
Hybrid Low Bitrate Audio Coding Using Adaptive
Gain Shape Vector Quantization

Sanjeev Mehrotra, Wei-ge Chen, Kazuhito Koishida, Naveen Thumpudi

Microsoft Corporation
One Microsoft Way, Redmond, WA 98052

{sanjeevm,wchen,kazukoi,naveent}@microsoft.com

Abstract—Audio coding at low bitrates typically suffers from
artifacts caused by bandwidth truncation. In this paper we
present a novel scheme to code audio signals at low bitrates
which uses a traditional scalar quantization followed by entropy
coding to code some portions of the spectrum (typically the lower
portion). The other portions (typically the higher portions) of the
spectrum are coded at a low bitrate using an adaptive gain shape
vector quantizer where the codebook for vector quantization
is formed by unmodified or modified versions of the portions
of the spectrum which have already been coded. Fixed pre-
trained codebooks are also available for use in certain cases.
The use of such a scheme results in an audio codec which has
been shown to be among the best audio codecs available at low
bitrates. In addition, the decoder complexity of this audio codec
is significantly lower than any other codec of equal quality at
low bitrates.

I. INTRODUCTION

With increasing interest in direct delivery of music to
devices such as mobile phones and satellite radios over
bandwidth constrained networks such as wireless, there is an
increasing demand for better music quality at lower bitrates.
It is well known that most existing audio codecs such as
MPEG II - Layer 3 (MP3) and Advanced Audio Coding (AAC)
perform poorly at bitrates below 128kbps for 16-bit/sample,
44.1kHz, stereo music. There are simply not enough bits to
code the entire spectrum. Therefore the spectrum is typically
truncated resulting in a muffled sounding signal.

To fix the problem of bandwidth truncation, existing codecs
have been augmented with decoder side techniques which with
the aid of some side information, try to extrapolate the missing
high frequencies. One example of such a technique is the High-
Efficiency Advanced Audio Coding (HE-AAC) codec where
regular AAC is used to code a signal which has a lower
sampling rate (and thus lower bandwidth) than the original
signal. Then with the aid of small side information, the decoder
uses the spectral band replication technique (SBR) [1], [2] to
try to represent the missing high frequencies. Although the
quality of these alternatives is far superior to prior schemes,
it still suffers from synthetic sounds for some clips due to the
fact that the reconstructed high frequencies most likely will
not look similar to the original signal. It merely creates the
sensation of higher frequencies. Also, the decoder complexity
is very high which can be a big drain on battery life of
devices such as mobile phones. This is because the processing
happens in a different transform domain than the base coding

requiring the decoder to do an additional forward and inverse
transform. Techniques such as SBR do a full reconstruction to
time domain, followed by an analysis filterbank, then do the
processing in the subband domain, and then use a synthesis
filterbank to do the reconstruction.

Therefore, it is useful to find alternatives to existing audio
coding schemes which can more faithfully represent the audio
signal as well as provide a lower decoder complexity. To that
end we propose a hybrid scheme which utilizes an existing
codec to code some portions of the spectrum as the spectral
band replication technique does. However, instead of simply
using some small side information parameters to try and guess
the remaining portion of the spectrum at the decoder end, we
propose to use a low bitrate coding of this portion of the
spectrum using adaptive vector quantization.

Vector quantization (VQ) has also been proposed for use
in audio coding such as the TwinVQ work [3], [4], [5] that
is also part of the MPEG standard. However, existing vector
quantization approaches have difficulty in that the codebooks
are pre-trained and thus the coding quality is sometimes not
as good. In addition, the dimension of the vectors that can
be used is limited due to encoder complexity and memory
constraints.

In this paper, we propose a scheme which uses gain-shape
vector quantization (GSVQ) [6] to code a remaining portion
of the audio spectrum, where the codebook that is used is
adaptive and is dynamically formed from the portion of the
spectrum which has already been coded. The remainder of the
paper goes over our proposed scheme.

II. GAIN SHAPE VECTOR QUANTIZATION

A vector quantizer with an N element codebook C =
{c0, c1, . . . , cN−1} using the Euclidean distance as the distor-
tion measure maps vectors x to an index i using an encoder
i = arg minn ‖cn −x‖ and then reconstructs using a decoder
x̂ = ci. If the rate of the vector quantizer is low, then typically
the power of the codevectors will not match that in the original
vector. Sometimes, as in the case when using VQ for audio
coding to code the spectral coefficients, the energy of the
codevectors needs to be close to that of the original. One could
factor this into the distortion metric when designing the vector
quantizer. However, this only works if the vector x is always
going to be of the same magnitude which is usually not the
case.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

An alternative is to use GSVQ. GSVQ is a modified version
of vector quantization (VQ) where the gain (or energy) is
separated from the shape so that it can be more accurately
represented. For example, in x = ‖x‖ x

‖x‖ , the first term
s = ‖x‖ is the gain and the second term y = x/‖x‖ is a unit
norm vector. Now, the gain s can be quantized separately using
some number of bits so that the gain is accurately represented.
The shape y is a unit norm vector which can be coded using
a codebook with unit norm vectors.

III. AUDIO CODING USING GAIN SHAPE VECTOR

QUANTIZATION

Vector quantization is often used in audio coding but the
performance is usually on par or worse than codecs such as
AAC. At low rates, the performance of codecs using VQ is
often slightly worse than codecs such as HE-AAC. Coding
the entire spectrum using VQ requires the use of pre-trained
codebooks and thus the quality is not as good as it can be if
the codebooks were somehow adaptive. In addition, by coding
the entire spectrum using VQ can result in very high encoder
complexity [3], [4].

Here we propose a hybrid coding to code the spectrum
which utilizes a standard non-VQ based method to code some
portions of the spectrum and a VQ based low bitrate scheme
to code the remaining portions. By using a hybrid scheme,
we take advantage of the low bitrate coding capabilities of
VQ and avoid the disadvantages since we only use it to code
some of the frequencies and use adaptive codebooks instead
of fixed ones.

The VQ based coding takes only about 10% of the total
bitrate. Since typically some portion of the spectrum (such
as the higher portion) can be coded at a lower bitrate, we
avoid the need for a large codebook while still being able
to use large dimension vectors. By dynamically forming the
codebook, we also avoid the need for decoder memory to
actually store the codebooks. The codebook is not trained
using algorithms such as the Generalized Lloyd Algorithm
(GLA) [6], but rather simply formed from portions of the
spectrum already coded as will be explained in later sections.
This is similar to fractal coding used in image/video coding
and exploits the self-similarity present in the waveform.

The portion of the spectrum that is not being coded by the
traditional codec is split into vectors (or bands) of various sizes
as shown in figure 1, the sizes being determined by various
factors in the rate control and the frequency position of the
vector. In figure 1a, the typical case where the lower portion of
the spectrum is coded using a traditional codec is shown. The
vectors formed to code the higher portion are shown in the
figure. In figures 1b-c, some coefficients in the higher portion
of the spectrum are also coded using the traditional codec.
In these cases, the vector can be formed by taking just the
zero valued (uncoded) coefficients over this region, as in 1b,
or configuring the vectors so that this region does not overlap
with any of the vectors, as in 1c.

The gain of each of the vectors is quantized and then coded
using prediction followed by entropy (Huffman) coding. The

0 50 100 150 200 250
0

0.5

1

k
(a)

X[
k]

0 50 100 150 200 250
0

0.5

1

k
(b)

X[
k]

0 50 100 150 200 250
0

0.5

1

k
(c)

X[
k]

Fig. 1. Vector configuration for portion of spectrum coded using VQ.

shape (normalized) is quantized using a vector quantizer. The
codebook for this vector consists of modified (using linear
or non-linear transforms) or unmodified normalized vectors
taken from the portion of the spectrum which has already
been coded. This adaptive codebook design is meant to take
advantage of the similarity between various components of
the spectrum which is often present in audio signals due to
harmonic components. The codebook formation is very simple
and requires almost no computation at the decoder end. There
also exist codebooks formed from a fixed pre-trained spectrum
for vectors (typically noise-like vectors) which do not have a
good match in the adaptive codebooks. Decoder side noise
substitution can also be used for the shape if no good match
is found or if the bitrate is very low. We also allow the use of
two interleaved vector quantizers to be used for some vectors
which have differing tonal and noise characteristics which
cannot be accurately coded using a single vector.

The advantages of this algorithm over techniques such as
spectral band replication is that since we actually code the
spectrum, our reconstruction is a better representation and
thus does not have as much of a synthetic sound. The rate
used is slightly higher than the side information sent for
SBR but is still very low when compared to the total bitrate.
Since our coding of the higher spectral coefficients is in
the same transform domain as the base coding, and since
vector quantization decoder complexity is very low, our overall
complexity is significantly lower than that of SBR.

In the remainder of the paper, we will assume that the
portion of the spectrum being coded using a traditional audio
codec is the lower portion and the portion which is coded using
the adaptive GSVQ is the higher portion. However, this does
not necessarily need to be the case and arbitrary partitioning
between these two portions is possible as in figures 1b-c.

As shown in figure 2, the audio signal is first transformed
into the frequency domain using an overlapping transform
such as the modulated discrete cosine transform (MDCT). The
signal is divided into barks (or critical bands), each band is
weighted according to a weight derived from a psychoacous-
tic model, followed by a channel transform, then quantized
and entropy coded. The channel transform is an orthogonal
transform applied across the channels of the audio source and
is used to remove correlation across the channels. A simple
example of this for a stereo source is to code the sum and

2

MDCT
Bark

(Frequency/Channel)
Weighting

Channel
Transform Quantization Entropy

Coding

Inverse
Channel

Transform

Inverse
Quantization

Inverse Bark
(Frequency/Channel)

Weighting

Band (Vector)
Configuring for

Highband

Calculate
Gain for each

Vector

Calculate Codebook
Index (including
sign+exponent)

Entropy
Coding (Diff +

Huffman)

Create
Codebook

Entries

Fixed
Codebook

Gain
Quantization

Bitstream

Bitstream

Bitstream

Bitstream

Fig. 2. Encoder Diagram.

difference of the right and left channels. This algorithm is
used to code all frequency coefficients up to a certain point.
The exact location for this is based upon various factors in
the rate control, such as how many bits are available, and
upon the signal complexity. This determination is dynamic
and if the base coding is able to accurately code the signal
up to a high frequency, it will do so. The remainder of
the spectrum after this point is coded using adaptive GSVQ.
The GSVQ is applied to the spectral coefficients prior to the
channel transform which results in better quality than if done
afterwards.

In the following subsections, we explain how to form the
vectors and the adaptive codebook used to code them. We also
go over what parameters we send for the gain and the shape
and go over the case when a single block of coefficients needs
to be split into two vectors.

A. Vector Configuration

Let X[k] be the kth spectral coefficient after the time-to-
frequency transform such as the MDCT as shown in figure 2.
Let Ks be the starting frequency of the portion coded using
the GSVQ. Let Ke−1 be the ending frequency. The frequency
range of Ke − Ks spectral coefficients is divided into M
vectors (or bands). Let m = 0, 1, . . . ,M − 1 be the index
of the vector. Let ks[m] be the starting position of the mth
vector, and let ke[m] − 1 be the ending position of the mth
vector. Let L[m] = ke[m] − ks[m] be the length of the mth
vector. We assume that ke[m] = ks[m + 1] so that there are
no holes between the vectors. The mth vector is then given
by

xm =

⎡
⎢⎢⎢⎣

X[ks[m]]
X[ks[m] + 1]

...
X[ks[m] + L[m] − 1].

⎤
⎥⎥⎥⎦ (1)

The value for Ks is typically the first coefficient after
the ending position of the base coding. The base codes up
to a point at which the quality of the coded coefficients is
considered to be “good”. The definition of good can be a noise-
to-mask ratio (NMR) and can include other factors such as
spectral holes (large regions of non-zero spectral coefficients
being quantized to zero). Assume be−1 is the last coded spec-
tral coefficient in the base. Then, typically Ks = ks[0] = be so

that there is no spectral hole between the base and the portion
coded using gain shape vector quantization, but does not have
to be. The ending frequency, Ke = ke[M−1], is determined by
the desired bandwidth of the reconstructed signal. For 64kbps,
we can almost go up to full bandwidth (18-20kHz), so that the
entire spectrum is coded. Thus Ke is typically the block size
used in the time-to-frequency transform.

The value for M is determined by the current buffer full-
ness, bitrate, sampling rate, and transform block size. It is cho-
sen by the rate control so that the total number of bits used by
the GSVQ coding is within some desired range. The sizes of
the M vectors is chosen so that coefficients with similar gain
(or energy) or shape are in the same vector. A simple scheme is
also available which takes advantage of the fact that the energy
envelope of audio signals generally gets flatter with increasing
frequency and the fact that higher frequency coefficients need
less accurate representations of the actual values. Therefore,
we can simply use increasing vector sizes to tile the frequency
region to be coded. For example, one could approximately
make the sizes L,L, 2L, 2L, 4L, 4L, 4L, 4L, 8L, 8L, ..., where
L is chosen so that the entire frequency range is tiled. That
is, we keep doubling the vector size after some number of
vectors. A typical vector configuration can be as shown in
figure 1a with smaller vector sizes for the lower frequencies.

B. Gain Coding

The gain of the mth vector is a scaled version of the norm
of the vector (the root mean square (RMS) value) and can be
computed as

sm =

√√√√√ 1
L[m]

ks[m]+L[m]−1∑
k=ks[m]

X2[k]. (2)

The norm is not used since otherwise different sized vectors
with similar distribution would have different values. This is
because the norm is proportional to the length of the vector
and thus it would be harder to predict the gain across different
sized vectors. The RMS value on the other hand can be
predictable across different size vectors since it represents the
average value for a single coefficient.

The gain is quantized using a non-linear quantizer by
quantizing the gain in the log domain using a step size of Δ.
The gain of the vector is differentially coded by subtracting
the previous vector’s quantized gain in the log domain, as
im = round((log10(sm) − r̂m−1)/Δ), r̂m = imΔ + r̂m−1,
with r̂−1 = 0 so that the first vector m = 0 is not predicted.
The index im is sent in the bitstream for all vectors m. The
decoder reconstructs the scale factor as ŝm = 10r̂m .

C. Codebook Formation

To code the higher portion of the spectrum, the encoder first
reconstructs the lower portion to create an adaptive codebook.
This is done by first obtaining the quantized coefficients as
shown in figure 2. Each normalized vector ym = xm

sm
is coded

using vector quantization with either the adaptive codebooks
formed from the base spectrum or the codebooks formed from

3

a pre-trained random source spectrum. Since each vector is of a
different length and norm L[m] because of the normalization
we have used, the codebook being used for each of the M
vectors to be coded has to be different. Let there be Pa

adaptive codebooks to choose from and let Pf be the number
of fixed codebooks to choose from for each vector. Rather
than letting these codebooks be arbitrary, the Pa adaptive
codebooks are formed from a base codebook formed from the
spectral coefficients which are already coded. The Pf fixed
codebooks are formed from a single fixed pre-trained random
source and is used for noise-like portions of the signal which
are not represented well from the base spectral coefficients.

The codebook formation is very simple and consists of tak-
ing normalized portions of the spectrum that has already been
coded. The base codebook used for creating the Pa adaptive
codebooks consists of N normalized vectors taken from the
base spectral coefficients. Let cn be the nth codevector in the
base codebook used to code the mth vector, given by

cn =
dn

sc,n
, (3)

dn =

⎡
⎢⎢⎢⎣

X̃[ls[n]]
X̃[ls[n] + 1]

...
X̃[ls[n] + L[m] − 1]

⎤
⎥⎥⎥⎦ , (4)

sc,n =

√√√√√ 1
L[m]

ls[n]+L[m]−1∑
k=ls[n]

X̃2[k]. (5)

Now the norm of all the codevectors is also L[m] as is for
the vector being coded. X̃[k] are the reconstructed values of
X[k] since they have been coded using the base coding and
are different from the original values.

In determining the N codebook entries, we want to make
sure that there is maximum separation between the entries as
well as making sure that the position of the last coefficient in
the last entry in the codebook does not exceed the position of
the last coded spectral coefficient, be − 1. Therefore, we want
ls[N − 1] + L[m] − 1 ≤ be − 1. If ls[N − 1] = be − L[m] is
the starting position of the last codevector, then we will meet
this constraint. To achieve approximately uniform spacing, we
can use

ls[n] =
⌊

n(be − L[m])
N − 1

⌋
. (6)

An example of codevectors from codebooks is shown in
figure 3. In the figure, we show a transform with block size
256 with ending position be = 150 being the index of the
last coded spectral coefficient. The four codevectors from this
unmodified codebook are shown for two different vector sizes,
L[m]. The codevectors consist of the spectral coefficients taken
over the rectangular regions shown in the figure. Although
the example shows only four codevectors in the codebook,
typically there will be more. In the case of L[m] = 25, the
four codevectors do not overlap since the width is small. In
the case of L[m] = 70, the four codevectors are overlapping.

0 50 100 150 200 250

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

k

X[
k] b

e
 = Base

ending position
= 140

n=0 n=1 n=2

n=0
n=1

n=2

n=3

n=3

L[m]=25

L[m]=70

Fig. 3. Example spectrum and codevectors.

Since the computation of the scale factor, sc,n, needed
to normalize the unnormalized codevectors, dn, will require∑M−1

m=0 NL[m] computations, which can be very large, we
propose a simple way to compute the scale factor. This
involves computing a single cumulative energy sum of the
base portion of the spectrum using high precision arith-
metic. Let e[k] =

∑k−1
j=0 X̃2[j], be the cumulative en-

ergy, computed for k = 0, 1, . . . , be. Then the scale factor
for each of the codevectors can be computed as sc,n =√

(e[ls[n] + L[m]] − e[ls[n]])/L[m].
The other adaptive codebooks are formed by modifying the

codevectors of the base codebook and are there so that a
better match to the vector being coded may be found. One
such modification is to take care of the phase of the MDCT
coefficients. The sign of the harmonic components in the
highband may be flipped from the base due to the phase of
the tonal component. Therefore, in the first modified adaptive
codebook, the codevectors consist of N codevectors, c1,n,
where c1,n = −cn.

Another modification is to take care of the fact that tones
are often embedded in a noise floor. The noise floor is usually
slowly varying over the spectrum when compared to the rate of
decreasing amplitude of harmonics with increasing frequency.
To compensate for this we introduce a non-linear transform
to modify the codevectors, via exponentiation. This can be
done by replacing X̃[k] with V [k] in equations (3)-(5), where
V [k] = sgn(X̃[k])|X̃[k]|α, for some exponent α. The benefits
of exponentiation can be seen in figure 4 which shows that
using an exponent of α = 0.5 lowers the tonal component
without significantly affecting the noise floor. We create two
additional adaptive codebooks in this manner by using α = 0.5
and α = 2.0. Another two are created by combining the sign
with the exponentiation which gives a total of six adaptive
codebooks.

Usually tonal components are harmonic and have some good
match that can be found in the base. However, noise-like
components in the highband may not have a match in the base.
For example, a noise-like component may be present in the
entire frequency range, whereas tonal components may only be
present in the lower frequencies. The use of a tonal component
to represent noise-like components results in them sounding
unnatural. Thus, if vector xm is deemed to be noise-like, then
in addition to the adaptive codebooks formed from the base

4

0 50 100 150
0

0.1

0.2

0.3

0.4

k

|X
[k

]|

0 50 100 150
0

0.1

0.2

0.3

0.4

k

|X
[k

]|0.
5

Fig. 4. Effect of Exponentiation.

spectral coefficients, we also search fixed noise codebooks
which again are derived from a single base noise codebook.

As with the adaptive codebook formed from the base
spectral coefficients, the noise codebook for each vector to
be coded needs to be different since the length of the vector
as well as its norm are varying. Therefore, instead of creating a
true codebook with codevector entries, we create a pre-trained
noisy spectrum of a certain length, Z[k], k = 0, 1, . . . , ne −1,
where ne is the length of the sequence and can be considered
as the ending frequency of the noise spectrum. Instead of
using the base spectral coefficients X̃ for creating the code-
books, they are instead created by using the pre-trained noisy
spectrum Z. Similar to the base spectrum base codebook, we
create a base noise codebook using equations (3), (4), (5), and
(6), with X̃[k] replaced by Z[k] and be replaced by ne. The
base noise codebook can also be used to derive modified noise
codebooks via negation or exponentiation, although the effects
of exponentiation are simply used to increase diversity in the
codebook instead of improving tone-to-noise ratio.

D. Finding the Best Shape Vector

For each vector coded using GSVQ, the index of the
codebook being used (sign, exponent, base spectrum vs. pre-
trained noise) is sent in the bitstream along with the index of
the codevector within the codebook. The index entry within
the codebook is between 0 and N − 1 and is coded using a
fixed length code using �log2(N)� bits since there is little to
be gained from prediction or entropy coding.

If both the base codebook and the pre-trained fixed noise
codebook have N entries, then the number of total codevectors
to choose from becomes N(Pa+Pf) which can be very large.
It may seem that to search all of the codebooks would be very
costly at the encoder. To reduce computation complexity of
the encoder we introduce an encoding algorithm which first
searches to find the best index within original unmodified set
taking only the sign into account. In addition, only the adaptive
codebook from the base spectral coefficients is searched unless
the vector is found to be noise-like in which case the code-
books formed from the noise sequence Z[k] are also searched.

If the Euclidean distance is used as the distortion metric
when finding the best codeword, then since both the code-
vectors cn and the original vector ym are of norm L[m],
the distortion calculation simply becomes ‖ ± cn − ym‖2 =

2
(
L[m] ∓ ∑L[m]−1

j=0 cn[j]ym[j]
)

. So, with a single calcula-
tion of the dot product between the codevector and the original
vector going over all the N entries, we can figure out the best
index in the set of codevectors and the corresponding best sign
of the codevector.

Once the best index is calculated, we then proceed to obtain
the best exponent amongst the set α = 0.5, 1.0, 2.0 for the
given best index. The best exponent can also be calculated by
trying all three exponents and simply picking the one which
gives the minimal distortion in Euclidean distance. Although
we don’t search the entire codevector space due to complexity
considerations, we still are able to find a good match.

E. Reconstruction

The decoder takes the coded scale factor and recreates the
coefficients by taking coefficients from the optimal codebook.
In the case when the codevector is taken from the codebook
created from the base spectral coefficients, if the optimal sign
is given by vopt = ±1, the optimal exponent given by αopt,
and the optimal index into the codebook set given by nopt,
then the reconstruction can be given by

x̂m =
ŝm

sw,m

⎡
⎢⎢⎢⎣

W [ls[nopt]]
W [ls[nopt] + 1]

...
W [ls[nopt] + L[m] − 1],

⎤
⎥⎥⎥⎦ (7)

where W [k] = voptsgn(X̃[k])|X̃[k]|α, and sw,m is the RMS
value for the vector with components W [k] and can be
computed similar to equation (5). If the pre-trained fixed noise
codebook is used instead, then W [k] = voptsgn(Z[k])|Z[k]|α.

F. Vector Partitioning

Sometimes when tones are embedded in noise, the exponent
modeling is still not sufficient to find a good match for the
shape. In these cases, we split the original vector xm into two
components, one for the tones, another for the noise floor.
Instead of sending a bit mask to specify what is noise and
what is tone, which will take more bits than are available, we
instead use an implicit classification into tone and noise for
the vector xm based upon a threshold, T , sent in the bitstream
and the codevector being used to represent the vector. The
classification uses the following to classify,

τ = {k : |cnopt
[k]| ≥ T} (8)

η = {k : |cnopt
[k]| < T}, (9)

where τ is the set of tonal components, and η is the set of
noise components in the vector. The gain for the entire vector
is still coded and sent as in equation (2), with the an additional
scale factor representing the noise-to-total ratio as

γ =
1

sm

√
1
|η|

∑
k∈η

X2[k], (10)

where |η| is the cardinality of the set of noise components.
The codebook shape index is coded separately for each of
the two sets. The shape for the coefficients in set τ is coded

5

Song Ours Ours Ours Identical HE-AAC HE-AAC HE-AAC
much more more slightly slightly more much more

Blank baby 4.00 11.00 19.67 38.33 12.67 11.33 3.00
Sun Is Shining (Island Mix) 3.67 17.33 25.67 25.00 14.33 10.00 4.00
Walk of Life 5.00 12.67 16.33 28.00 15.67 16.33 6.00
Clocks 5.00 15.00 19.67 34.00 12.67 12.00 1.67
Eclipse 3.67 10.00 16.67 37.33 21.00 8.00 3.33
Boulevard Of Broken Dreams 6.00 19.67 19.67 21.33 17.00 12.33 4.00
Open Your Eyes 1.67 10.00 16.33 46.00 16.00 9.67 0.33
Take A Look Around 4.67 11.67 18.00 29.33 16.33 15.67 4.33
Castanets 20.00 25.33 17.00 26.67 5.67 4.67 0.67
Dont You (Forget about me) 4.00 11.33 21.33 38.33 15.67 8.33 1.00
Bitter Sweet Symphony 2.33 11.00 15.67 34.33 21.00 12.67 3.00
This Love 2.00 10.33 13.67 48.00 14.33 8.67 3.00
Total 5.17 13.78 18.31 33.89 15.19 10.81 2.86

TABLE I
LISTENING TEST RESULTS. VALUES SHOWN ARE PERCENTAGE OF LISTENERS WITH THE GIVEN PREFERENCE FOR EACH SONG.

using the adaptive codebooks from the base portion of the
spectrum. The shape for the coefficients in set η is coded using
the codebooks derived from the pre-trained noise sequence.
The decision whether to use two vector approach is made at
the encoder by looking at the difference between the peak and
median values. If the vector is partitioned into two sets, then
to save bits, the codevector exponent is assumed to be 1.0
since the tone-to-noise ratio should be correct. However, the
additional scale factor and shape coding still approximately
doubles the number of bits used to code such vectors.

IV. EXPERIMENTAL RESULTS

A listening test was done using the hybrid audio coding
scheme presented in this paper with coding using HE-AAC
at 64kbps CBR (constant bit rate with a buffer) coding of
a 44.1kHz stereo source. The scale factors were quantized
with a 1 dB quantization step size, and N = 64 was used
as the number of codevectors in each of the codebooks. After
prediction and entropy coding, the scale factors took about 3.5
bits to code, and the codebook index took 6 bits to code. The
sign takes 1 bit, and the exponent takes approximately 1.5 bits
and is coded using a simple code. In total we take about 12 bits
per vector to code. We try to use approximately 10-16 vectors
per transform block depending upon transform block size and
bits available in the buffer. This gives an approximate rate of
about 3kbps per channel. So at 64kbps, we end up using about
6kbps for GSVQ for stereo coding which is 10% of the total
bitrate. The bandwidth at which the GSVQ starts coding varies
depending upon content but is usually around 10-12kHz.

A blind listening test was conducted using 12 audio sam-
ples presented to three hundred listeners. The results of the
listening test are shown in table I which shows the percentage
of listeners for a given preference. For example, column 1
is the percentage of listeners who preferred our algorithm
much more than HE-AAC. Approximately 37% of the listeners
preferred our algorithm, 34% said the two were identical, 29%
liked HE-AAC better. This proves that this codec is identical
or better than HE-AAC proving it to be amongst the best
audio codecs at this bitrate. However, the decoder complexity
is much lower than HE-AAC since the decoder operates in

the same transform domain as the base. We are able to decode
using only 30-35 MIPS on an ARM processor, whereas typical
HE-AAC decoder implementations require at least 50 MIPS
on a similar processor for 44.1kHz stereo source [7].

It should be noted that the syntax described above is very
rich, only a simple encoder was used in this study. For
example, a number of ad hoc decisions were made such as
the number of vectors, bits used to code the scale factor (the
step size Δ), and the codebook size chosen.

V. CONCLUSION

We have presented a hybrid audio coding scheme which
uses a gain shape vector quantizer to code some portions
of the spectrum at a low bitrate. The gain shape vector
quantizer consists of adaptive codebooks formed from spectral
coefficients which have already been coded using standard
audio coding techniques. The algorithm provides audio quality
which is as good or better than any other audio codec at very
low bitrates such as 64kbps. However, the decoder complexity
is significantly lower than other audio codecs with similar
quality at these low bitrates.

REFERENCES

[1] M. Dietz, L. Liljeryd, K. Kjorling, and O. Kunz, “Spectral band replica-
tion, a novel approach in audio coding,” in AES Convention 112. Audio
Engineering Society, Apr. 2002, paper 5553.

[2] M. Schug, A. Groschel, M. Beer, and F. Henn, “Enhancing audio coding
efficiency of MPEG Layer-2 with spectral band replication (SBR) for
DigitalRadio (EUREKA 147/DAB) in a backwards compatible way,” in
AES Convention 114. Audio Engineering Society, Mar. 2003, paper
5850.

[3] N. Iwakami and T. Moriya, “Transform-domain weighted interleave vec-
tor quantization (TwinVQ),” in AES Convention 101. Audio Engineering
Society, Nov. 1996, paper 4377.

[4] N. Iwakami, T. Moriya, A. Jin, T. Mori, and K. Chikira, “Fast encod-
ing algorithms for MPEG-4 TwinVQ audio tool,” in Proc. Int’l Conf.
Acoustics, Speech, and Signal Processing, vol. 5. IEEE, May 2001, pp.
3253–3256.

[5] T. Moriya, N. Iwakami, K. Ikeda, and S. Miki, “Extension and complexity
reduction of TwinVQ audio coder,” in Proc. Int’l Conf. Acoustics, Speech,
and Signal Processing, vol. 2. IEEE, May 1996, pp. 1029–1032.

[6] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Boston, MA: Kluwer Academic Publishers, 1992.

[7] Helix fixed-point HE-AAC (aacplus) decoder. [Online]. Available:
https://datatype.helixcommunity.org/2005/aacfixptdec

6

