mass in the propagation equations of
the perturbations becomes negative. We have seen that this does
not occur in the hybrid approach in the region of important
quantum geometry effects, at least for (effective) solutions with
kinetic dominance in the energy balance of the inflaton (Elizaga

Navascués et al., 2018). Nonetheless, this is not the case for other
approaches like the dressed metric quantization if one considers
scales that are not sufficiently small (Elizaga Navascués et al.,
2018). Besides, the power spectra of adiabatic states, computed
numerically, often present large oscillations, and even if these
oscillations are averaged, they typically result in an increase of
power that does not seem to fit properly with observations if the
scales affected by the quantum geometry effects are inside the
Hubble horizon today (Agullo and Morris, 2015).

Ashtekar and Gupt have put forward a different proposal for
the vacuum state (Ashtekar and Gupt, 2017; Ashtekar and Gupt,

2017). In the region with relevant LQC effects, they have required
that the quantum Weyl curvature satisfy a bound which is the
lowest value compatible with the uncertainty principle and stable
under evolution. This condition selects a ball of states. Among
them, the vacuum of the perturbations is chosen by imposing
another condition at the end of inflation, ensuring that the
dispersion in the field operators be minimized (Ashtekar and
Gupt, 2017). In the dressed metric approach, this proposal has
been shown to lead to primordial power spectra that, though still
highly oscillatory, seem in very good agreement with observations
after being averaged (Ashtekar and Gupt, 2017; Ashtekar et al.,

2020). Nonetheless, the direct relation of this vacuum with
adiabatic states is not known.

Another interesting proposal for a vacuum state is the so-
called non-oscillating vacuum, suggested by Martín-de Blas and
Olmedo (Martín de Blas and Olmedo, 2016). The proposal is to
select the state that minimizes the integral

∫ηf

η0

dη

∣∣∣∣∣∣∣∣d(
∣∣∣∣μk∣∣∣∣2)
dη

∣∣∣∣∣∣∣∣ (115)

in a certain interval of conformal time, usually the interval from
the time of the initial spatial section to a time well inside the
inflationary regime. For instance, in our typical class of effective

backgrounds, this can be a time when the kinetic energy density of
the inflaton becomes so negligible that the inflationary expansion
is completely driven by the potential. Since the primordial power
spectrum for each mode is proportional to the square norm of the
associated mode solution μk, the proposal picks out a state that
minimizes the power oscillations in a definite sense. In general,
the determination of this vacuum state needs numerical methods,

since the criterion of choice is posed as a variational problem that
involves the calculation of an integral. For simple cases, the
proposal can be handled analitycally and has been proven to
provide a conventional choice of vacuum state. Thus, it selects the

Poincaré vacuum for flat spacetime in the presence of a scalar
field, either massless or with a quadratic potential. In addition, for
de Sitter spacetime, the proposal selects the Bunch-Davies
vacuum (Martín de Blas and Olmedo, 2016). The primordial
and angular power spectra for this vacuum state have been
calculated numerically, both for scalar and tensor
perturbations (Benítez Martínez and Olmedo, 2016; Castelló
Gomar et al., 2017). The results are compatible with
observations, and they even open the possibility of explaining
some of the features of the spectra that perhaps may be in tension
with GR (Castelló Gomar et al., 2017; Elizaga Navascués et al.,

2018), at large angular scales or for multipoles around l � 20 (Ade
and et al., 2016; Ade and et al., 2016).

9 CHOICE OF VACUUM STATE FOR THE
PERTURBATIONS: SPLITTING OF PHASE
SPACE VARIABLES

The problem of selecting a vacuum for the perturbations appears
in our formalism because the requirements that we have imposed
to determine the Fock representation of the gauge invariant
perturbations in the hybrid approach at most select a family
of representations that are unitarily equivalent, but not a
privileged state. Any of those representations, or equivalently
any Fock state in the considered family, can be chosen as the
vacuum. This leaves a large freedom in the selection of a vacuum
for the perturbations, and so in the initial conditions that
characterize it. The proposals that we have commented at the
end of the previous section are some of the attempts to fix this
freedom, but there is yet no general consensus about how to settle

the question. Besides, although some of those proposals lead to
power spectra that are compatible with observations, they happen
to rely on numerical and/or minimization techniques.

In fact, we can consider families of representations related
among them by unitary transformations which depend on the
background. The Heisenberg dynamics of the creation and
annihilation operators associated with each of these
representations, even if unitarily implementable as provided by
a composition of unitary transformations, would differ between
them, given that part of the evolution is removed by assigning it to
the background sector of phase space. What is more, by means of

this type of unitary transformations with dependence on the
background, we can change the splitting of the phase space
degrees of freedom between the zero modes that describe the
background and the modes of the gauge invariant perturbations.
Actually, there exist many ways of separating the phase space into
a homogeneous sector and an inhomogeneous one using
canonical transformations that mix them. The specific splitting
that one adopts determines the properties of the resulting
quantization. In particular, the representation of the
Hamiltonian constraint and its ultraviolet features strongly
depend on this choice.
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This fact can be employed to improve the behavior of the field
operators that represent the perturbative terms, ameliorating the
need for the introduction of regularization procedures typical of
QFT. Indeed, as they stand, the actions of the MS, tensor, and

fermionic Hamiltonians that appear in the constraint (Eq. 103)
are ill defined with a standard choice of Fock representation for
the corresponding perturbations. Moreover, the backreaction is
in general divergent. For instance, by constructing the unitary
operator that implements the Heisenberg dynamics of the
fermionic variables (in the context of QFT in a quantum
mechanically corrected background), one can compute the
backreaction of the fermions, C(ξ)

F (~ϕ), and show that it is not
absolutely convergent (Elizaga Navascués et al., 2017).

These problems can be solved, or at least alleviated, by
introducing new gauge invariants prior to quantization,

defined by using canonical transformations that depend on the
zero modes. Considering the system as a whole, we have
freedom in:

• Changing the dynamical separation between the FLRW
geometry and the gauge invariant perturbations via
canonical transformations.

• Chosing the Fock vacuum for the perturbations, within the
hybrid scheme, regarding this vacuum as the state from
which one defines the Fock representation as a cyclic one.

All this ambiguity can be encoded in choices of the form

a �k, ± � f �k, ± (~a, π~a,
~ϕ, π~ϕ)] �k, ± + g �k, ± (~a, π~a,

~ϕ, π~ϕ)π] �k, ±
(116)

for the MS annihilationlike variables. Here,

f �k, ± g
*
�k, ±

− g �k, ± f
*
�k, ±

� −i, (117)

so that the introduced variables satisfy, when one freezes the
background, canonical commutation relations with the
corresponding MS creationlike variables, defined by the
complex conjugate of relation (Eq. 116). For the tensor
variables, on the other hand, one is led to consider analogous
families of creation and annihilationlike variables, characterized
by two functions f �k,ε, ± and g �k,ε, ± that satisfy a condition similar
to (Eq. 117). Generally, one is interested exclusively in canonical
transformations of the gauge invariant variables that depend

(apart that on the cosmological zero modes) only on the
frequency ωk of the mode, but not on other details about the
wavevector �k, nor on the sine or cosine character of the Fourier
mode or the polarization of the tensor mode. For those cases, we
would adopt the simpler notation fk and gk for the functions that
define the creation and annihilationlike variables.

In the case of fermions, the ambiguity is captured in the
freedom to define annihilationlike variables for particles and
creationlike variables for antiparticles as follows:

a
(x,y)
�k

� f
�k
1 (~a, π~a,

~ϕ, π~ϕ) x �k + f
�k
2 (~a, π~a,

~ϕ, π~ϕ) y*− �k
, (118)

(b(x,y)�k
)*

� g
�k
1(~a, π~a,

~ϕ, π~ϕ) x �k + g
�k
2(~a, π~a,

~ϕ, π~ϕ) y*− �k
, (119)

with

f
�k
2 � eiF

�k
2

�������
1 −

∣∣∣∣∣∣∣ f �k
1 |2

√
, g

�k
1 � eiJ �k(f �k

2 )*

, g
�k
2 � − eiJ �k(f �k

1 )*

. (120)

In the same spirit that we have commented above, one is usually

interested only in cases in which the functions f
�k
1 , g

�k
1 , g

�k
1 , and g

�k
2

depend on �k only via ωk. Notice that the creation and

annihilationlike variables (Eq. 89) that we used for the

fermions in Sec. 5 were of this kind. We will restrict to this

type of cases in the following.
As we already know, a change from the gauge invariant

variables that we have adopted for our system to any of the
above sets of creation and annihilationlike variables for the
perturbations can be completed into a canonical set for the
full cosmological model. It suffices to correct again the zero
modes with contributions that are quadratic in perturbations
in the way that we discussed in Sec. 4. In addition, in terms of the
new canonical set, the resulting MS, tensor, and fermionic
Hamiltonians are the old ones plus some known corrections.
These new contributions contain, in general, both diagonal

products of annihilation and creationlike variables, and terms
that are responsible for the creation and destruction of pairs. The
asymptotic behavior of these latter interaction terms when
ωk →∞ is what tells us if the quantization of the
Hamiltonians is well defined on the vacuum, assuming normal
ordering. In all cases fk, gk, f

k
1 , f

k
2 , g

k
1 , and g

k
2 can be chosen so that

the dominant powers of ωk in the interaction terms that prevent a
nice behavior of the Hamiltonian operators on Fock space are
eliminated.

Moreover, it is possible to remove, order by order in inverse
powers of ωk, all the asymptotic contribution to the interaction

terms in the Hamiltonians. For example, let us consider the scalar
perturbations. The MS Hamiltonian gets asymptotically
diagonalized with (Elizaga Navascués et al., 2019)

ωkgk � ifk⎡⎣1 − 1

2ω2
k

∑∞
n�0

( −i
2ωk

)n

cn
⎤⎦. (121)

The functions cn are determined by the recursion relation

cn+1 � ~a {H0, cn} + 4s(s)⎡⎣cn−1 +∑n−3
l�0

clcn−(l+3)
⎤⎦ −∑n−1

l�0
clcn−(l+1),

∀n≥ 0,

(122)

where c0 � s(s) + r(s)π~ϕ is just the background dependent mass
for the MS field. Creation and annihilationlike variables are then
asymptotically fixed, up to a phase, since from the canonical
commutation relations it generally follows that

2
∣∣∣∣ fk∣∣∣∣2 � −

∣∣∣∣hk|2
Im(hk)

, where hk �
fk

gk
. (123)

Similar asymptotic characterizations to diagonalize the field
Hamiltonians can be obtained for the tensor perturbations and
for the Dirac field (Elizaga Navascués et al., 2019). Actually, in all
of these cases, the first few terms in the asymptotic expansion are
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enough to construct variables with well-defined Hamiltonians
(and finite backreaction contributions to the quantum
constraint).

On the other hand, the phases that still remain free in the

creation and annihilationlike variables can be determined
univocally by means of further physical considerations.
Specifically, it seems natural to demand that the
background dependence extracted from the dynamics of the
original perturbations by our choice of those phases is the
minimum allowed, and that the resulting asymptotically
diagonal Hamiltonians are positive, as functions of the
background.

Given that our analysis has been carried out asymptotically for
modes with large wavenumbers, the question arises of what
happens for other kinds of modes and, in particular, if the

asymptotic expansions provided by the Hamiltonian
diagonalization for large ωk can uniquely specify a choice of
creation and annihilationlike variables for all the modes. Let us
consider, e.g., the scalar perturbations. In fact, the interaction
terms in the Hamiltonian for each possible value of ωk are
completely eliminated if and only if

ω2
k + s(s) + r(s)π~ϕ + h2k − ~a{hk,H0} � 0. (124)

This is a semilinear partial differential equation for which the
complex solutions satisfy

Im(hk)2 � ω2
k + s(s) − Im(hk)″

2Im(hk)
+ 3

4
⎡⎢⎢⎢⎢⎢⎢⎣Im(hk)′
Im(hk)

⎤⎥⎥⎥⎥⎥⎥⎦
2

, (125)

where the prime stands for the operation of taking the Poisson
bracket ~a{,H0}. It is worth commenting that, in the linearized
context of QFT in curved spacetimes, our asymptotic
characterization above can be shown to lead in a unique way
to the Minkowski vacuum in the case of constant mass, and to the
Bunch-Davies vacuum when the homogeneous background is
taken as the de Sitter solution (Elizaga Navascués et al., 2019).
Thus, in these linearized contexts, the procedure of asymptotic
diagonalization is able to uniquely fix a solution to (Eq. 124) for
all wavenumbers, and this solution reproduces the natural choice
of vacuum state in the considered scenarios. Furthermore, the

corresponding asymptotic expansions for the fermionic creation
and annihilationlike variables that diagonalize the Hamiltonian
have been proven to determine as well a unique choice for all
scales in the linearized de Sitter context, even if it is known that
those expansions have zero radius of convergence in this case
(Elizaga Navascués et al., 2020).

In summary, the asymptotic diagonalization of the
Hamiltonian of the perturbations may provide a procedure to
determine a vacuum state, and therefore to fix initial conditions
for the primordial perturbations in such a way that they are
optimally adapted to the dynamics dictated by the Hamiltonian

constraint of the total system. Moreover, recent investigations
(Elizaga Navascués et al., 2020) support a close analytical relation
between the vacuum state that would be selected in this manner
and the NO vauum proposed by Martín-de Blas and Olmedo
(Martín de Blas and Olmedo, 2016), at least in the context of
hybrid LQC.

10 CONCLUSION

In this work, we have reviewed the hybrid approach to LQC. This
approach to the quantum description of gravitational systems
with local degrees of freedom within the framework of the loop
quantization program tries to provide, in a controlled way, a
formalism for the study of inhomogeneous cosmological
scenarios that, yet, display some symmetries that simplify the
physics, or in which the inhomogeneities can be described in a
perturbative way over a highly symmetric background. In this

way we have been able to analyze linearly polarized gravitational
waves in Gowdy cosmologies with toroidal compact sections, and
scalar, tensor, and fermionic perturbations at quadratic order in
the action around an FLRW spacetime in the presence of an
inflaton. In particular, for these cosmological perturbations and at
the considered truncation order, we have found a canonical set
for the full system composed of gauge invariant perturbations
(including the MS field), linear perturbative constraints and
gauge variables conjugate to them, and zero modes that
contain the relevant information about the background FLRW
cosmology. In a hybrid quantization of this canonical system,

physical states depend only on the quantum FLRW background
and on gauge invariant perturbations. Starting from the zero
mode of the Hamiltonian constraint, that couples these
perturbations with the FLRW background, and adopting a
suitable ansatz for the quantum states of interest, we have
been able to derive propagation equations for the
perturbations in the primeval stages of the Universe. These
equations differ slightly from those of GR by the inclusion of
quantum corrections, corrections that we have succeeded to
explicitly derive with our hybrid strategy taking fully into
account the quantum behavior of the FLRW substrate, and

therefore beyond the level of an effective description of this
background within homogeneous and isotropic LQC.

In order to quantize differently the system within the
framework of LQC, but still adhering to the idea of developing
a QFT for the perturbations on a quantum spacetime, one can
follow the so-called dressed metric approach, put forward in Refs.
(Ashtekar et al., 2009; Agullo et al., 2013; Agullo et al., 2013),
instead of the hybrid approach. Indeed, as in the hybrid proposal,
the dressed metric approach adopts also the philosophy of
combining a loop representation for the homogeneous sector
of the (truncated) phase space and a Fock representation for the

tensor and MS perturbations (and possible fermionic
perturbations, if they are present). Again, in the dressed
metric approach one also introduces an ansatz for the
quantum states of cosmological interest in which the
dependence on the homogeneous geometry and on the
perturbations factorizes. In this ansatz, all partial
wavefunctions are allowed to depend on the inflaton field ϕ.
However, in the dressed metric case there is no Hamiltonian
constraint that affects the perturbations, since the whole of the
truncated cosmology is not treated as a constrained symplectic
system. Instead, one has the Hamiltonian constraint of the
homogeneous FLRW model, and the Hamiltonian functions

(Eq. 67) and (Eq. 68) that, classically, generate the dynamics
of the perturbations. Consequently, the approach requires that
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the homogeneous part of the states be an exact solution of the
FLRW model in LQC, and then uses this solution to define the
quantum dynamics on the phase space of the gauge invariant
perturbations (Agullo et al., 2013; Agullo et al., 2013). In this way,

the perturbations behave as test fields that see a dressed metric
determined by certain expectation values of operators of the
homogeneous geometry, which incorporate the most relevant
quantum effects.

In spite of the similarities between the hybrid and the dressed
metric approaches, the effective equations that they provide for
the propagation of the gauge invariant perturbations are
somewhat different even if backreaction is neglected. The
discrepancy appears only in the term of the time dependent
mass in the propagation equations (Elizaga Navascués et al.,
2018). At the end of the day, this can be traced back to the

differences in the treatment of the phase space of the perturbed
FLRW cosmologies in the hybrid and the dressed metric
proposals. As we have emphasized, in the hybrid case the
whole phase space is treated as a symplectic manifold, and
accordingly it is described in terms of canonical variables. This
applies, in particular, to the expression deduced for the time
dependent mass. On the contrary, in the dressed metric
formalism, one evaluates the time dependent mass directly on
the FLRW metric dressed with quantum corrections. For states
such that this metric satisfies the effective dynamics of LQC, the
time derivatives involved in the corresponding expression of the

time dependent mass are then computed along an effective
trajectory of homogeneous and isotropic LQC. The difference
then arises because of the departure of the standard classical
relation between the time derivatives of the scale factor and its
canonical momentum (inherent to the hybrid approach) with
respect to the alternative effective relation in LQC (employed in
the dressed metric case) (Elizaga Navascués et al., 2018).
Remarkably, this difference is specially important around the
bounce, precisely the region where the quantum corrections on
the propagation of the perturbations are expected to be relevant.

Several other approaches have also been suggested for the

investigation of cosmological perturbations within LQC. For a
comprehensive summary of such approaches, we refer the reader
to the reviews listed in Refs. (Banerjee et al., 2012; Ashtekar and
Barrau, 2015; Rovelli and Vidotto, 2015; Alesci and Cianfrani,
2016; Gielen and Sindoni, 2016; Grain, 2016; Agullo and Singh,
2017; Wilson-Ewing, 2017). They include the deformed
constraint algebra approach (Bojowald et al., 2008; Bojowald
et al., 2011; Cailleteau et al., 2014; Barrau et al., 2015), the
group field theory models (Gerhardt et al., 2018; Gielen and
Oriti, 2018; Gielen, 2019), and the quantum reduced loop gravity
scheme (Alesci et al., 2018; Olmedo and Alesci, 2019).

Additionally, different ways of addressing backreaction effects
of the perturbations on the background within canonical
quantum cosmology have been recently explored using
techniques from space adiabatic perturbation theory (Schander
and Thiemann, 2020). Our attention here has been exclusively
put on the hybrid approach in order to fill a gap in the literature,
as this is the first extensive review of this proposal that includes
a detailed description of the application to primordial
perturbations.

A remarkable fact of the hybrid quantization is that, while
inhomogeneities and background degrees of freedom are treated
as parts of a single constrained system, the imposition of the quantum
constraints is consistent and does not give rise to anomalies. This

statement holds both in the Gowdy model and for cosmological
perturbations. The precise relation of these constraints with the full
set of four-dimensional spacetime diffeomorphisms is a different
issue that calls for more detailed investigations. As presented in Sec.
III, the Gowdy model is not only a symmetry reduction of Einstein
gravity, but it is also a partially gauge-fixed system in which only two
global constraints remain, namely the zero mode of the Hamiltonian
constraint and the zero mode of the momentum constraint in the
angular direction on which the metric fields depend5. It is worth
emphasizing that these are only two constraints, and not two
constraints per point (neither of the spatial section nor in the

considered angular direction). The aforementioned momentum
constraint generates rigid translations in the corresponding angle,
while theHamiltonian one generates global time reparameterizations.
These two constraints of themodel actually display vanishing Poisson
brackets between them and, with the adopted quantization, their
corresponding operators commute. For cosmological perturbations,
the constraint algebra has to be consistent just up to the order of the
perturbative truncation used in our treatment. We have shown that
the linear perturbative diffeomorphisms andHamiltonian constraints
admit an Abelianization at this truncation order, and we have
represented them directly as part as our canonical elementary

variables. The only remaining constraint in the system is a global
one, given by the zero mode of the Hamiltonian constraint, that
includes contributions from the background and from the
perturbations. Notably, its only dependence on the perturbations
is via gauge invariants, and therefore commutes with the linear
perturbative constraints both classically and in the quantum
theory. Indeed, we recall that in the hybrid quantization the
Mukhanov-Sasaki and tensor perturbations are represented as
operators that commute with the linear perturbative constraints.
In other words, at the level of our perturbative truncation and with
our hybrid strategy, the algebra of the quantum constraints of our

perturbed system does not present anomalies.
The physical relation of these constraints with the four-

dimensional diffeomorphisms algebra and the extent to which
recent claims about problems with general covariance in LQC
(Bojowald, 2020; Bojowald, 2020; Bojowald, 2020) affect the
system at the considered perturbative order deserve further
study. These claims have been inspired in part by the
deformed constraint algebra approach, which in particular
predicts processes of effective signature change in high
curvature regimes (Bojowald and Mielczarek, 2015; Barrau and
Grain, 2016; Schander et al., 2016). In this respect, let us point out,

for instance, that some of the perturbative canonical variables
used in the hybrid approach are defined with fields that are non-
local functions of the spatial metric, inasmuch as they can only be
obtained by taking inverse derivatives. This is a common situation

5For other alternative quantizations of the Gowdy model developed recently within

the framework of LQC, see e.g., Refs. (Bojowald and Brahma, 2015; Martín de Blas

et al., 2017).
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even in standard cosmological perturbation theory (Bardeen, 1980;
Sasaki, 1983; Kodama and Sasaki, 1984; Mukhanov, 1988; Langlois,
1994; Mukhanov, 2005). Moreover, in terms of the background
variables employed in our formulation, the metric functions

include corrections that are quadratic in the perturbations
already at the studied truncation order. A representation of
these metric components as quantum operators has yet to be
constructed, but it is clear that now issues such as the non-
degenerate Lorentzian character of the metric become intrincate
questions from a quantum perspective. Even the square scale
factor, that in absence of pertubations is strictly positive in each
superselection sector of homogeneous LQC with the quantization
prescription adopted here6, might in principle turn negative by the
effect of the perturbations. Nonetheless, none of these unexplored
questions on the quantum geometric structure changes the

hyperbolic ultraviolet behavior that we have found for the
propagation equations of the perturbative modes.

Even if we have succeeded in deriving such mode equations,
that rule the evolution of the primordial perturbations in the
hybrid approach, we have seen that this is not yet enough to
extract predictions that can be confronted with observations. For
this purpose, we also need two types of initial data, namely initial
values to fix the FLRW background and conditions to choose a
unique vacuum state for the perturbations. With respect to the
FLRW cosmology, we have seen that it suffices to provide, e.g., the
value of the inflaton at the bounce, apart from the parameters that

determine the inflaton potential. In the case of a quadratic
potential, we have found values for the inflaton on the bounce
section and for the inflaton mass such that the modes affected by
quantum geometry effects are those that are re-entering the
Hubble horizon nowadays, situation that is the most
interesting possibility in terms of observational plausibility in
the CMB. Concerning the vacuum state of the perturbations, we
have commented on various proposals to select it that lead to
power spectra that seem compatible with the observational data.

To go beyond those proposals and find a criterion to select the
vacuum that is rooted on the hybrid strategy, that combines loop

and Fock representations, we have put an additional emphasis on
the choice of splitting between the homogeneous and isotropic
sector of phase space and the gauge invariant perturbations. This

freedom can be employed to reach a Hamiltonian constraint with
nice properties, at least as far as its action on the perturbations is
concerned. Requiring such good physical and mathematical
properties turns out to restrict the possible quantum dynamics

of the perturbative gauge invariants, as well as the Fock
representation chosen for them. In turn, this can be regarded
as a limitation in the admissible choices of vacuum state. In
particular, we have shown that a criterion such as the
diagonalization of the Hamiltonian of the gauge invariant
perturbations, based on its asymptotic structure, might be able
to provide a unique vacuum state, to which one may partcularize
in the future the discussion of the effects of quantum geometry in
cosmology to extract concrete and distinctive predictions.
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