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We investigate the consequences of the hybrid quantization approach for primordial perturbations in
loop quantum cosmology, obtaining predictions for the cosmic microwave background and comparing
them with data collected by the Planck mission. In this work, we complete previous studies about the scalar
perturbations and incorporate tensor modes. We compute their power spectrum for a variety of vacuum
states. We then analyze the tensor-to-scalar ratio and the consistency relation between this quantity and the
spectral index of the tensor power spectrum. We also compute the temperature-temperature, electric-
electric, temperature-electric, and magnetic-magnetic correlation functions. Finally, we discuss the effects
of the quantum geometry in these correlation functions and confront them with observations.
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I. INTRODUCTION

In recent years, observational cosmology has experi-
enced remarkable developments, with a considerable
improvement in the resolution of the measurements
[1,2]. This has provided us with a clearer view of the
physics of the early Universe and with invaluable tools to
investigate it. In this challenge, inflationary scenarios have
played a prominent role. The inflationary paradigm has the
virtue of combining simplicity with efficiency in solving
several conceptual problems in cosmology, e.g., the flatness
and horizon problems. Moreover, it supplies us with a
mechanism capable to generate the seeds that created the
large scale structures which we observe today [3]. In this
sense, cosmological perturbation theory is crucial in our
present way to understand the origin of those structures and
the temperature fluctuations in the cosmic microwave
background (CMB). The fluctuations of the quantum
geometry, which are assumed to be in fact the seeds of
inhomogeneity, are described by means of linearized
Einstein’s theory within the framework of quantum field
theory in a curved spacetime. In this context of inflationary
cosmology, it suffices to give suitable initial conditions for

the perturbations at the onset of inflation to reproduce, with
a great deal of accuracy, the spectrum of anisotropies
observed in the CMB.
Certainly, there exist alternatives to inflation, for instance

some matter bounce models [4]. They include exotic matter
content that, for certain solutions, may cause a bounce in
the evolution of the Universe, instead of a collapse into a
singularity. Actually, other different and more generic
bouncing scenarios are presently under consideration as
natural mechanisms to remove the traditional big bang
singularity, rather than as substitutes of inflation. The most
successful one is given by loop quantum cosmology (LQC)
[5,6]. It is based on the quantization program of loop
quantum gravity: a nonperturbative, background indepen-
dent, and canonical quantization of general relativity [7].
For homogeneous and isotropic spacetimes, and different
matter contents, a neat understanding of the mechanism
that cures the singularity has been reached: a quantum
bounce occurs [8]. It is due to quantum geometry correc-
tions, that dominate near the Planck regime and are able to
stop the contraction of the Universe, which instead extends
its evolution into an expanding branch. This regular
behavior and the good control of the theoretical framework
make of this formalism an appropriate arena to test
quantum gravity phenomena in cosmology.
In the last years, several approaches have been suggested

to introduce small inhomogeneities in LQC, following
the ideas of cosmological perturbation theory [9–13].
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These approaches try to explore the way in which quantum
gravity affects the effective equations of the perturbations,
with the hope that the comparison with observations will
eventually permit to falsify the predictions about those
quantum corrections [14]. In this work, we will focus on the
hybrid quantization approach [13,15]. It is based on the
assumption that there exists a regime in which the main
corrections caused by the loop quantum geometry appear in
the homogeneous sector of the model, while the inhomo-
geneities (including those of a geometrical nature) can be
treated using a standard Fock representation. This approach
was proposed for the first time in Ref. [16], for a linearly
polarized Gowdy model with T3 topology. It was proven to
provide a consistent quantization of this Gowdy model
[15,17], even in presence of matter degrees of freedom [18].
Besides, in the homogeneous sector, one can restrict the
study to quantum states with an effective behavior identical
to that of isotropic cosmologies for certain physical proper-
ties [19]. It is remarkable that, for some of these states, the
geometry fluctuations can then behave collectively as
perfect fluids [20,21].
The hybrid quantization approach applied to cosmologi-

cal perturbations is a well developed and well understood
formalism in LQC [15]. A preliminary comparison of its
consequences with observations was recently presented in
Ref. [22]. The approach has been implemented in full detail
for Friedmann-Robertson-Walker (FRW) models with pos-
itive curvature [13], as well as for models with flat topology
[23–25]. It is possible to provide (at least formally) a
complete quantization of the model, incorporating pertur-
bations [13]. Besides, uniqueness criteria regarding the
Fock quantization of the perturbations have been put
forward in this context [26], a result that gives considerable
robustness to the corresponding predictions. Concerning its
treatment as a constrained theory, the system admits a first-
class algebra (free of anomalies) at the quantum level [25].
Moreover, the predictions extracted so far for the CMB turn
out to be in good agreement with observations [22].
The analysis carried out in Ref. [22] can be considered

incomplete inasmuch as it focused just on scalar perturba-
tions and on the extraction of the temperature-temperature
(TT) correlation function of the CMB. In the present work,
we will complete the analysis by incorporating tensor
modes, following the study of Ref. [27]. The inclusion
of tensor perturbations is crucial to carry out an accurate
comparison with observations, since single-field inflation-
ary models generate a significant amount of these pertur-
bations. Furthermore, it is well known that tensor
perturbations provide really valuable information about
the primordial stages of the Universe because, on the one
hand, the effect of tensor perturbations in the TTanisotropy
spectrum is more sensitive to features in the primordial
power spectrum than in the case of scalar perturbations [2]
and, on the other hand, tensor perturbations are the only
primordial source for magnetic-magnetic anisotropies.

In order to compute the primordial power spectrum of
the tensor perturbations, we will consider several adiabatic
vacuum states, as well as the so-called nonoscillating

vacuum state, proposed in Ref. [22]. Remarkably, we will
see that a comparison of the spectra for these vacua by
means of numerical techniques indicates that the non-
oscillating vacuum indeed belongs to the (unitary) equiv-
alence class of adiabatic states. Moreover, we will show
that it has the asymptotic behavior of an adiabatic state of
high order in the ultraviolet region of large wavenumbers.
Then, supposing that the scalar and the tensor perturbations
are initially in the same vacuum, we will compute the
tensor-to-scalar ratio r. In this way we will be able to check
the validity of the consistency relation r≃ −8nt, widely
used in standard single-field inflation, where it is deduced
assuming that the scalar and the tensor perturbations are
both in the Bunch-Davies state [28,29] at the onset of
inflation. In addition, restricting our attention just to the
nonoscillating vacuum, we will compute the electric-
electric (EE), magnetic-magnetic (BB), and temperature-
electric (TE) correlation functions. We will discuss the
results, comparing them with the most recent observations
of the CMB obtained by the Planck mission.
The rest of the paper is organized as follows. In Sec. II

we will present the classical system. We will explain the
effective dynamics of the background variables in Sec. III,
and that corresponding to the perturbations within our
hybrid approach in Sec. IV. In Sec. V we will introduce the
initial states that will be considered for the inhomogene-
ities. We will compute the relevant cosmological observ-
ables in Sec. VI. Finally, we will discuss the results and
conclude in Sec. VII.

II. CLASSICAL MODEL

Let us consider a single-field inflationary cosmological
model in which the spatial sections are homogeneous,
isotropic, and flat. The scalar field, Φ, that plays the role of
an inflaton, is subject to a potential VðΦÞ. Although the
analysis that we are going to carry out is valid for quite
general choices of the potential, for concreteness it will be
convenient to restrict our attention to a quadratic potential
of the form VðΦÞ ¼ m2Φ2=2. The spacetime metric is
characterized by a homogeneous lapse N0ðtÞ and by a
variable αðtÞ. Up to a constant, the latter is the logarithm of
the scale factor, aðtÞ, that appears multiplying the auxiliary
flat three-metric, 0hij on each spatial section. We take
Euclidean coordinates xi ∈ R on these spatial sections. It is
useful to introduce the connection 0∇i of the static auxiliary
metric 0hij and the corresponding Laplace-Beltrami oper-
ator 0hij0∇i

0∇j. Associated with this operator, we have at
our disposal the set of its real eigenfunctions, denoted by
~Q
k⃗;ϵ
ðx⃗Þ, such that they are odd (ϵ ¼ −1) or even (ϵ ¼ 1)

under the transformation xi → −xi. Here, k⃗ ¼ ðk1; k2; k3Þ,
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with ki ∈ R. Their respective eigenvalues are−k2 ¼ −k⃗ · k⃗.
For simplicity we obviate the zero mode in this set.1 With
these eigenfunctions, together with the connection 0∇i and
the metric 0hij, it is possible to construct a complete basis of
scalar, vector, and tensor harmonics for the spatial sections
(up to the mentioned zero mode). See, e.g., Ref. [23] for
additional details.
Around the studied homogeneous and isotropic geom-

etries, we can now incorporate small perturbations to
second order in the standard Einstein-Hilbert action and
expand them in modes using the harmonics introduced
above. The scalar perturbations were already studied in
Refs. [13,22–25]. The vector modes, to this level of
truncation and in our model with only a scalar field,
do not play any physical role and will be ignored in
the following. Therefore, we will mainly focus here on
tensor perturbations. These can be described in terms of
real tensor harmonics ~Gij, which are eigenfunctions of
the Laplace-Beltrami operator that are transverse
0hij0∇i

~Gjk ¼ 0, and traceless 0hij ~Gij ¼ 0. Here, the sub-

script k⃗ ¼ ðk⃗; ϵ; ~ϵÞ indicates k⃗, the parity ϵ ¼ �, and the
polarization ~ϵ ¼ ðþ;×Þ of the tensor mode. For additional
details about their definition, see, e.g., the Appendix of
Ref. [27]. The Hamiltonian resulting from the truncation
of the action to second order in the perturbations (or,
strictly speaking, its zero mode, which is the only relevant
part for our discussion) can be written as

H ¼ N0

�
Hj0 þ

X

ϵ;~ϵ

Z
d3k THk⃗

j2 þ ðscalar perturbationsÞ
�
;

ð1Þ

where the first term within the square brackets depends on
the homogeneous variables only. It reads

Hj0 ¼
e−3α

2
ðπ2φ −H

ð2Þ
0 Þ; ð2Þ

where we have defined

H
ð2Þ
0 ¼ π2α − 2e6αV̄ðφÞ: ð3Þ

The second term in Eq. (1) is quadratic in the tensor
perturbations:

THk⃗

j2 ¼
1

2
e−3α½π2d

k⃗

þ 8παdk⃗πdk⃗ þ 2ð5Hð2Þ
0

þ 3π2φ þ 4e6αV̄ðφÞÞd2
k⃗
þ e4αk2d2

k⃗
�: ð4Þ

We have called V̄ðφÞ ¼ σ4Vðφ=σÞ, with σ2 ¼ 4πG=3 and
G the Newton constant. Besides, πα, πφ, and πd

k⃗

are the
momenta conjugate to the respective variables α, φ (the
zero mode of the scalar field, up to a constant factor [24]),
and d

k⃗
(the variables that describe the expansion of the

tensor perturbations in modes). Regarding the contribu-
tion of the scalar perturbations to the Hamiltonian, we
encourage the reader to consult Refs. [24,25].
The classical equations of motion can be easily com-

puted by taking Poisson brackets with the total Hamiltonian
(1), i.e.,

_f ¼ ff;Hg; ð5Þ

where f represents any function on the phase space of the
system.

III. THE HOMOGENEOUS SECTOR AND ITS

EFFECTIVE DYNAMICS IN LOOP

QUANTUM COSMOLOGY

We now proceed to quantize the model introduced in the
previous section. As we have already mentioned, we will
adopt a hybrid approach in this quantization. This means
that we will combine different types of quantum repre-
sentations for the different degrees of freedom of our
model. In this section, we will explain the LQC quantiza-
tion of the homogeneous modes and the resulting effective
dynamics in this homogeneous sector. The effective
dynamics of the perturbations will be explained in Sec. IV.
Following the ideas of Refs. [5,6], one starts by adopting

a description of the classical geometry in terms of an su(2)-
connection and a densitized triad. On homogeneous cos-
mologies, they are determined by two homogeneous
functions, c and p, which respectively capture the degrees
of freedom of the connection and the triad. In terms of our
original phase space variables, they are given by

p ¼ σ2e2α; pc ¼ −γσ2πα; ð6Þ

where γ is the Immirzi parameter [7]. Here, as it is
customary in LQC, we fix this parameter equal to
γ ≃ 0.2375, which is the value that allows us to recover
the Bekenstein-Hawking formula in loop quantum gravity,
as the leading term for large horizon area in the black hole
entropy computation [30].
In the so-called polymeric representation that is com-

monly employed in LQC, there is no well-defined operator
corresponding to the connection, but rather to the holon-
omies of the connection. In the implementation of this
polymeric representation, we will adhere to the improved
dynamics scheme [8], since this choice provides quantum
geometries for which the singularity is replaced by a
quantum bounce when the energy density ρ reaches a
constant critical value which, with our fixation of the

1This mode can be isolated by introducing an infrared cutoff
and finally letting it tend to zero, or alternatively by considering a
compact flat topology and letting the compactification scale tend
to infinity at the end of the day.
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Immirzi parameter, is given by ρc ¼ 3=ð8πGγ2ΔÞ ∼ 0.41ρPl.
Here, ρPl is the Planck energy density and Δ is twice the
minimum nonzero eigenvalue of the area operator in loop
quantum gravity [7]. Explicitly, Δ ¼ 4

ffiffiffi
3

p
πγl2Pl, where lPl

is the Planck length. From now on, wewill set up the Newton
constant G, the reduced Planck constant ℏ, and the speed of
light all equal to one, and work in Planck units.
In the improved dynamics scheme, it is most convenient

to adopt as basic variables the volume, v ¼ p3=2, and its
conjugate variable, β ¼ c=p1=2. Then, the basic Poisson
bracket is fβ; vg ¼ 4πγ. The variable β has a natural
interpretation in the classical system: up to a constant, it
is the Hubble parameter.
On the other hand, for the homogeneous mode of the

scalar field and its momentum, the usual variables
employed in LQC are

ϕ ¼ φ

σ
; πϕ ¼ σπφ: ð7Þ

For convenience, we will also redefine the zero mode of the
lapse function as N ¼ σN0.
We now represent the homogeneous sector of the

geometry on a Hilbert space H
grav
kin where the operator v̂

acts by multiplication. As a distinctive property of the
polymeric representation adopted in LQC, this Hilbert
space admits a basis of eigenstates fjνi; ν ∈ Rg of v̂ that
are normalized with respect to the discrete inner product
hν1jν2i ¼ δν1;ν2 . Their eigenvalues are

v̂jνi ¼ 2πγ
ffiffiffiffi
Δ

p
νjνi: ð8Þ

Together with this volume operator, we also have the
matrix elements of the holonomies of the connection
along straight edges with auxiliary length equal to μ̄,
where μ̄ ¼

ffiffiffiffiffiffiffiffiffi
Δ=p

p
according to the improved dynamics

scheme. Essentially, these matrix elements can be

obtained from the operators N̂ �μ̄, which act on the basis
states shifting their eigenvalues:

ˆN �μ̄jνi ¼ jν� 1i: ð9Þ

For the homogeneous sector of the scalar field, we will
adopt the standard representation on the kinematical
Hilbert space Hmatt

kin ¼ L2ðR; dϕÞ, i.e., the space of square
integrable functions on ϕ with the standard Lebesgue
measure. In this representation, ϕ̂ acts by multiplication and
π̂ϕ ¼ −i∂ϕ.
With this representation of the homogeneous variables,

we can construct the quantum counterpart of the zero
mode of the scalar constraint. In order to do so, we follow
the quantization prescription of Ref. [31], already used in
the hybrid quantization of cosmological perturbations in
LQC discussed in Refs. [13,22–25,27]. The corresponding
Hamiltonian operator is defined as

Ĥj0 ¼
σ

2

d�1
v

�1=2
Ĉ0

d�1
v

�1=2
; ð10Þ

where Ĉ0 is an operator representing the densitized version
of the homogeneous part of the Hamiltonian constraint. It
has the form

Ĉ0 ¼ π̂2ϕ −
4π

3
Ĥ

ð2Þ
0 ; ð11Þ

Ĥ
ð2Þ
0 ¼ 3

4π

�
3

4πγ2
Ω̂

2
0 − 2v̂2Vðϕ̂Þ

�
: ð12Þ

Here, Ω̂2
0 is an operator representation of ðcpÞ2 in LQC. It is

defined as the square of

Ω̂0 ¼
1

4i
ffiffiffiffi
Δ

p v̂1=2½ dsgnðvÞð ˆN 2μ̄ −
ˆN −2μ̄Þ

þ ð ˆN 2μ̄ −
ˆN −2μ̄Þ dsgnðvÞ�v̂1=2; ð13Þ

where csgn is the sign operator and ˆN 2μ̄ shifts the label of
the basis states in two units [see Eq. (9)].
The quantum states Ψðv;ϕÞ for the massless scalar field

(m ¼ 0) were studied in Ref. [32]. Here, the scalar field can
be regarded as a natural time function. Moreover, for highly
peaked states, the evolution of the expectation values of the
fundamental operators (and presumably of their products)
turn out to follow the trajectories of an effective classical
Hamiltonian with a high level of accuracy [33]. In this
effective dynamics for LQC, the solutions depart from
those of general relativity only when the energy density is
at least a few percents of its critical value ρc, and in
particular they avoid the big bang singularity.
In the case of a massive scalar field, one has a nonzero

potential Vðϕ̂Þ in the quantum constraint. A recent analysis
in Ref. [34] shows how one can carry out a perturbative
treatment at the quantum level, valid in those situations
where the contribution of the potential is small compared
with the kinetic term. In the present work, nonetheless, we
will consider regimes where the energy density of the scalar
field is so highly dominated by its kinetic contribution in
the vicinity of the bounce, that we can confidently ignore
the influence of the field potential in the regions where
there may be departures from general relativity. In those
kinetically dominated regions, for states with large values
of the scalar field momentum, all the numerical and
analytic studies carried out so far in LQC strongly support
the validity of the effective dynamics of LQC, as we have
already mentioned, and hence we can ignore any possible
further quantum contribution to the evolution of the
relevant expectation values. Moreover, it is well known
that in this kind of effective inflationary solutions, one can
disregard all corrections arising from the regularization of

the inverse-volume operator d½1=v�, which is defined as
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d�1
v

�1=3
¼ 3

4πγ
ffiffiffiffi
Δ

p dsgnðvÞjv̂j1=3ðN̂ −μ̄jv̂j1=3N̂ μ̄

− N̂ μ̄jv̂j1=3N̂ −μ̄Þ: ð14Þ

It has been shown that these corrections are negligible for
highly peaked states, at least in the sector of states with
large momentum of the scalar field (see, e.g., the discussion
in Refs. [35,36]).
In this way, we arrive at the following effective set of

equations for the evolution of the expectation values of the
basic operators of the homogeneous sector of our model:

1

N
_ϕ ¼ πϕ

v
; ð15aÞ

1

N
_πϕ ¼ −v

dVðϕÞ
dϕ

; ð15bÞ

1

N
_v ¼ 3

2
v
sinð2

ffiffiffiffi
Δ

p
βÞffiffiffiffi

Δ
p

γ
; ð15cÞ

1

N
_β ¼ −

3

2

sin2ð
ffiffiffiffi
Δ

p
βÞ

Δγ
þ 4πγ

�
VðϕÞ −

π2ϕ

2v2

�
: ð15dÞ

The dot denotes the time derivative with respect to an
arbitrary time function t. In addition, the effective homo-
geneous Hamiltonian can be written in the form π2ϕ ¼
4πH

ð2Þ
0 =3, where

H
ð2Þ
0 ¼ 3

4π

�
3

4πγ2
v2 sin2ð

ffiffiffiffi
Δ

p
βÞ

Δ
− 2v2VðϕÞ

�
: ð16Þ

Here, we have neglected backreaction contributions com-
ing from the inhomogeneities. Therefore, the effective
equations of motion of the background coincide with the
usual ones in LQC [37]. Also, in order to simplify the
notation, we have dropped the expectation value symbols.
It is worth remarking that, in this homogeneous model,

any effective trajectory can be determined by the value of
the scalar field at the bounce, ϕB. Actually, the value of the
volume at the bounce vB can be reset arbitrarily (e.g.,
making it equal to one if one wants for convenience),
because there is no intrinsic absolute length scale owing to
the homogeneity and the lack of spatial curvature. Besides,
the time derivative of the volume vanishes at the bounce.
Finally, the momentum conjugate to the scalar field is
determined by the Hamiltonian constraint. Therefore, for a
fixed value of the mass m of the inflaton field and a given
choice of the Immirzi parameter γ, a single piece of data
turns out to specify the solutions of our homogeneous
model. Furthermore, since the energy density is bounded
from above in LQC, with the bound reached at the moment
of the bounce, we conclude that, in the considered case of

the quadratic potential the mass of the inflaton field and the
value of the scalar field at the bounce must satisfy the
inequality

m2ϕ2
B ≤ 0.82: ð17Þ

IV. EFFECTIVE DYNAMICS OF THE

PERTURBATIONS IN THE HYBRID

APPROACH

In order to complete the quantization of the full system,
including the inhomogeneities, and deduce effective equa-
tions of motion for the perturbations, we will introduce a
Fock representation for them and define their quadratic
contribution to the quantum Hamiltonian constraint.
Actually, the Fock representation of the scalar perturbations
was discussed in Ref. [24]. Thus, here we will focus on the
quantization of the tensor perturbations. For these tensor
modes, the hybrid quantization approach was implemented
in Ref. [27]. Let us summarize the more important steps.
Previous to the quantization, one performs the canonical
transformation:

~d
k⃗
¼ eαd

k⃗
; π ~d

k⃗

¼ e−αðπd
k⃗

þ 3π ~αdk⃗Þ: ð18Þ

Rigorously speaking, this transformation must be extended
to the homogeneous sector by including appropriate quad-
ratic contributions of the perturbations in the definition of
the canonical variables for the homogeneous geometry (see
Ref. [27] and footnote 1). However, we will ignore these
corrections in this article, admitting that they are suffi-
ciently small (in fact, they can be interpreted as a kind of
backreaction correction to the definition of the background
variables). The resulting Hamiltonian constraint is still of
the form (1), but with the quadratic tensor term replaced
with

T ~Hk⃗

j2 ¼
1

2
e−α½π2

~d
k⃗

þ ðe−4αHð2Þ
0 − 4e2αV̄ðφÞ þ k2Þ ~d2

k⃗
�:

ð19Þ
Hence, it follows that the evolution of the tensor modes,
at the classical level, is given by a set of second-order
linear differential equations, involving time-dependent
coefficients.
To incorporate the perturbations in the quantum theory,

one adopts the Fock representation introduced in Ref. [27]
for the tensor modes. For the subsequent representation of
the quadratic perturbative contribution (19), one casts its
background dependence in terms of the variables used in
LQC, given by Eqs. (6) and (7). Then, the considered
Hamiltonian constraint becomes

Ĥ ¼ σ

2

d�1
v

�1=2
½Ĉ0 − Θ̂

T þ ðscalar perturbationsÞ�
d�1
v

�1=2
:

ð20Þ
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The term associated with the tensor perturbations reads

Θ̂
T ¼ −

X

ϵ;~ϵ

Z
d3k½ðϑ̂k2 þ ϑ̂

q
TÞ ~̂d

2

k⃗ þ ϑ̂π̂2
~d
k⃗

�: ð21Þ

The ϑ-operators are functions exclusively of other operators
that have already been defined in the representation of the
homogeneous sector. Their explicit expressions are

ϑ̂ ¼ v̂2=3; ð22Þ

ϑ̂
q
T ¼ 16π2

9

d�1
v

�1=3
Ĥ

ð2Þ
0

d�1
v

�1=3
−
16π

3
v̂4=3Vðϕ̂Þ: ð23Þ

In presence of inhomogeneities, the solutions to the
constraint are not known explicitly, although one can
always carry out a formal quantization following the ideas
of Ref. [13]. Here, we will follow instead the strategy of
Refs. [24,25], where one adopts a Born-Oppenheimer
ansatz for the solutions to the constraint, Ξ, so that there
is a separate dependence on the background geometry and
on the perturbations:

Ξðv;ϕ; ~d
k⃗
Þ ¼ Ψðv;ϕÞψð ~d

k⃗
;ϕÞ: ð24Þ

In this formula, we have ignored the scalar perturbations,
and Ψðv;ϕÞ is a solution to the background homogeneous
constraint (sufficiently accurate at the perturbative level in
which one wants to allow for backreactions effects). On
the other hand, ψð ~d

k⃗
;ϕÞ is the wave function of the tensor

perturbations defined on a suitable Fock space, F , once
the homogeneous scalar field ϕ is regarded as an internal
time. This ansatz has already been studied in the context
of tensor perturbations in Ref. [27]. Under reasonable
conditions (similar to those explained for the scalar
perturbations in Refs. [24,25], and expected to hold in
semiclassical regimes), it is possible to deduce a
Schrödinger equation for the perturbations, with a physi-
cal Hamiltonian that rules the evolution in the time ϕ

given by

ĤT
phys ¼

hΘ̂TiΨ
2

� ffiffiffiffiffiffiffiffiffi
Ĥ

ð2Þ
0

q �

Ψ

: ð25Þ

These expectation values are taken over the homogeneous
geometry, with the inner product of LQC. The operator in
the denominator can be understood as the square root of

the positive part of Ĥð2Þ
0 . This physical Hamiltonian is a

well defined operator acting on ψð ~d
k⃗
;ϕÞ.

When the effective dynamics of LQC is valid for the
background geometry, one then arrives to effective equa-
tions of motion for the tensor perturbations that, in

conformal time, can be combined into the following
second-order differential equation2

~d00
k⃗
þ
�
k2 þ

�
4π

3

�
2 1

v4=3
H

ð2Þ
0 −

16π

3
v2=3VðϕÞ

�
~d
k⃗
¼ 0:

ð26Þ

Here, the prime stands for the derivative with respect to the
conformal time η, for which N ¼ v1=3. A similar equation
has been derived for the scalar perturbations in Ref. [25],
and its physical consequences have been partially studied
in Ref. [22].

V. INITIAL STATE OF THE TENSOR

PERTURBATIONS

Our next task is to select a suitable initial state for the
perturbations. Together with their effective equations of
motion, this will determine their value in the evolution. In
this way, we will be able to extract predictions about their
primordial spectrum that eventually could be compared
with observations. Here, we will mainly follow the tradi-
tional procedures in cosmological single-field inflation,
based on quantum field theory in curved spacetimes. Let us
start with the choice of an initial time, ηi. Although any
arbitrary choice is possible, we will consider the bounce as
a natural initial Cauchy surface to give initial conditions
[38], and we will denote the corresponding time as ηB.
Obviously, we are not saying that other choices of initial
time are not acceptable. Other alternatives, e.g., the limit of
infinitely negative conformal time, may be worth exploring.
Since we have adopted a Fock representation for the

tensor perturbations, an equivalent way to fix their initial
vacuum state is to specify a complete orthonormal set of
positive frequency solutions to the equations of motion of
the field. We choose these solutions so that they do not mix
modes (actually, this guarantees translational invariance on
the spatial sections) and coincide for all modes with the
same wave number k (guaranteeing rotational symmetry in
the considered continuous case). Moreover, we take this set
of complex solutions fμkðηÞg such that is orthonormal with
respect to the usual Klein-Gordon inner product:

ðμð1Þk ; μ
ð2Þ
k Þ ¼ i½ðμð2Þk Þ�μ0ð1Þk − μ

ð1Þ
k ðμ0ð2Þk Þ��: ð27Þ

Here i is the unit imaginary number, the superindices label
possibly different choices of solutions, and the star symbol

2In fact, the conditions to derive a Schrödinger equation are not
necessary to obtain Eq. (26). Arguments like those of
Refs. [24,25] show that it essentially suffices that (a) one can
ignore geometry transitions mediated by the Hamiltonian con-
straint after introducing the Born-Oppenheimer ansatz, (b) the
effective dynamics of LQC is valid, and (c) the quadratic
perturbative terms admit an effective description obtained with
the direct classical counterpart of the annihilation and creation
operators.
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stands for complex conjugation (in this expression, and in
what follows, we do not display explicitly the time
dependence of μk, and the prime denotes again the
conformal time derivative). Since the equations are of
second order and possess real (time-dependent) coeffi-
cients, a complete set of linearly independent solutions is
then given by μk and its complex conjugate μ�k, provided the
former has indeed unit norm: ðμk; μkÞ ¼ 1. Actually, one
can easily check that ðμk; μ�kÞ ¼ 0, and that μ�k is normalized
in the sense that ðμ�k; μ�kÞ ¼ −1. These orthonormality
conditions are fulfilled at any time, because the Klein-
Gordon inner product is preserved on shell in the evolution.
In particular, they must be satisfied at the initial time ηi, that
we let arbitrary for the moment. These conditions constrain
the freedom in the choice of initial data. In terms of our
solutions, the variables representing the perturbations then
have the form

~d
k⃗;~ϵ
ðηÞ ¼ μkðηÞak⃗;~ϵ þ μ�kðηÞa�k⃗;~ϵ; ð28Þ

where a
k⃗;~ϵ

and a�
k⃗;~ϵ

are, respectively, time-independent

annihilation and creation variables for the mode ðk⃗; ~ϵÞ
(with wave number equal to k).
Summarizing, the choice of initial data μkðηiÞ and μ0kðηiÞ

for the sector of positive frequency, orthonormalized with
respect to the Klein-Gordon inner product, completely
determines the initial vacuum state of the perturbations.
This is indeed equivalent to introducing a complex struc-
ture [39]. We recall that a complex structure J is a real
linear transformation in the complex vector space of
solutions such that J2 ¼ −1. Besides, J must be compatible
with the inner product (27) (in the sense that an appropriate
composition of J with the inner product provides a positive
bilinear map [39]). Any complex structure induces a
splitting of the space of solutions into two orthogonal
subspaces, that are usually identified with the positive and
negative frequency sectors. The freedom in the choice of
complex structure J is equivalent to the freedom in the
choice of orthonormalized initial data for the positive
frequency solutions, and therefore to the selection of an
initial vacuum state of the field.
In our case the initial data, and in consequence the initial

vacuum of the tensor modes, can be parameterized in terms
of two real functions for each mode k. If we call μk;0 ¼
μkðηiÞ and μ0k;0 ¼ μ0kðηiÞ, any arbitrary set of initial con-
ditions, up to an irrelevant global phase, can be written as

μk;0 ¼
1ffiffiffiffiffiffiffiffi
2Dk

p ; μ0k;0 ¼
ffiffiffiffiffiffi
Dk

2

r
ðCk − iÞ: ð29Þ

We restrict the function Dk to be strictly positive, whereas
Ck can take any real value. Although one can choose freely
these mode functions, there exist natural restrictions on
them based on physical arguments. These restrictions refer

mainly to their ultraviolet behavior. For instance, the
requirement of a unitary dynamics [26,40,41] employed
in the hybrid quantization that we have adopted [27], as
well as the prescriptions of adiabatic states that are typical
in inflationary contexts [42–44], or the Hadamard condition
[39], they all restrict the asymptotic ultraviolet behavior in
the form3

Dk ¼ kþ oðk−1=2Þ and Ck ¼ oðk−3=2Þ for infi-
nitely large k, where the symbol oðklÞ denotes terms that
are negligible compared to kl for a given power l.
In this work, we will consider two different types of

prescriptions for the selection of initial data. The first one is
based on adiabatic states. We will consider two ways to
select a specific set of initial data of zeroth, second,
and fourth adiabatic order, following constructions that
are similar to those described in Ref. [42] and in
Refs. [43,44], respectively. The second prescription corre-
sponds to the nonoscillating vacuum that was introduced in
Ref. [22]. Both prescriptions will be detailed below.

A. Adiabatic states

Adiabatic states were originally introduced as approxi-
mated solutions to the equations of fields propagating in
cosmological spacetimes. They are also considered in
cosmology as a way to prescribe initial conditions for
the quantum fields with convenient physical properties. As
we will see, these states provide initial data with a suitable
behavior for asymptotically large k. Here, for the sake of
brevity, we will define them only for the particular model
under consideration.
Let us adopt the following ansatz for the solutions:

μk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p e

−i
R

η
Wkðη̄Þdη̄: ð30Þ

If we substitute this into Eq. (26), we obtain for Wk the
differential equation

W2
k ¼ k2 þ s −

1

2

W00
k

Wk

þ 3

4

�
W0

k

Wk

�
2

: ð31Þ

The function s ¼ sðηÞ is given by the time-dependent mass
of the corresponding Klein-Gordon equation. In the case of
the tensor perturbations in the hybrid approach, we have

sðtÞ ¼
�
4π

3

�
2 1

v4=3
H

ð2Þ
0 −

16π

3
v2=3VðϕÞ: ð32Þ

Different adiabatic solutions W
ðnÞ
k , where n is an integer

that indicates the adiabatic order, are in fact approximations

3After the scaling of the tensor modes carried out in Eq. (18),
this asymptotic behavior ensures that the requirement of unitary
dynamics for the ultraviolet sector picks out a unitary equivalence
class of vacua that includes the Hadamard and the adiabatic
states.
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to the exact solutions Wk. Each of them converges to the
exact one at least as Oðk−1−nÞ in the limit k → ∞, where
the symbol O stands for asymptotic order.4 Therefore, this
method provides good approximate solutions for the ultra-
violet modes. However, this is not necessarily the case for
small k. Indeed, while adiabatic states constrain the
behavior of the solutions in the asymptotic limit of large
k (i.e., at small scales), they still allow for an infinite
freedom in the behavior of the large scale solutions. Even
so, this prescription has proven very useful in order to
obtain analytic expressions approximating the exact sol-
utions [42], as well as for the renormalization of the stress-
energy tensor in cosmological scenarios [43,44].
Within LQC, adiabatic states have been used to specify

initial data in inflationary models that are closely related to
the one under study here, for instance in Ref. [45] for the
dressed metric approach, and in Ref. [22] for the scalar
perturbations in the context of the hybrid quantization
approach. Let us mention that the dressed metric approach
is another popular approach for the study of cosmological
perturbations in LQC [12,45,46] in which the perturbed
FRW model is not treated as a symplectic constrained
system. Instead, one obtains a dressed metric that incor-
porates the most important quantum corrections within
homogeneity, and then lifts the corresponding dynamical
trajectories to the truncated phase space that describes the
perturbed system at the desired order of approximation.
The initial data associated with adiabatic states are given in
the form (29) with

Dk ¼ Wk; Ck ¼ −
W0

k

2W2
k

: ð33Þ

Here,Wk and its time derivative have to be evaluated at the
chosen initial time. To get initial data for different adiabatic
orders, one only has to replace Wk in the previous
expression with the adiabatic solution at the order in
question.
In this article, we are going to consider the initial data for

different adiabatic orders obtained by two different con-
structions, as it was done also in Ref. [22]. The first
construction follows ideas presented in Ref. [42]. A
solution of order ðnþ 2Þ, i.e. W

ðnþ2Þ
k , is obtained by

plugging W
ðnÞ
k in the right-hand side of Eq. (31). This

process is carried out iteratively, starting withWð0Þ
k ¼ k, the

zeroth-order adiabatic state. It is worth mentioning that

W
ð0Þ
k corresponds to the natural solution of a free massless

scalar field in a Minkowski spacetime. In the second
construction, one performs an asymptotic expansion of

the solution Wk in inverse powers, in the limit k → ∞, and
truncates this expansion at the considered order. We will

callWðnÞ
k the functions obtained in this way. This method is

analogous to the one used in Ref. [45], and the resulting
state is known in the literature as the obvious adiabatic state
of nth order.
For each of these two constructions of adiabatic states,

we will consider here the adiabatic initial conditions of
zeroth, second, and fourth order, which are determined by
the functions

W
ð0Þ
k ¼ W

ð0Þ
k ¼ k; ð34Þ

W
ð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ s

p
; W

ð2Þ
k ¼ kþ s

2k
; ð35Þ

W
ð4Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ sþ 5

16

�
s0

k2 þ s

�
2

−
s00

4ðk2 þ sÞ

s
;

W
ð4Þ
k ¼ kþ s

2k
−
s2 þ s00

8k3
: ð36Þ

The derivatives of the time-dependent mass that appear in
these expressions are calculated using the effective equa-
tions of motion of the homogeneous variables.
It is obvious that the two constructions provide different

initial conditions (except at zeroth order). Besides, none of
the two procedures can be considered rigorously sound,
inasmuch as there is no guarantee that the corresponding
initial conditions are meaningful for all values of k and
independently of the behavior of the time-dependent mass.
In order to explain this statement, let us consider, for

instance, the second-order adiabatic solutions W
ð2Þ
k and

W
ð2Þ
k . If one selects an initial time in which the time-

dependent mass is negative, thenWð2Þ
k provides meaningful

initial conditions only for k >
ffiffiffiffiffiffi
−s

p
, whereas Wð2Þ

k does so

only for k >
ffiffiffiffiffiffiffiffiffiffiffi
−s=2

p
. Therefore, in this situation, none of

the two constructions can be trusted in order to determine a
complete set of physically acceptable initial data.
Fortunately, in the case of the hybrid approach (and in
the regimes that we are interested to discuss), the time-
dependent mass of the tensor perturbations, and also that of
the scalar perturbations, turn out to be both strictly positive

at the bounce (and close to it). For completeness, let us
recall that the expression of the mass of the scalar
perturbations is [22],

sðsÞ ¼ 16π2H
ð2Þ
0

9v4=3

�
19 −

32π2γ2H
ð2Þ
0

Ω2
0

�

þ v2=3
�
d2VðϕÞ
dϕ2

þ 16πγπϕΛ0

Ω2
0

dVðϕÞ
dϕ

−
16π

3
VðϕÞ

�
;

ð37Þ

4Our definition of adiabatic order n differs from others in the
literature [45] for which the convergence rate is Oðk−nÞ. Our
convention is motivated by the fact that the asymptotic expansion
of Wk does not contain even inverse powers, and we start the
counting at zeroth order.
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where Ω0 ¼ jvj sin ð
ffiffiffiffi
Δ

p
βÞ=

ffiffiffiffi
Δ

p
and Λ0 ¼ jvj sin ð2

ffiffiffiffi
Δ

p
βÞ=

ð2
ffiffiffiffi
Δ

p
Þ. This expression is equivalent to the one provided in

Ref. [22], modulo the homogeneous constraint. Evaluating
also the first and second derivatives of sðtÞ and sðsÞ at the
bounce, we have checked that all the adiabatic initial
conditions considered here are well defined for all modes
with our hybrid approach, at least for the set of initial values
of the background variables that we have explored in our
numerical simulations.
At this stage of our discussion, it is also worth noting

that, if one considers instead the dressed metric approach,
the time-dependent mass becomes negative when one
approaches the bounce.5 Let us recall that the dressed
metric approach and the hybrid approach are the two
only proposals within the framework of LQC that lead to
hyperbolic equations for the perturbations, and at present
are the only proposals in this framework that can be
considered compatible with observations [47]. As it was
already pointed out in Ref. [22], the LQC corrections that
appear in the hybrid and the dressed metric approaches
differ slightly, owing to the different strategies that are
followed in the quantization, a fact that leads to distinct

predictions for the primordial spectra.6 Even without
carrying out a direct comparison, it is easy to see that
(when one considers in the dressed metric approach a
scaling of the perturbations like the one performed in
Eq. (18), namely, by a factor ~a ¼ eα), the time-dependent
mass for the tensor perturbations is [45]

~sðtÞðηÞ ¼ −
~a00

~a
; ð38Þ

whereas, for the scalar perturbations in the expanding
phase, one obtains [48]

~sðsÞðηÞ ¼ −
~a00

~a
þ ~a2

�
f2VðϕÞ þ 2f

dVðϕÞ
dϕ

þ d2VðϕÞ
dϕ2

�
:

ð39Þ

Here, f ¼
ffiffiffiffiffiffiffiffi
24π

p
ϕ0=

ffiffiffiffiffiffiffi
~a2ρ

p
. Note that ~a is proportional to

the scale factor a ¼ v1=3 of the effective dressed metric.
At the time of the bounce, ~a00 is positive, and therefore
the time-dependent mass is negative for the tensor
perturbations (as well as for the scalar perturbations in
bounces that are dominated by the kinetic energy).
Therefore, one is forced to consider different construc-
tions for the initial conditions, or initial times that render
them physically meaningful. In Fig. 1 we compare
the evolution of the time-dependent mass of the tensor

FIG. 1. Comparison of the time-dependent mass of the tensor and the scalar perturbations for the hybrid approach and the dressed
metric approach in a dynamical trajectory with ϕB ¼ 0.97 and m ¼ 1.20 × 10−6 in Planck units (kinetically dominated bounce). Here,
sðsÞðηÞ and sðtÞðηÞ are the time-dependent masses of the scalar and the tensor perturbations in our hybrid approach, respectively, while
~sðsÞðηÞ and ~sðtÞðηÞ are their counterparts in the dressed metric approach. Dashed lines in the right panel indicate negative values of the
quantity of which we plot the absolute value.

5While the effective equations of the perturbations in the
hybrid approach have a smooth transition connecting the
collapsing and the expanding branches, such that general
relativity is recovered asymptotically in the two branches, it is
not obvious how these two properties of smoothness and
semiclassicality can be attained in the dressed metric approach
on the union of both branches. For this reason, we will only
compare the results of the two approaches in the expanding
branch.

6In addition to those differences in the quantization strategy,
the hybrid approach was originally developed by starting with
compact spatial sections, from which one can reach the non-
compact limit, while the dressed metric approach studied the
noncompact case directly, in exchange for having to face infrared
regularization issues.
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and the scalar perturbations for the two mentioned
approaches. Analyzing each of the two prescriptions
separately, we observe that the values and the evolution
of the time-dependent mass for the two types of
perturbations are almost identical, including the region
around the bounce. On the contrary, if we compare the
two prescriptions, we see that the time-dependent masses
differ around the bounce, where the LQC corrections are
important, but then they quickly converge to the same
values, far enough away from that bounce. Clearly, this
shows that the effective equations of motion for the
perturbations are not the same in the two approaches,
even if one neglects the backreaction in both cases.
Turning back to the issue of the election of initial data

for the perturbations, we emphasize that, although the
adiabatic conditions that we have discussed reduce the
freedom of choice, there is still an infinite number of
possible adiabatic states at any order. Then, additional
criteria must be required in order to remove this freedom.
For instance, in Ref. [46] it has been proposed that one
should select the state that provides a regularized stress-
energy tensor which vanishes at the given initial time.
Although there is an infinite ambiguity in the adiabatic
renormalization process, once one fixes that ambiguity
(as it is done in Ref. [46]) from the point of view of an
observer at the end of inflation, one is left only with a
one-parameter family of states that arise from the
remaining freedom in the specification of the initial time.
If this initial time is fixed, the vacuum state turns out to
be unique.

B. Nonoscillating vacuum

As an alternative to these adiabatic considerations,
Ref. [22] puts forward another criterion that seems to
identify also a unique set of initial data for the perturba-
tions. This criterion can be understood in terms of a
variational problem for the data (29). The coefficients
Dk and Ck are selected so that the time variation of the
power spectrum associated with the 2-point function gets
minimized on an appropriate interval. In fact, this criterion,
when applied to a massive (or massless) scalar field in
Minkowski spacetime, or to a massless scalar field in
the cosmological chart of de Sitter spacetime, picks out
the Poincaré vacuum state, or the Bunch-Davies one,
respectively. For de Sitter spacetime, hence, the criterion
is equivalent to de Sitter invariance plus the Hadamard
condition.
In more detail, let us consider the 2-point function of the

tensor perturbations at the end of inflation. Its power
spectrum (obtained from its Fourier transform) is

PT ðkÞ ¼
32k3

π

jμkj2
a2

				
η¼ηend

; ð40Þ

where we recall that a ¼ v1=3 is the scale factor (see, for
instance, Refs. [3,49]). The criterion to select the so-called
nonoscillating vacuum is based on a specific choice of the
functions Dk and Ck that determine the initial data of each
mode solution μk. The choice is such that the oscillations in
the power spectrum during the evolution, oscillations that
are often naively attributed to particle creation, are mini-
mized in a given time interval: in the present situation, the
interval from the bounce to the instant at which ϕ0 ¼ 0.
In this way, the criterion selects the initial conditions that
minimize the temporal variation of jμkj2 in the studied
period of time. In order to determine these initial con-
ditions, we define the quantity

Z
ηf

ηi

				
dðjμkj2Þ

dη̄

				dη̄ ð41Þ

for each mode, where ηf is a final time. This integral
depends on the initial conditions and the dynamical
equations through the mode solution μk, as well as on
the considered interval of integration ðηi; ηfÞ (obviously,
this implies a nonlocal dependence). To find out the desired
values of Dk and Ck, we vary them in order to minimize
(41). Analytic calculations are possible in some specific
scenarios. For instance, the Appendix of Ref. [22] contains
a detailed computation for the case of a massless scalar field
in a de Sitter cosmological spacetime. It turns out that, in
that case, the set of initial data that minimizes the integral is
unique and reproduces the Bunch-Davies vacuum provided
that the (conformal) time interval under consideration starts
at minus infinity. In that reference, initial data were also
determined such that they minimize the temporal oscilla-
tions of the power spectrum for the scalar perturbations in
LQC when the time interval goes from the bounce to the
moment in which the kinetic energy of the field vanishes.
This last computation was carried out using numerical
techniques, since no analytic tools were available. In this
sense, we would like to call the reader’s attention to
Ref. [48], where approximated analytic expressions have
been deduced for the perturbations in the dressed metric
approach. Those expressions might be useful as well in the
context discussed here, although they would have to be
extended first to the hybrid approach. Finally, let us
comment that the results of our computations show that
the nonoscillating vacuum determined with the above
numerical method does not depend significantly on the
selection of the bounce as the initial instant of time in the
interval of integration. This initial time can be changed in a
surrounding of the bounce without affecting much the form
of the nonoscillating vacuum state.

C. Numerical analysis of the initial conditions

In this subsection, we want to compare the initial
conditions corresponding to adiabatic states of different
orders and to the nonoscillating vacuum. In the following,
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we will take the bounce as initial Cauchy surface, i.e.,
ηi ¼ ηB. With this choice, it is easy to specify initial data for
the background variables, as we have already explained.
Besides, the main corrections of quantum gravity nature
happen in the bouncing regime. Therefore, we expect that
the perturbations at the end of inflation may keep memory
of the physical processes around the bounce.
Wewill carry out the comparison of the initial data in two

different manners. First, we will make a quantitative
analysis, comparing the functions Dk and Ck that param-
eterize the initial conditions and define the corresponding
annihilation and creation variables, restricting the study to
the set of wave numbers k that are of physical relevance in
cosmology. In Fig. 2 we plot these functions for a particular
choice of the mass m, and of the initial value of the
background scalar field, ϕB. Other choices have also been
considered, and the corresponding functions Dk and Ck

have been checked to show similar behaviors. It is worth
noticing that, for all such choices, one always obtains
smooth functions of k. Besides, all the considered pre-
scriptions lead to functions that agree in the sector of
ultraviolet modes, where Dk → k and Ck → 0. Notice that,
for the considered zeroth-order adiabatic state, Dk ¼ k and
Ck ¼ 0 exactly for all k. In addition, in the interval of wave
numbers k of interest, the function Ck turns out to be
negligible for all the analyzed prescriptions except for the
nonoscillating vacuum. In this latter case, Ck takes con-
siderably bigger values. Nonetheless, Ck → 0when k → ∞

in all cases, and for the nonoscillating vacuum this
convergence seems to be faster than for the other adiabatic
vacua.
The second procedure by which we will compare the

different initial conditions is by means of the antilinear
coefficients of the Bogoliubov transformations that relate
them. Let us start with the set of (orthonormal) complex

solutions determined by some given initial data. We will

call fμðrÞk gk∈R this reference set of solutions, and denote the
considered initial data as

fðμðrÞk;0; μ
0ðrÞ
k;0 Þgk∈R: ð42Þ

Any other (new) set of complex solutions fμðnÞk gk∈R,
selected by the initial data

fðμðnÞk;0 ; μ
0ðnÞ
k;0 Þgk∈R; ð43Þ

is related to the previous one by a Bogoliubov trans-
formation:

μ
ðnÞ
k ¼ αkμ

ðrÞ
k þ βkμ

ðrÞ�
k ; jαkj2 − jβkj2 ¼ 1;

∀ k ∈ R: ð44Þ

The linear and antilinear coefficients are determined by the
initial conditions respectively as

αk ¼ −i½ðμ0ðrÞk;0 Þ�μ
ðnÞ
k;0 − μ

ðrÞ�
k;0 μ

0ðnÞ
k;0 �;

βk ¼ i½μ0ðrÞk;0 μ
ðnÞ
k;0 − μ

ðrÞ
k;0μ

0ðnÞ
k;0 �: ð45Þ

Recall that the prime stands for the derivative with respect
to the conformal time. The usual physical interpretation of
the antilinear coefficients of the Bogoliubov transformation
is that the square of their absolute value, jβkj2, represents
the number of particles in a mode k⃗ (with wave number
equal to k) that contains the vacuum state characterized by

the solutions fμðnÞk g, as seen in the quantum representation
defined by the original vacuum.

FIG. 2. Comparison between different vacuum prescriptions: functions that determine the initial conditions of the tensor field, for

ϕB ¼ 0.97 andm ¼ 1.20 × 10−6. Left panel: functionDk. Note thatDkðWð0Þ
k Þ ¼ k ¼ DkðWð0Þ

k Þ. Right panel: function Ck. Here, dashed

lines indicate negative values of Ck. We note that, for the zeroth-order adiabatic initial conditions, CkðWð0Þ
k Þ ¼ 0 ¼ CkðWð0Þ

k Þ.
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As we have commented, for adiabatic initial data of order

n, the functions W
ðnÞ
k and W

ðnÞ
k (as well as any other

function of order n) have the same asymptotic behavior up
to terms that areOðk−1−nÞ. If we consider an adiabatic state
of order n as the vacuum of reference, then it is not difficult
to realize that the antilinear coefficients jβkj corresponding
to any other different adiabatic state of order ~n behave for
large k as k−2−m, wherem ¼ minðn; ~nÞ is the minimum of
the two adiabatic orders. In other words, the decay of jβkj
for large k is completely determined by the adiabatic state
of lower order. In Fig. 3 we represent the absolute value of
the antilinear Bogoliubov coefficients (multiplied by k3=2)
obtained with different sets of initial data, providing both
the reference vacuum and the final state, with labels (r) and
(n), respectively. In the right panel, one can see that the
coefficients have the same asymptotic decay for the non-
oscillating vacuum state as in the case of the fourth-order
adiabatic vacua considered in our discussion, taking one of
the latter as reference vacuum. We have also generated
adiabatic initial data up to eighth order and compared them
numerically with the nonoscillating vacuum. Once more,
both sets of initial data happen to lead to Bogoliubov
coefficients with the same asymptotic behavior. However,
since we are not providing analytic expressions for such
adiabatic vacua of sixth and eighth order in this article, we
have preferred not to display those numerical results.
In conclusion, our numerical analysis suggests that the

nonoscillating vacuum behaves like a high-order adiabatic
state at least up to eighth order and perhaps up to an even
higher order. If this is actually the case, our prescription
for the selection of initial data corresponding to the non-
oscillating vacuum in fact picks out a state that is
tantamount to a high-order adiabatic vacuum, although
by means of a procedure that overcomes the potential
problems of ill-definiteness that one finds in the usual
constructions of adiabatic states.

VI. COMPARISON WITH OBSERVATIONS

A. Preliminaries

We will now use the prescriptions that we have proposed
above for the choice of vacuum of the perturbations
(keeping in mind that other interesting choices do exist)
and extract predictions about cosmological observables in
the hybrid quantization approach, comparing them with
observations. In this section, we will derive the power
spectrum of the tensor perturbations, PT , and compute its
spectral index, nt, as a function of k. Besides, recalling
previous results of Ref. [22] for scalar perturbations, we
will calculate the tensor-to-scalar ratio, r ¼ PT =PR. Here,
PR denotes the comoving curvature primordial power
spectrum. Finally, we will study possible deviations with
respect to the standard results, deduced for perturbations in
the Bunch-Davies state at the onset of inflation, paying
special attention to the slow-roll consistency relations.
Different strategies can be followed in order to compute

these cosmological observables. One possibility, numeri-
cally accurate but computationally expensive, is to evolve
the set of tensor modes from the bounce to the end of
inflation. This gives the exact value of the power spectrum,
up to numerical errors. Alternatively, one can employ the
standard (slow-roll) single-field inflation formulation. In
this case, although one does not need to evolve the tensor
modes, resulting in a procedure which is numerically more
efficient, one must take into account that the approxima-
tions that are implicit in the adopted formulation reduce the
precision at the end of the day.
Let us describe succinctly the kind of computations that

are typical in standard (slow-roll) single-field inflation,
before we derive the power spectrum of the tensor
perturbations for the different vacua under consideration.
In this way, we will be able to compare predictions obtained
in different ways, checking the robustness of our results.

FIG. 3. Comparison between different vacuum prescriptions for the initial data of the tensor perturbations, for ϕB ¼ 0.97 and
m ¼ 1.20 × 10−6: absolute value of the antilinear coefficients of the Bogoulibov transformation relating the vacuum state of reference,
(r), with another vacuum, (n). Left panel: comparison taking the nonoscillating (no) vacuum as the reference state.
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It is well known that, for modes that leave the Hubble
horizon during inflation in the slow-roll regime, the power
spectrum of the scalar and the tensor perturbations can be
approximated by the first-order slow-roll expressions [49]

P
ð0Þ
R
ðkÞ ¼ H2

�
πϵH�

; ð46Þ

and

P
ð0Þ
T
ðkÞ ¼ 16H2

�
π

; ð47Þ

whereH ¼ _a=a is the Hubble parameter and ϵH ¼ − _H=H2

is the first slow-roll parameter in the Hubble-flow func-
tions. The subscript � means that the time-dependent
variable is evaluated at η�, defined as the moment when
k ¼ aðη�ÞHðη�Þ, namely, when the studied mode crosses
the Hubble horizon. Besides, the dot stands here for the
derivative with respect to the proper time. By convention,
we will consider that the slow-roll regime starts when the
absolute values of the slow-roll parameters ϵH and ηH ¼
Ḧ=ð2 _HHÞ are both smaller than 10−2. The above expres-
sions give relatively good results in such a slow-roll regime.
But we must keep in mind that they are only first-order
slow-roll formulas. This means that they disregard con-
tributions of higher order in the slow-roll parameters. Those
contributions can actually be restored. In fact, together with
the power spectra provided by the previous expressions, in
this article we will consider more accurate formulas that
involve second-order corrections in the slow-roll parame-
ters. In doing so, we follow several strategies. The first one
consists in taking the second-order slow-roll expressions
and evaluate them at the time when the modes under
consideration exit the Hubble horizon (i.e., at the horizon
crossing). The second strategy for the computation of the
primordial power spectra is based on the previous evalu-
ation, but this time considering only a reference mode, and
introducing then a suitable extrapolation from this refer-
ence scale to other wave numbers k. We will employ two
different extrapolation functionals that are often used in the
literature and lead to suitable parameterizations of the
primordial power spectra of the scalar and the tensor
perturbations [2,50].
The first extrapolating expansion we will consider here

can be found in Ref. [50] (and the references therein). It
assumes the following parameterization for the power
spectrum of the scalar perturbations:

PRðk; krefÞ
P

ð0Þ
R
ðkrefÞ

¼ aR0 ðkrefÞ þ aR1 ðkrefÞ ln
�

k

kref

�

þ aR2 ðkrefÞ
2

ln2
�

k

kref

�
; ð48Þ

and the same form for the tensor power spectrum,
but replacing the ratio on the left-hand side with

PT ðk; krefÞ=Pð0Þ
T
ðkrefÞ, and the coefficients aRi with other

coefficients aTi (i ¼ 0, 1, and 2). Both collections of co-
efficients are functions of time, and the notationaRi ðkrefÞ and
aTi ðkrefÞ indicates that they must be evaluated at the instant
when the mode kref exits the horizon. In the approximation
that wewill consider here, these coefficients are truncated at
second order in the slow-roll parameters expansion. For
explicit expressions of all these coefficients in terms of
Hubble-flow functions, see Eqs. (2.18)–(2.25) of Ref. [50].
The wave number kref is an arbitrary reference scale that
must exit the Hubble horizon during the slow-roll regime.
Note that each of the expressions PRðk; krefÞ and
PT ðk; krefÞ, for the power spectrum of the scalar and the
tensor perturbations respectively, is a parabola in the
logarithm of k. We expect that different choices of kref will
yield slightly different power spectra. On the other hand, if
one is not extrapolating, but instead tracking the exit of all
the modes of interest, the second-order slow-roll formulas
reduce simply to

P
ð2Þ
R ðkÞ ¼ ðaR0 Þ�P

ð0Þ
R ðkÞ ð49Þ

and

P
ð2Þ
T
ðkÞ ¼ ðaT0 Þ�P

ð0Þ
T
ðkÞ: ð50Þ

Again, the asterisk stands for the evaluation of the time-
dependent coefficients aR0 and aT0 (truncated at second
order) when the mode k crosses the horizon during slow
roll.
The second and last strategy that we will consider in this

article follows the very same idea, but adopts a different
expansion of the power spectra, namely, the one used by the
Planck Collaboration in Ref. [2]. In this case the expansion
is given by

PPl
Rðk; krefÞ ¼ AsðkrefÞ

�
k

kref

�
nsðkrefÞ−1þ1

2
lnð k

kref
Þ dns
d ln kðkrefÞ

; ð51Þ

and

PPl
T
ðk; krefÞ ¼ AtðkrefÞ

�
k

kref

�
ntðkrefÞþ1

2
lnð k

kref
Þ dnt
d ln kðkrefÞ

: ð52Þ

These expressions can be found in Eqs. (5) and (6) of
Ref. [2]. The spectral indices ns and nt, and their derivatives
(runnings) dns=d ln k and dnt=d ln k, are polynomials of
second order in the Hubble-flow functions. As it happens
with the coefficients As and At, they depend on the
reference mode kref . Their explicit expressions are given
in Eqs. (8)–(11) of Ref. [2].
In Fig. 4 we show a generic example of the power spectra

of the scalar and the tensor perturbations obtained using the
different strategies that we have mentioned above. As we
see, all computations are in good agreement for scales that
exit the Hubble horizon well into the slow-roll regime,
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although the first-order formulas (46) and (47) are not as
accurate as the second-order ones, with relative discrep-
ancies of about 0.5%. For instance, the second-order
formulas give slightly more power in the scalar spectrum
and slightly less power in the tensor case. Therefore, the
value of the tensor-to-scalar ratio obtained with the first-
order formulas is slightly bigger than the actual value,
increase which, in this particular model, goes against the
observational bounds on this parameter. Moreover, this
approximation is the source of the small discrepancies that
were already discussed in Ref. [22] for the scalar pertur-
bations. With this panorama, we can be confident that our
numerical calculations are robust and provide accurate
estimations of the power spectrum of the perturbations.

B. Primordial power spectrum of the tensor modes

We will now focus our attention on the primordial power
spectrum of the tensor modes that follows from the hybrid
quantization approach adopted in our discussion. For these
tensor modes, we will compare the numerical results,
obtained evolving the perturbations from the bounce to
the end of inflation, with the power spectra computed by
using the second-order slow-roll formulas in which one
either tracks the exit of all the relevant modes [given in
expressions (49) and (50)], or employs the expansion
around a reference scale [given in Eqs. (48), (51), and
(52)]. In addition, we will consider all the different
prescriptions that we detailed above for the choice of
initial state of the tensor perturbations at the bounce. The
same computations were carried out for the scalar pertur-
bations in Ref. [22] and will not be repeated here.
In the left upper panel of Fig. 5, we plot the power

spectra obtained either with nonoscillating initial condi-
tions, denoted by Pno

T
, with the slow-roll formula (50), or

with the extrapolation functional (52). They all agree very

well for modes that cross the Hubble horizon within the
slow-roll regime. Nevertheless, those modes that exit the
Hubble horizon before the slow-roll phase, have a power
spectrum with significantly less power in the case of the
nonoscillating vacuum than when it is estimated using the
extrapolation (52). In fact, this power spectrum displays
two regions with different behaviors (with respect to the
slow-roll formula), as it is known that happens as well for
the scalar perturbations [22]: (i) small oscillations for
2.5 × 10−3⪅k⪅10−2, with a moderate enhancement and
(ii) power suppression for k⪅2.5 × 10−3, that becomes
stronger as k decreases. This strong suppression for large
scales is very similar (maybe not surprisingly) to the one
found in scenarios where the slow-roll regime is preceded
by a kinetically dominated era [51] (as it is also the case
studied here). In any case, we expect the presence of
genuine modifications in the spectrum, originated in the
earlier phase in which the LQC corrections dominate.
The primordial power spectra resulting from adiabatic

initial conditions are displayed in the rest of panels of
Fig. 5. They have been computed starting with the power
spectrum of the nonoscillating vacuum, by taking into
account the Bogoliubov transformation that relates this
vacuum with the adiabatic ones. The corresponding pri-
mordial power spectrum is given by

PT ðkÞ ¼ ½1þ 2jβkj2 þ 2jαkjjβkj cosðφα
k − φ

β
k þ 2φ

ðnoÞ
k Þ�

× Pno
T
ðkÞ; ð53Þ

where we have used αk ¼ jαkjeiφ
α
k , βk ¼ jβkjeiφ

β

k , and

μ
ðnoÞ
k ¼ jμðnoÞk jeiφðnoÞ

k . Since the strong oscillations are pro-
duced by the term containing the cosine, we have also
plotted the primordial power spectrum obtained by setting
this term equal to zero. This power spectrum, that we have
called P̄T , gives a good approximation to the result of

FIG. 4. Comparison between power spectra calculated with different strategies in the slow-roll regime. Here, ϕB ¼ 0.97 and
m ¼ 1.20 × 10−6. A dashed line indicates modes that exit the Hubble horizon in an inflationary phase but not in slow-roll regime. Left
panel: slow-roll power spectra for the scalar perturbations. Right panel: slow-roll power spectra for the tensor perturbations.
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averaging the highly oscillatory spectrum in small bins in k,
and also in small bins in ln k for k⪆10−2. For the primordial
power spectra of adiabatic states, we can distinguish three
regions with different behavior. In the first one, formed by
large wave numbers k, the behavior is similar to that of the

slow-roll formula, and consequently similar to the non-
oscillating spectrum. The second region covers the interval
10−3⪅k⪅4. Here we observe high oscillations. This region
is usually interpreted as governed by particle production
processes, owing to the fact that the corresponding modes

FIG. 5. Comparison between primordial power spectra obtained with different sets of solutions for the perturbations. Here, ϕB ¼ 0.97
and m ¼ 1.20 × 10−6.
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exit and reenter the Hubble horizon in the pre-inflationary
regime. Finally, in the third region, which runs over

k⪅10−3, one gets a suppression of power for Wð0Þ
k , Wð2Þ

k ,

W
ð2Þ
k , and W

ð4Þ
k , but a large and approximately constant

power for W
ð4Þ
k . For all of them, the existence of big

oscillations produce in average a large enhancement in the
power spectrum that is not compatible with present
observations, unless the involved scales are not currently
observable in the CMB. We have checked numerically that
the presence of these big oscillations and the associated
enhancement of power for the adiabatic states are robust
results, independent of the choice of the bounce as the
initial time surface. Namely, the same kind of qualitative
results are obtained if one changes the instant where the
initial conditions that determine the adiabatic vacuum are
imposed, moving this initial instant away from the bounce,
as far as it is not chosen very close to the onset of inflation.
For these reasons, and owing to the fact that adiabatic
vacuum states have already been studied within LQC in
several references (see for instance [12,45,52]), in this work
we will mostly concentrate our attention on the non-
oscillating vacuum.
The Planck Collaboration has not been able to detect

primordial tensor perturbations, e.g., by carrying out
accurate measurements of the B-modes polarization.
However, it has been possible to provide bounds on the
tensor-to-scalar ratio

r ¼ PT

PR

: ð54Þ

Here, we have obviated the k-dependence of the different
involved quantities. The mentioned bounds, which corre-
spond to a comoving scale of 0.002 Mpc−1, are given by
r0.002 < 0.10 (95% CL, Planck TTþ lowP) and r0.002 <
0.11 (95% CL, Planck TTþ lowPþ lensing).7 To derive
these bounds, the Planck Collaboration mostly assumes the
validity of the first-order slow-roll consistency relation
r ¼ −8nt, although they also use the second-order relation
nt ¼ −rð2 − r=8 − nsÞ=8 when they consider the possibil-
ity of a running.
For primordial power spectra computed numerically,

we have looked at the spectral index for the tensor
perturbations locally, defined as nt ¼ d lnPT =d ln k.
Nonetheless, for scales in which the power spectrum
oscillates rapidly, it seems much more natural to use the
averaged spectrum in order to compute the tensor-to-scalar
ratio and the spectral index. This ratio will be called r̄. In
Fig. 6 we show the tensor-to-scalar ratios for the non-
oscillating vacuum and the two fourth-order adiabatic

vacua considered in our discussion, along with the relative
difference between r and −8nt, that immediate tells us the
sector of wave numbers k where the consistency relation is
violated. Several comments are in order. First, for the
inflationary model and the parameters considered here, the
consistency relation is not satisfied exactly even for scales
that exit the Hubble horizon during the slow-roll regime.
For those scales, the value of −8nt, with nt obtained by
numerical differentiation, turns out to be about 2% higher
than the actual value of the tensor-to-scalar ratio. This
relative discrepancy can be reduced to 1% for large wave
numbers k when the power spectra are computed using the
expressions (51) and (52). Second, the consistency relation
is violated and does not even give approximate results at
scales around or smaller than the one where the strong
oscillations start in the power spectrum. For these scales
with oscillations, as we have already discussed, there is in
average an increase in power, both for the scalar and the
tensor perturbations. From Fig. 6, it is clear that this
enhancement is the same for both kinds of perturbations,
given that the tensor-to-scalar ratio is approximately the
same as the one calculated with the second-order slow-roll
formulas. Nonetheless, such enhancement modifies sig-
nificantly the value of the spectral index, making it more
negative. A final comment concerns the nonoscillating
vacuum. In this case, the consistency relation gives a fairly
good approximation to the tensor-to-scalar ratio for scales
exiting the horizon during slow roll; however, the relation
does not hold for scales that show a strong suppression. In
fact, for these latter scales, the tensor-to-scalar ratio
depends significantly on the phases at which the tensor
perturbations and the scalar ones get frozen at the horizon
crossing. For the parameters explored in this particular
inflationary model, we always obtain a larger tensor-to-
scalar ratio in this region of large scales.

C. CMB polarization: TT, TE, EE, and BB

correlation functions

We will now compare the predictions obtained with our
hybrid quantization approach in the case of the non-
oscillating vacuum with observations of the Planck
Collaboration. Actually, in order to do this, we need first
to perform a scale matching. In our numerical simulations,
we have arbitrarily fixed the volume at the bounce as
vB ¼ 1. Nevertheless, for the observations registered by the
Planck Collaboration, the convention consists in fixing
the scale factor today by setting vo ¼ 1 (the subindex o
denotes evaluation at present), as it is usually done in the
cosmology literature. Therefore, one must provide a cor-
respondence between the comoving scales k and the
physical scales of the observations. With this aim, we will
follow this procedure: we will take the value of the power
amplitude As observed by Planck at the pivot mode
k� ¼ 0.05 Mpc−1, find the corresponding scale k⋆ at which
our theoretical value of the primordial power spectrum

7CL stands for confidence level. Each bound is based on a
different set of observations which are described in the legend
inside the parentheses, and that are explained in Ref. [2].
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coincides with As, and identify this latter scale with k�.
Namely, we will adjust the scale so that Pno

R ðk⋆Þ ¼ As. It is
worth recalling that the amplitude of the power spectrum
given by the Planck Collaboration is inferred from the
observational data by adopting a parameterization of the
form (51), motivated by the slow-roll approximation. Since
the primordial power spectra studied here are not monoto-
nous functions of k in the intervals under consideration, it
might happen that there exists more than one scale that
satisfies our matching condition. Nonetheless, the power
spectra are in fact monotonous in the region of scales that
are well inside the slow-roll regime at the horizon crossing.
So, we will consider only those scales to perform the scale
matching, choosing in this way k⋆ as a mode that exits the
horizon definitively in the slow-roll phase. The resulting

value of the pivot scale k⋆ will depend both on the mass m
of the scalar field and on the value ϕB of its homogeneous
mode at the bounce.
We will compare our results with the best-fit curve

provided by the Planck Collaboration [1] (which is given
for the TTþ lowP data). The corresponding scale of
reference used by the Planck mission is k�¼0.05Mpc−1,
and its amplitude is lnð1010AsÞ ¼ 3.089� 0.036ð68%CLÞ
[2]. As an additional constraint, we must check that the
obtained pivot scale is indeed a plausible scale, observed
nowadays in the CMB. This imposes a condition in the
number of e-folds N⋆ that took place from the exit of the
pivot scale beyond the Hubble horizon until the end of
inflation. Explicitly, N⋆ ¼ lnðaend=a⋆Þ, where a⋆ and aend
are the values of the scale factor at the time when the pivot

FIG. 6. Comparison between different vacuum prescriptions: tensor-to-scalar ratio and validity of the consistency relation r ¼ −8nt.
In the two upper panels, we show the tensor-to-scalar ratio for the nonoscillating vacuum and for the two fourth-order adiabatic vacua
considered in the text. The ratio for these adiabatic vacua has been computed both from the full power spectrum and from its averaged

version. Since it turns out that r̄ðWð4Þ
k Þ ≈ r̄ðWð4Þ

k Þ, we display explicitly only the former of these ratios. In the lowest panel, we plot the

quantity jrþ 8ntj=jr − 8ntj. Dashed (solid) lines indicate negative (positive) values of rþ 8nt. For both W
ð4Þ
k and W

ð4Þ
k , we plot the

results using the averaged power spectra. Here, we have taken ϕB ¼ 0.97 and m ¼ 1.20 × 10−6.
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scale crossed the horizon and when inflation ended,
respectively. Taking into account the bounds given in
Ref. [53] and that we are considering the pivot scale k�
(and not the horizon scale at present, k0 ¼ a0H0≈k�=220),
we have checked that 65 > N⋆ > 45. Let us remark,
nevertheless, that this range of values depends considerably
on the behavior and duration of the reheating phase, as well
as on the transition to it from the inflationary phase (see
Refs. [50,54] for a better treatment of this reheating phase).
Table I gives the corresponding value of the pivot scale that
results from our scale-matching method for different
choices of the homogeneous initial conditions. There, we
also list the value of several background quantities at the
time of the horizon crossing, as well as the (local) spectral
index for the pivot scale.
Let us also comment briefly on the issue of the weak

gravitational lensing corrections. This phenomenon affects
the trajectory of the photons in the CMB from the last
scattering surface until today. This lensing is caused by the
gravitational potential of large scale structures [55], and
therefore it is ultimately determined by the power spectrum
of the cosmological perturbations. In this work, we follow
the method of Ref. [56], which gives accurate results for all

scales, provided that the non-Gaussianities that are due to
nonlinear effects are not important. In absence of lensing,
the only source of power in the BB-correlation function are
the tensor perturbations [57]. However, the gravitational
lensing produces a mixing between E and B polarizations,
mixing that is not negligible at small scales.
To account for this lensing, we have computed again (see

also Ref. [22]) the spectrum of the temperature anisotropies
of the CMB, but this time including also tensor perturba-
tions in our computations, and assuming that the perturba-
tions are in the nonoscillating vacuum at the bounce. In
these computations, we have employed the CLASS code
[58]. We have considered the base ΛCDM model with the
best-fit values of the baryon density, cold dark matter
density, angular size of the sound horizon, and Thompson
scattering optical depth for the TTþ lowP data. These best-
fit values are given in the first column of Table 4 in Ref. [1].
The results are summarized in Fig. 7. The addition of tensor
perturbations produces an increase of power at low multi-
pole moments l. However, if the modes that cross the
Hubble horizon today are within the suppression region that
characterizes the nonoscillating vacuum state, this enhance-
ment in the spectrum turns out to affect modes with l ∼ 20.

TABLE I. For each pair of parameters ðϕB; mÞ, this table provides the corresponding pivot scale, the number of e-
folds until the end of inflation, the (local) spectral index, the value of the scalar field, the value of the potential, and
the Hubble parameter. All background quantities are evaluated at the time when the pivot scale crosses the Hubble
horizon.

ϕB mð×10−6Þ k⋆ N⋆ ns ϕ⋆ V⋆ð×10−12Þ H⋆ð×10−6Þ
0.950 1.180 0.03013 61.0226 0.96694 3.10229 6.70038 7.50248
0.960 1.180 0.04415 61.0228 0.96704 3.10230 6.70041 7.50250
0.970 1.180 0.06486 61.0220 0.96704 3.10228 6.70031 7.50245
0.980 1.180 0.09528 61.0224 0.96699 3.10229 6.70035 7.50248
0.990 1.180 0.13996 61.0238 0.96701 3.10232 6.70052 7.50256

0.950 1.190 0.04786 60.5087 0.96681 3.08912 6.75668 7.53402
0.960 1.190 0.07015 60.5087 0.96672 3.08912 6.75669 7.53403
0.970 1.190 0.10280 60.5100 0.96673 3.08915 6.75683 7.53411
0.980 1.190 0.15101 60.5102 0.96673 3.08916 6.75685 7.53412
0.990 1.190 0.22233 60.5093 0.96673 3.08913 6.75674 7.53406

0.950 1.200 0.07534 60.0045 0.96646 3.07614 6.81309 7.56550
0.960 1.200 0.11041 60.0044 0.96646 3.07614 6.81308 7.56549
0.970 1.200 0.16218 60.0032 0.96644 3.07610 6.81294 7.56542
0.980 1.200 0.23823 60.0031 0.96644 3.07610 6.81294 7.56542
0.990 1.200 0.34995 60.0044 0.96645 3.07613 6.81308 7.56549

0.950 1.210 0.11776 59.5075 0.96616 3.06329 6.86938 7.59678
0.960 1.210 0.17258 59.5073 0.96617 3.06329 6.86935 7.59676
0.970 1.210 0.25293 59.5083 0.96617 3.06331 6.86946 7.59682
0.980 1.210 0.37154 59.5080 0.96617 3.06331 6.86944 7.59681
0.990 1.210 0.54702 59.5068 0.96616 3.06327 6.86930 7.59673

0.950 1.220 0.18281 59.0180 0.96589 3.05058 6.92557 7.62787
0.960 1.220 0.26730 59.0199 0.96588 3.05063 6.92580 7.62800
0.970 1.220 0.39264 59.0184 0.96588 3.05059 6.92562 7.62790
0.980 1.220 0.57677 59.0180 0.96588 3.05059 6.92558 7.62788
0.990 1.220 0.84723 59.0190 0.96688 3.05061 6.92568 7.62793
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The enhancement is very small, in any case. Besides,
although we have not carried out a rigorous statistical
analysis, it seems that the calculations that include lensing
are in better agreement with the observational data, as well
as with the best fit of the Planck Collaboration. The lensing
effect modifies the spectrum of the anisotropies mainly at
large multipole moments. Roughly speaking, its contribu-
tion reduces the amplitude of the oscillations of the
baryonic resonances.
We have also computed the spectrum of other correlation

functions and compared them with observational data. For
instance, in Fig. 8 we display the EE-correlation function.
We see that the suppression of the primordial power
spectrum reduces the amplitude of this correlation function
at very low multipole moments l, in comparison with
the behavior of the Planck best fit. The lensing, as in the

TT-correlation function, gives a better fit to the observa-
tions at large l.
In addition, in Fig. 9, we plot the angular power spectrum

for the TE-cross-correlation function. Again, the behavior
of the best fit provided by the Planck Collaboration at low
multipole moments differs from the predictions obtained
here for the nonoscillating vacuum when the suppression of
the primordial power spectrum becomes relevant in the
modes that cross the Hubble horizon today. We also notice
that, at large l, the lensing plays again an important
role in improving the agreement between predictions and
observations.
Finally, we have compared the BB-correlation function

of the nonoscillating vacuum with the theoretical value
predicted for it by the Planck Collaboration. This com-
parison can be found in Fig. 10. We observe a good

FIG. 7. TT angular power spectrum provided by Planck best fit and spectra computed for the nonoscillating vacuum with different
values of the scalar field at the bounce. Left panel: m ¼ 1.20 × 10−6. Right panel: m ¼ 1.18 × 10−6. The corresponding cosmological
parameters determined by Planck best fit for TTþ lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

FIG. 8. EE angular power spectrum provided by Planck best fit and spectra computed for the nonoscillating vacuum with different
values of the scalar field at the bounce. Left panel: m ¼ 1.20 × 10−6. Right panel: m ¼ 1.18 × 10−6. The corresponding cosmological
parameters determined by Planck best fit for TTþ lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.
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agreement between the spectra at large multipole moments
l, but important differences arise at low l. One of the
reasons is the fact that the predictions reached by Planck
ignore tensor perturbations in the calculations. For large l,
the main contribution to the power spectrum comes from
weak gravitational lensing, which is known to be respon-
sible of the large amplitude in that region (see, for instance,
Ref. [56]). However, lensing does not contribute signifi-
cantly to the spectrum at low l. Indeed, the BICEP
Collaboration [59] studied some few years ago the
BB-correlation function in the interval 30⪅l⪅150. This
interval is actually in the region of multipole moments that
is not considerably contaminated by lensing. Consequently,
the presence of power in this region, had it not been
explained eventually by other sources, would have been a
strong evidence of the presence of primordial tensor modes
in the CMB.

In summary, if the suppression of power in the
primordial power spectrum of the nonoscillating vacuum
is relevant for modes that are in the large scale sector
today, such effect would translate into a decrease of
power in the correlation functions at small multipole
moments. This is the main characteristic of the non-
oscillating vacuum within our hybrid approach: the
suppression of power at low l in the studied correlation
functions of the CMB.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have discussed possible physical
consequences of the hybrid quantization approach in
LQC [13,22–25,27] on the behavior of cosmological
perturbations in an inflationary universe. More specifically,
we have considered a flat FRW spacetime coupled to a

FIG. 10. BB angular power spectrum provided by Planck best fit and spectra computed for the nonoscillating vacuum with different
values of the scalar field at the bounce. Left panel: m ¼ 1.20 × 10−6. Right panel: m ¼ 1.18 × 10−6. The corresponding cosmological
parameters determined by Planck best fit for TTþ lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.

FIG. 9. TE angular power spectrum provided by Planck best fit and spectra computed for the nonoscillating vacuum with different
values of the scalar field at the bounce. Left panel: m ¼ 1.20 × 10−6. Right panel: m ¼ 1.18 × 10−6. The corresponding cosmological
parameters determined by Planck best fit for TTþ lowP data are given in Ref. [2]. Both panels incorporate lensing corrections.
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massive scalar field. In this system, scalar and tensor
perturbations have been introduced in order to account
for the small inhomogeneities that originated the large
scale structures of our Universe. We have mostly focused
on the analysis of tensor perturbations, because the scalar
ones were already studied and (at least partially) com-
pared with observations in Ref. [22]. We emphasize that,
in both cases (i.e., for scalar and tensor perturbations),
the backreaction has been ignored in the discussion,
treating the perturbations as test fields. Besides, we have
considered that the wave function of the system can be
factorized as in Eq. (24), namely, separating the depend-
ence on the background geometry from that on the
perturbations. This kind of Born-Oppenheimer ansatz
allows us to deal with the evolution of the FRW
geometry independently of the inhomogeneities. In addi-
tion, we have concentrated our analysis on quantum
states of the background geometry that are sufficiently
and suitably peaked, so that the effective dynamics of
LQC is valid to describe the evolution of the peak
trajectory and any relevant expectation value associated
with it. We have also admitted the reasonable hypothesis
that the quantum dependence on the perturbations, with a
Hamiltonian that is quadratic, has a direct effective
counterpart in which creation and annihilation operators
are replaced with classical variables. Finally, we have
followed a standard treatment of those perturbations
subject to such an effective dynamics.
In this way, we have deduced effective equations of

motion for the perturbations (see Ref. [27]). They take
the form of an infinite collection of decoupled ordinary
differential equations with a time-dependent mass. These
equations can be easily integrated provided that suitable
initial data are given. In Fig. 1, we compare the time-
dependent masses of the scalar and the tensor perturba-
tions in the hybrid and the dressed metric [45]
approaches (in both cases, once backreaction is ignored
and the effective description is accepted). These time-
dependent masses agree with their values in general
relativity away from the bounce. Moreover, the values
of the mass for the scalar and the tensor perturbations
essentially coincide in each of the two approaches
separately, at least for background solutions that are
kinetically dominated at the bounce. But, in general,
these values differ in the two approaches, especially in
regimes where the quantum corrections are important, as
it actually happens around the bounce, so that they can
even get opposite signs. In conclusion, although both
approaches provide effective equations for the perturba-
tions that are similar and share several qualitative aspects,
the way in which they incorporate quantum gravity
corrections in those equations leads to significant
differences.
Contrary to the typical situation in standard general

relativity, in LQC there seems to exist a privileged Cauchy

surface where initial data can be supplied: the quantum
bounce. Nevertheless, since quantum gravity corrections
are important at this bounce, it is not completely clear
which choice of initial data should be adopted for the
scalar and the tensor perturbations there. At least, it is
natural to assume that both types of perturbations start in
the same vacuum state. Actually, there exist several
prescriptions in the literature to determine such initial
data. For instance, adiabatic states seem an appealing
choice for very large wave numbers, because they are
approximate solutions with a convenient splitting between
positive and negative frequency contributions in the
ultraviolet sector, roughly speaking. However, the adia-
batic approximation breaks down for solutions corre-
sponding to large scale modes. These modes can be
subject to strong curvature effects during their evolution
and experience excitations that can produce an enhance-
ment in the power spectrum. In these circumstances, the
adiabatic approximation is not appropriate. In fact, this is
a common problem shared by the hybrid and the dressed
metric approaches for the treatment of cosmological
perturbations in LQC. With this motivation in mind, a
new vacuum was proposed for the perturbations in
Ref. [22]: the so-called nonoscillating vacuum state.
This state minimizes the particle creation along the
evolution, and in this sense can be regarded as the best
adapted to the background. In particular, this affects the
splitting between positive and negative frequency solu-
tions, even for some large scale modes (at least for those
that oscillate a sufficient number of times between the
bounce and the onset of inflation). For the scalar perturba-
tions, this vacuum has an associated power spectrum that
agrees with that of standard slow-roll inflation, even for
those scales that notice the largevalue of the curvature of the
spacetime in the quantum regime. Besides, it is remarkable
that this vacuum shows a suppression of power at large
scales (low multipole moments), in agreement with what is
apparently suggested by the present observations of the
anisotropies of the CMB.
In our study, we have investigated in detail the

evolution of the tensor perturbations in LQC for the
hybrid quantization approach (without backreaction and
within the effective approximation), assuming that their
initial state at the bounce is an adiabatic vacuum state of
zeroth, second, or fourth order. In addition, we have also
considered the possibility of a nonoscillating vacuum
state, as proposed in Ref. [22]. We have computed the
power spectrum of the tensor perturbations for all of
these vacua. In the case of the adiabatic states, we have
observed a strong particle production at scales that feel
the curvature of the background in the quantum regime.
One of the main conclusions is that, in LQC, the
existence of a bounce introduces an upper bound on
the possible enhancement of the power spectrum (by
particle creation), a fact which is in clear contrast with
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the situation found in general relativity when one
approaches the cosmological singularity. This seems a
robust prediction in LQC, valid for both the hybrid and
the dressed metric approaches. Another important result
of our study is a surprising property of the nonoscillating
vacuum: it behaves asymptotically as a high-order adia-
batic state. In the left panel of Fig. 3 we display the
absolute value of the antilinear coefficients βk (multiplied
by k3=2) of the Bogoliubov transformation between this
vacuum and several adiabatic states. We see that, the
higher the adiabatic order is, the faster the decay is for
large k. In the right panel, we observe a similar behavior
when we consider transformations between adiabatic
states. The rate of convergence is determined by the
adiabatic state of lower order. From our analysis, we
conclude that the nonoscillating vacuum belongs in fact
to the equivalence class of the adiabatic vacua, with the
same asymptotic behavior as an adiabatic state of at least
fourth order.
We have also computed the tensor-to-scalar ratio

derived from our hybrid quantization approach. With
the family of vacuum states that we have considered here,
and the results of Ref. [45], the ratio appears to be
constant, even at scales where the quantum gravity
corrections are important (provided that one gets rid of
the strong oscillations). This is our next important
conclusion: the tensor-to-scalar ratio seems approximately
constant in LQC, regardless of the initial state and the
adopted quantization approach, when one assumes that
the scalar and the tensor perturbations have the same
vacuum. One might have guessed this result, given our
assumption about the coincidence of the vacua and the
fact that the time-dependent masses of both the scalar and
the tensor perturbations are very similar everywhere (for
background spacetimes that are kinetically dominated at
the bounce). On the other hand, if one takes into account
the strong oscillations, the tensor-to-scalar ratio also
oscillates around a constant value. These oscillations
are caused by the difference between the phases of the
scalar and the tensor modes at the horizon crossing.
Besides, we observe that the consistency relation between
the tensor-to-scalar ratio and the tensor spectral index is
satisfied for sufficiently large values of k. However, the
relation is violated for adiabatic states that entail an
important enhancement of the power, in the region of
wave numbers k where this power increase occurs. Most
remarkably, nonetheless, the nonoscillating vacuum turns
out to be compatible with the consistency relation up to
very small wave numbers k.

Finally, we have computed the TT, EE, TE, and BB
correlation functions for the nonoscillating vacuum. For
this purpose, we have employed the CLASS code. We
have compared our predictions with the best fit of the
TTþ lowP data of the Planck Collaboration, assuming a
base ΛCDM model with value of the cosmological
parameters given in the first column of Table 4 in
Ref. [1]. To get a better fit of the spectrum, we have
introduced corrections caused by cosmological lensing.
These corrections introduce slight modifications of the
amplitude of the baryonic peaks, improving the fit at
small scales. In addition, the BB-correlation function is
considerably affected by these corrections at relatively
large multipole moments. Our numerical computations
indicate that a general property of the nonoscillating
vacuum is the suppression of power at low multipole
moments l (large scales), an effect that we have noticed
in all the studied correlation functions. Therefore, a
suitable choice of vacuum state, based on first principles,
might suffice to explain the plausible lack of power
suggested by present observations.
In summary, LQC provides a powerful formalism for the

study of cosmological perturbations in inflation that leads
to robust predictions, even though some phenomena
crucially depend on the choice of initial state for the
perturbations and on the concrete quantization approach.
Robust predictions of this type are the existence of a bound
on the particle production and the intrinsic similarities
between the dynamics of the scalar and the tensor pertur-
bations (at least for kinetically dominated bounces).
Furthermore, these predictions are in good agreement with
the available observations. In this way, LQC is able to
connect successfully the physics of the early Universe at the
Planck regime with the present observations, extending the
traditional formalism based in general relativity.
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