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With the higher-order neighborhood information of a graph network, the accuracy of graph representation learning classification
can be significantly improved. However, the current higher-order graph convolutional networks have a large number of pa-
rameters and high computational complexity. -erefore, we propose a hybrid lower-order and higher-order graph convolutional
network (HLHG) learning model, which uses a weight sharing mechanism to reduce the number of network parameters. To
reduce the computational complexity, we propose a novel information fusion pooling layer to combine the high-order and low-
order neighborhood matrix information. We theoretically compare the computational complexity and the number of parameters
of the proposed model with those of the other state-of-the-art models. Experimentally, we verify the proposed model on large-
scale text network datasets using supervised learning and on citation network datasets using semisupervised learning. -e
experimental results show that the proposed model achieves higher classification accuracy with a small set of trainable
weight parameters.

1. Introduction

Convolutional neural networks (CNNs) have achieved great
success in grid structured data such as images and videos
[1, 2]. It is attributed to a series of filters of convolutional
layers from the CNNs that can obtain local invariant fea-
tures. Compared to a regularized network, the number of
neighbors of a node in a graph network may be different.
-erefore, it is difficult to directly implement the filter
operator in an irregular network structure [3].

In the graph network, the nodes and the connecting edges
between them contain abundant network characteristic in-
formation. A graph convolutional network (GCN) aggregates
the neighborhood nodes to realize continuous information
transmission based on a graph network. By making full use of
this information, a GCN can effectively achieve tasks such as
classification, prediction, and recommendation.

A graph convolutional network (GCN) generalizes
traditional convolutional neural networks (CNNs) to the
graph domain. -e GCN methods are mainly divided into
two categories [3], the frequency domain-based methods
[4–6] and the spatial domain-based methods [7, 8].

In the spatial domain, to simulate the convolution op-
eration of the traditional CNN on an image, the convolution
operation aggregates the information of the neighborhood
nodes [7–10]. Henaff et al. [11] proposed a smoothed
parametric spectral filter to realize localization and to
preserve the parameters of filters independent of the input
dimension. One of the key challenges is that the number of
neighborhood nodes in the network irregularly changes.

In the frequency domain, Bruna et al. [5] were the first
ones to extend CNN-type architectures to graphs. Cao et al.
[12] applied a generalized convolutional network to the
graph frequency domain using the Fourier transform. In this
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method, eigenvalue decomposition is performed on the
neighborhood matrix. To reduce the computational com-
plexity, Defferrard et al. [13] proposed the Chebyshev
polynomial of the eigenvalues of the graph Laplacian to
achieve efficient and localized graph convolutional operation
filters. Kipf andWelling [6] proposed a classical GCN, which
was approximated by a first-order Chebyshev polynomial.
-is approach reduces the computational complexity but
introduces truncation errors.-is introduction results in the
inability to capture high-level interaction information be-
tween the nodes in the graph, and it also limits the capa-
bilities of the model.-e information propagation process in
the graph is related not only to its first-order neighborhood
but also to its higher-order neighborhood.

Abu-El-Haija et al. [14, 15] proposed the high-order
convolutional network layer on a graph that used linear
combination of the high-order neighborhood basis of the
GCN [6]. Tiao et al. [16] proposed a Bayesian estimation
approach via the stochastic variational inference in the
adjacency matrix of the graph. Levie et al. [17] proposed
Cayley polynomials to compute the localized regular filters
of the interest frequency bands of graphs. -erefore, the
rational use of second-order neighborhoods, third-order
neighborhoods, and other high-order neighborhood infor-
mation will be beneficial to classification prediction accuracy
[14–16, 18–20].

Based on the classical GCN [6], to make full use of the
high-order and low-order neighborhood information, we
propose a novel hybrid low-order and higher-order graph
convolutional network (HLHG). As shown in Figure 1, the
graph convolutional layer of our model is simple and ef-
fective at capturing the high-order neighborhood infor-
mation, nonlinearly combining the different order
neighborhood information. -e contributions are summa-
rized as follows:

(1) We propose a new fusion pooling layer to achieve
high-order neighborhood fusion with the low-order
neighborhood of graph networks

(2) We propose a low-order neighborhood and high-
order neighborhood weight sharing mechanism to
reduce the computational complexity and number of
parameters of the model

(3) -e experimental results show that our HLHG
achieves state-of-the-art performance in both the
text network classification with supervised learning
and the citation network with semisupervised
learning

-e rest of the paper is organized as follows. In Section 2,
the related theoretical basis such as the graph convolution
and the high-order graph convolution are introduced. In
Section 3, the general information fusion pooling for the
high-order neighborhood is presented. -en, the proposed
model and its variant are presented. -e computational
complexity and parameter quantity of the proposed model
are also theoretically analyzed. In Section 4, our proposed
model is verified and the corresponding analysis are pre-
sented. Finally, Section 5 concludes the paper.

2. Related Theoretical Background

In this section, the related theoretical basis will be intro-
duced, including the graph convolutional network (GCN).

2.1. Graph. Given a graph G, its nodes setV, and its edges E,
the graph is represented as G � (V, E). If nodes Vi and Vj
are connected, then Eij � 1; otherwise, Eij � 0. -e infor-
mation in the graph propagates along with the edge E. It also
applies when considering the network node self-loop, which
means that Eii � 1. Assuming that the information that is
propagated by each node in the graph network is x ∈ Rr, the
information matrix in the graph is X ∈ Rn×r, where n is the
total number of nodes in the graph network and r is the
dimension of the information feature. It assumes that if the
loop graph networkG is represented as G̃, then the adjacency
matrix of the graph network G̃ is represented as Ã � (A + I).
-e degree matrix of Ã in the graph network G̃ is the di-
agonal matrix, D̃ii � ∑jÃij.

2.2. Graph Convolutional Network. In the given graph G,
there are two signals f � (f1, . . . , fn)

T and
g � (g1, . . . , gn)

T. -e graph’s Fourier transforms are de-
fined as f̂ � ΦTfand ĝ � ΦTg, where Φ is the orthonormal
eigenvalues of the graph Laplacian of graph G. -e same as
in Euclidean space, the spectral graph convolution operation
of f and g is given as an elementwise product as follows:

g∗f � Φ ΦTg( ) ∘ ΦTf( )( ) � ΦĜΦTf, (1)

where Ĝ � diag(ĝ1, . . . , ĝn) represents the diagonal matrix
of ĝ.

Defferrard et al. [13] utilized the k-th order polynomial
filters based on Chebyshev to represent the graph con-
volutional operation of Laplacian Ĝ � ∑iαiΛi, where αi
denotes the coefficients andΛ represents the eigenvalues of
the Laplacian.

Kipf and Welling [6] propose the classical graph con-
volutional neural network model based on the Fourier
transform, g∗f � αÃf. -e GCN model approximates the
model using a first-order Chebyshev polynomial. -e
propagation model in the graph network is as follows:

H(l+1)
� σ D̃

− (1/2)
ÃD̃

− (1/2)
H(l)W(l)( ), (2)

where H(l) denotes the information propagation matrix;
W(l) represents the trainable weight of layer l; when l � 0,
H(0) � X ∈ Rn×r, which represents the initial input value of
the GCN; σ(.) denotes the activation function. To reduce the
computational complexity, the convolution operator in the
graph is defined by a simple neighborhood average. How-
ever, the convolutional filters are too simple to capture the
high-level interaction information between the nodes in the
graph. -erefore, the classification accuracy on citation
network datasets is low.

Abu-El-Haija et al. [14, 15] propose a high-order graph
convolutional layer model based on the GCN for semi-
supervised node classification.-e propagation model of the
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high-order graph convolution is as shown in formula (3). In
this model, the transfer function of the (l + 1)-th layer is a
column concatenation from the first order to the p order in
the l-th layer, which is the linear combination of the high-
order neighborhood. In the propagation model, the different
order neighborhoods of the same layer use different weight
parameters:

H(l+1)
� σ B(0)H(l)W(l)

0

∣∣∣∣∣ . . . B(p)H(l)W(l)
p

∣∣∣∣∣( ), (3)

where B � D̃
− (1/2)

ÃD̃
− (1/2)

. However, as the network layers
deepen, the dimensions of H(l+1) will increase and
propagate between layers. -erefore, the number of
trainable weight parameters will be more, and the training
resource will also be increased to learn the optimized
dimension of the weight.

3. Method

When the message passes through the graph network, the
nodes will receive latent representations from their first-hop
nodes and from their N-hop neighbors every time. In this
section, we propose a model to nonlinearly aggregate the
trainable parameters, which can choose how to mix latent
messages from various hop nodes.

3.1. General Information Fusion Pooling. -e information
propagation of the graph network is passed along the edges
between the vertices in the graph. It assumes that the graph
network G � (V, E) is an undirected graph. -e general
procedure of fusion pooling is described as follows. It as-
sumes that the k-th order neighborhood matrix is A(k) �
[a(k)ij ], and the result after the fusion pooling operator is
Pmax(A(0), . . . , A(k)) �Z(k) � [z(k)ij ], where z

(k)
ij �max(a(1)ij ,

a(2)ij , . . . ,a
(k)
ij )) and k represents the hop from the given node.

Here, is an example to show how to fuse the different
order neighborhoods. For a given adjacency matrix Â, as-
sume that h1 denotes the first-order neighborhood and h2
denotes the second-order neighborhood.

If h1 � ÂXW1 �
1 0
1 1
[ ] and h2 � Â

2
XW1 �

− 1 0
2 1

[ ],
then Pmax(h1, h2) �

1 0
2 1
[ ].

In the information dissemination and fusion process,
both the first-order neighborhood features and the high-
order neighborhood features are fully considered.-erefore,
the classification accuracy should be improved.

3.2. Our Proposed Model. In Figure 2, we propose the high-
order graph convolutional network model to fuse the high-
order messages that pass through the graph network. -e
model consists of an input layer, two graph convolutional
layers, and an information fusion pooling layer that is
connected to the graph convolutional layer. -e softmax
function is used for the multiclassification output.

-e proposed model extends the classical GCN model
[6] to the graph neural network of higher-order neigh-
borhoods. Each node in the model can get its representation
from its neighborhood and integrate messages. -e system
model is as follows:

Y�F Pm Âσ H(l+1)( )Wl+1, · · · , Â
(p)

σ H(l+1)( )Wl+1( )( ), (4)

where p is the order of the neighborhoods, Â
(p)
= Â

(p− 1)
Â,

σ(.) is the activation function, function F(.) denotes the
softmax function. Parameter Wl+1 is the trainable weight
parameter of layer (l + 1) in the graph network, and function
Pm(.) represents Pmax(.), which denotes the hybrid high-
order and low-order of the information fusion. When pa-
rameter l is equal to 0, H(1) � Pmax(ÂH(0)W0,
· · · , Â

(p)
H(0)W0), which is the output of the first convolu-

tional layer of the graph propagation model. In addition,
H(0) � X ∈ Rn×r, which represents the initial input of our
model.

In the preliminary experiment, we found that the two-
layer high- and low-order mixed graph convolution is better
than the one-level high- and low-order mixed graph con-
volution, and stacking more layers does not significantly
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Figure 1:-e graph convolutional layer of our model. (a) First-order graph convolutional layer of the Kipf andWelling [6] model.-e input
isH(l− 1), the output isH(l), and the trainable parameter isW(l). (b)-e 3rd order graph convolutional layer of our HLHGmodel. Different
order neighborhood matrices share the trainable weight.

Computational Intelligence and Neuroscience 3



improve the accuracy of the graph recognition task.
-erefore, this paper uses a 2-layer graph convolution
layer. In further experiments, we validate p � 2 and p � 3
in equation (4) for our HLHG models. In the supervised
learning and unsupervised learning classification tasks,
our HLHG models show very good performance and
achieve a good balance between the classification accuracy
and computational complexity. We also validate that at
p � 4 and p> 4, the classification accuracy is not signif-
icantly improved. -erefore, we only analyze and im-
plement our model for p � 2 and p � 3 in the following
sections.

In equation (4), the model with p � 2, that is, the hybrid
model of the 1st and 2nd order neighborhoods, is called the
HLHG-2 model. -e model with p � 3, that is, the hybrid
model of the 1st, 2nd, and 3rd order neighborhoods, is called
the HLHG-3 model.

In the HLHG-2 model, it assumes that the graph con-
volutional network has 2 convolutional layers and the ac-
tivation function is Relu. -en, the output Y of the HLHG-2
model can be expressed as follows:

Y � F Pm Â(Relu(M2))W2, Â
2
(Relu(M2))W2[ ][ ],

(5)
where M2 � Pmax(ÂXW1, Â

2
XW1) and Pm denotes the

fusion pooling Pmax.
-e same as with the HLHG-2model, the output Y of the

HLHG-3 model can be expressed as follows:

Y � F Pm ÂT, Â
2
T, Â

3
T[ ][ ], (6)

where T � (Relu(M3))W2 and M3 � Pmax(ÂXW1,

Â
2
XW1, Â

3
XW1).

For a large-scale graph network, it is unacceptable to
directly calculate Â

3
� Â

(2)
Â � ÂÂÂ. -erefore, we calcu-

late Â
3
XW1 � Â(Â(ÂX))W1. In general, the dimension of

ÂX is less than Â, and this procedure avoids large-scale
matrix multiplication operations.

-erefore, our HLHG model has a 2-layer graph net-
work, and the iterative expression of the 2nd order neigh-
borhood is as follows:

Y � softmax ÂRelu(H)W2, Â
2
Relu(H)W2( ), (7)

where H � Pmax(ÂXW1, Â
2
XW1). We use Pmax as our

fusion pooling operator, which assumes the maximum value
in the corresponding element. Algorithm 1 shows how to
fuse the different order neighbors.

We use the multiclassified cross entropy as the loss
function of our HLHG model, L � − ∑iỹilog(qi), where Ỹ is
the labeled samples. -e graph neural network trainable
weightsW1 andW2 are trained using gradient descent. In each
training iteration, we perform the batch gradient descent.

3.3. Computational Complexity and Parameter Quantity.
In the large-scale graph network, the adjacency matrix is

Â ∈ Rn×n. It is difficult to directly calculate Â(p). To reduce the
computational complexity, we iteratively calculate Â

(p)
. For

higher orders, the right to left iterative multiplication pro-

cedure is Â
(p)
H(l)Wl � (Â

(p)
H(l))Wl � Â(Â

(p− 1)
H(l))Wl.

For example, when p � 1, Â
(1)
H(0) � ÂX ∈ Rn×r. When

p � 2, Â
(2)
H(1) � Â(ÂX) ∈ Rn×r.

In the proposed model, the input feature of the graph
network isX ∈ Rn×r. -e weight of the first convolutional
layer is W1 ∈ Rr×r1 , and the weight of the second layer is
W2 ∈ Rr1×r2 .-en, the input of the first convolutional layer is
H(0) � X ∈ Rn×r where the parameter r represents the di-
mension of the input feature. For example, r1 denotes the
number of hidden neurons in the first convolutional layer
and r2 denotes the number of hidden neurons in the second
convolutional layer. In our HLHG model, the trainable
weight parameters are shared in the same convolutional
layer. -erefore, in the first convolutional layer, the output
dimension after the convolutional operator is the same.-at
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Figure 2: HLHG mode. -e graph convolutional network layer of the HLHG model consists of two convolutional layers and information
fusion pooling. -e input parameters are from the first-order to the n-th order neighborhoods. When n� 1, the model degenerates into a
classical graph convolution GCNmodel. When the neighborhood order is n� 2, it is called the HLHG-2model, and its input parameters are
the 1st order neighborhood and the 2nd order neighborhood. When the neighborhood order is n� 3, it is called the HLHG-3 model, and its
input parameters are the 1st order neighborhood, the 2nd order neighborhood, and the 3rd order neighborhood.
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is, ÂXW1 ∈ Rn×r1 , Â
(2)
XW1 ∈ Rn×r1 , and Â

(k)
XW1 ∈ Rn×r1 ,

where k is the order of the adjacency matrix Â.

In the l-th convolutional layer, Â
(k)
H(l)Wl ∈ Rn×rl ,

where rl denotes the number of hidden neurons in the l-th
convolutional layer. It assumes that Â is a sparse matrix with
m nonzero elements. For the l-th convolutional layer of our
HLHG, the computational complexity is O(rl ×k×m× rl− 1)
and the quantity of trainable weight is O(rl × rl− 1).

-e total computational complexity of our HLHGmodel
is O(∑jl (rl × k ×m × rl− 1)), and the total number of train-
able parameters is O(∑jl (rl × rl− 1)), where parameter j
denotes the total number of convolutional layers and l
denotes the l-th convolutional layer. When l � 1, r0 rep-
resents the feature dimensions of the datasets and rl rep-
resents the number of hidden neurons in the l-th
convolutional layer. For all the datasets, r0≫ rl; therefore,
we only consider the first convolutional layer when we
compare the computational complexity and number of
parameters.

Compared to [14], we set fewer filters to maintain a
similar computational complexity and the number of pa-
rameters is less via weight sharing for both the lower-order
and higher-order convolutions.

4. Experiments

We conduct experiments in order to verify that our HLHG
model can be applied to supervised learning and semi-
supervised learning. On the text network datasets, we
compare our model with the state-of-the-art methods using
supervised learning. On the citation network datasets, we
compare our model with the state-of-the-art methods using
semisupervised learning. For all experiments, we construct a
2-layer graph convolutional network of our model using
TensorFlow. -e code and data are available on GitHub.

4.1. Supervised Text Network Classification. We conduct
supervised learning on five benchmark text graph datasets to
compare the classification accuracy of HLHG with the graph

convolutional neural network and other deep learning
approaches.

4.1.1. Datasets. In our supervised experiments, the 20-
Newsgroups (20NG), Ohsumed, R52 and R8 of Reuters
21578, and Movie Review (MR) are used to verify the
proposedmodels.-ese datasets are publicly available on the
web and are widely used as test-verified datasets. -e
summary statistic features of the text network are shown in
Table 1.

-ese benchmark text datasets were processed by Yao
et al. [21], who converted the text datasets into graph net-
work structures. -en, they used preprocessing to construct
the adjacency matrix of the graph network input and input
parameters.-e dataset is divided into a training dataset and
a test dataset in the same way.

4.1.2. Baselines and Experimental Setting. We compare our
HLHG with the following approaches: the convolutional
neural network with pretrained vectors (CNN-rand) [22],
the LSTM model with pretrained vectors (LSTM-pre) [23],
the predictive text embedding for text classification (PTE)
[24], the fast text classifier (fastText) [25], the simple word
embedding model with simple pooling strategies (SWEM)
[26], the label-embedding attentive model for text classifi-
cation (LEAM) [27], the graph CNN model with the Che-
byshev filter (GCN-C) [13], the graph CNN model with the
spline filter (GCN-S) [5], the graph CNN model with the
Fourier filter (GCN-F) [11], and the graph convolutional
network for text classification (text GCN) [21]. -e baseline
models were tested by Yao et al. [21].

In our HLHG-2 model, we set the dropout rate� 0.2.-e
learning rate is updated from Adam [28] during the training
process. In our model, we set the L2 loss weight as 0, and we
adopt early stopping. We set the learning rate to 0.02 for the
R8 dataset, and the learning rates of the remaining datasets
are all set to 0.01. We set different epochs for different
datasets.-e number of epochs in the R52 dataset is 350.-e
number of epochs in the OH and 20NG datasets is 200, and
the number in the R8 and MR datasets is 60. In the HLHG-2
model, we set the number of hidden neurons in the 1st
convolutional layer as 128 for all datasets.

Except for the parameters in Table 2, the other pa-
rameters are the same as in the HLHG-2 model.

For our HLHG-3, we set the number of hidden neurons
in the first convolutional layer to 128 except for the MR
dataset, which is set to 64. To obtain better training results,
we separately set different hyperparameters such as the
dropout rate, learning rate, and number of epochs for dif-
ferent datasets (see Table 2). In addition, the other pa-
rameters of HLHG-3 are the same as those in HLHG-2.

We construct the graph network for our HLHG-2 and
HLHG-3 models, and the feature matrix and other pa-
rameters are the same as those by Yao et al. [21].

4.1.3. Results. We show supervised text classification ac-
curacies for the five datasets in Table 3. We demonstrate how

(1) Inputs: X, Â, and the other parameters.
N (number of hidden units), dr (dropout rate),
L2 (L2 regularization), es (early stopping),
epochs and lr (learning rate).
Output: weight parameters W1 and W2.

(2) Randomly generate the trainable weights W1 and W2;
(3) Iteratively calculate the forward output value

(1) h1 � ÂXW1, h2 � Â
2
XW1 � Âh1

(2) h3 � Pmax(h1, h2)
(3) h4 � Relu(h3);
(4) h5 � Âh4W2, h6 � Â

2
h5

(5) h7 � Pmax(h5, h6)
(6) Y � softmax(h7)
(4) Calculate the cross entropy L � − ∑iỹilog(qi)
ALGORITHM 1: Iterative calculation for HLHG-2.
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our model performs on common splits that were taken from
Yao et al.’s study [21].

Table 3 presents the classification accuracies and stan-
dard deviations of our models and the benchmark on the
text network data. In general, our HLHG-2 and HLHG-3
achieve high levels of performance. Specifically, they achieve
the best performances on R52, OH, 20NG, and R8. Com-
pared to the best performing approach, the proposed models
yield worse accuracies on the MR dataset. In general, the
HLHG-3 and HLHG-2 models perform equally well. More
specifically, the 3rd order HLHG has slightly better classi-
fication accuracy than the 2nd order HLHG on most
datasets. However, the performance difference is not very
large. Overall, the proposed architecture with hybrid high-
and low-order neighborhoods has good classification per-
formance, which indicates that it effectively preserves the
topological information of the graph, and it also obtains a
high-quality representation of the nodes.

-e benchmark test results are copied from [8]. -e
mean standard deviation of our model is the average of 100
runs.

Table 4 shows the comparison of the network complexity
and the number of parameters with the Text GCN [21]. Our

HLHG can match the Text GCN with respect to compu-
tational complexity while requiring fewer parameters than
the Text GCN. As described in Section 3.3, the number of
features in the dataset is much larger than the number of
neurons in the hidden convolutional layer. -erefore, we
only compare the computational complexity and number of
parameters of the first convolutional layer in our HLHG
model. In Table 4, Comp. and Params represent the com-
putational complexity and the number of parameters in the
first layer of the graph convolutional network, respectively.
In the computational complexity results, the first constant
denotes the number of neurons in the first convolutional
layer and the second constant denotes the order of the
adjacency matrix. -e parameter m denotes the number of
nonzero entries of the sparse regularization adjacency
matrix.-e parameter r denotes the feature dimension of the
nodes in the graph network.

In the Text GCN [21], the number of hidden neurons in
the first convolutional layer is 200; therefore, the complexity
and params are 200. In our HLHG-2 model, 128 denotes the
number of hidden neurons in the first convolutional layer
and 2 represents the highest order of HLHG-2. In our
HLHG-3 model, 128 and 64 denote the number of hidden

Table 1: Text network datasets.

Datasets C D Tr Te N

R52 52 9,100 6,532 2,568 17,992
OH 23 7,400 3,357 4,043 21,557
20NG 20 18,846 11,314 7,532 61,603
R8 8 7,674 5,485 2,189 15,362
MR 2 10,662 7,108 3,554 29,426

C indicates the category, D is the total number of texts, Tr is the training set, Te is the test set, and N is the number of vertices of the graph network.

Table 2: -e hyperparameters in our HLHG-3 model.

Datasets Dropout Learning rate Epochs

R52 0.6 0.005 950
OH 0.2 0.01 230
20NG 0.0 0.01 210
R8 0.2 0.005 300
MR 0.1 0.01 80

Table 3: Text network classification accuracy.

Methods R52 OH 20NG R8 MR

CNN-rand [22] 87.59 58.44 82.15 95.71 77.75

LSTM [23] 85.54 41.13 65.71 93.68 75.06
LSTM-pre [23] 90.48 51.10 75.43 96.09 77.33
PTE [24] 90.71 53.58 76.74 96.69 70.23
fastText [25] 92.81 57.70 79.38 96.13 75.14
SWEM [26] 92.94 63.12 85.16 95.32 76.65
LEAM [27] 91.84 58.58 81.91 93.31 76.95
GCN-C [13] 92.75 63.86 81.42 96.99 77.22
GCN-S [5] 92.74 62.82 — 96.80 76.99
GCN-F [11] 93.20 63.04 — 96.89 76.74
Text GCN [21] 93.56 68.36 86.34 97.07 76.74
HLHG-2 (ours) 94.21± 0.14 69.16± 0.19 86.57 ± 0.08 97.25 ± 0.10 75.95± 0.14
HLHG-3 (ours) 94.33 ± 0.16 69.36 ± 0.24 86.35± 0.24 97.25± 0.12 76.49± 0.32
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neurons in the first convolutional layer and 3 represents the
highest order of the corresponding model. -e result in
Table 4 shows that our HLHG-3 model has better compu-
tational complexity for the MR dataset. Because of the
weight sharing in the different order neighborhoods, our
HLHG models require fewer trainable weight parameters.
Especially on the MR dataset, the number of parameters is
only 1/3 of that of the Text GCN [21].

4.2. Semisupervised Node Classification. We conduct semi-
supervised learning on three benchmark citation network
datasets to compare the node classification accuracy of
HLHG with some classical approaches and with some graph
convolutional neural network approaches. -e graph sem-
isupervised learning corresponds to the process of “label”
spreading on citation networks.

4.2.1. Datasets. In semisupervised node classification, we
use the CiteSeer, Cora, and PubMed citation network
datasets [29]. In these citation datasets, the nodes represent
the articles that were published in the corresponding journal.
-e edges between the two nodes represent references from
one article to another, and the tags represent the topics of the
articles. -e citation link constructs an adjacency matrix.
-ose datasets have low label rates. -e summary statistic
features of the citation graph are shown in Table 5.

4.2.2. Baselines and Experimental Setting. We compare our
HLHG with the same baseline methods as by Abu-El-Haija
et al. [15] and Yang et al. [30]. -e baselines are as follows:
manifold regularization (ManiReg) [31], semisupervised
embedding (SemiEmb) [32], label propagation (LP) [33],
skip-gram-based graph embeddings (DeepWalk) [34], the
iterative classification algorithm (ICA) [35], Planetoid [30],
HO [14], and MixHop [15].

For the HLHG-2model, we use the following parameters
for the citation datasets (Cora, CiteSeer, and PubMed): 16
(number of hidden units), 0.5 (dropout rate), 0.0005 (L2
regularization), 10 (early stopping), 300 (number of epochs),
and 0.01 (learning rate).

For tthe HLHG-3 model, we set different numbers of
hidden neurons for the different datasets. We set 8 hidden
neurons for the CiteSeer dataset to reduce the computational
complexity and the number of parameters, and set 10 hidden
neurons for the Cora and PubMed datasets to capture richer
features.-e hyperparameters of the HLHG-3 are set as shown
in Table 6.

4.2.3. Results. In the semisupervised experiments, we train
and test our models on those citation network datasets
following the methodology that was proposed by Yang et al.
[30]. -e classification accuracy is the average of 100 runs
with random weight initializations.

-e benchmark test results were copied from [15, 30].
-e mean standard deviation of our model is the average of
100 runs.

In Table 7, the node classification accuracies that are
above the line are copied from Abu-El-Haija [14, 15] and
Yang et al. [30]. -e values below the line are our HLHG
models. ± represents the standard deviation of 100 runs with
different random initializations. -ese splits utilize only 20
labeled nodes per class during training. We achieve the best
test accuracies of 82.7% and 71.5% on the Cora and CiteSeer
datasets, respectively. Compared with other high-order
graph convolutional neural networks [14, 15] on the same
datasets, they get the high-order information using linear
combinations of features from farther distances. Our HLHG
model acts nonlinearly to get the high-order neighborhood
information.

In Table 8, we compare the network complexity and the
number of parameters with the other high-order graph
convolutional networks and the classic GCN. -e result
shows that our model has the same computational com-
plexity as other approaches. With respect to the number of

Table 4: Comparison of network computational complexity and
the number of parameters.

Approaches Comp. Params

Text GCN [21] O (200 × 1 ×m × r) O (200 × r)
HLHG-2 (ours) O (128 × 2 ×m × r) O (128 × r)

HLHG-3 (ours)

O (64 × 3 ×m × r)
(MR dataset)

O (64 × r)
(MR dataset)

O (128 × 3 ×m×r)
(other datasets)

O (128 × r)
(other datasets)

Table 5: Citation network datasets.

Datasets N E F L C

Cora 2708 5429 1433 0.052 7
CiteSeer 3327 4732 3703 0.036 6
PubMed 19717 44338 500 0.003 3

N means the number of nodes of citations, E means the number of edges
between citations, F means the number of features of the nodes, L denotes
the labeling rate, and C denotes the number of classes.

Table 6: -e hyperparameters of HLHG-3.

Datasets Dropout Learning rate Early stopping Epochs

Cora 0.5 0.01 No 500
CiteSeer 0.5 0.005 5 500
PubMed 0.6 0.01 1 200

Table 7: Citation network classification test accuracy.

Approaches Cora CiteSeer PubMed

ManiReg [31] 59.5 60.1 70.7
SemiEmb [32] 59.0 59.6 71.1
LP [33] 68.0 45.3 63.0
DeepWalk [34] 67.2 43.2 65.3
ICA [35] 75.1 69.1 73.9
Planetoid [30] 75.7 64.7 77.2
GCN [6] 81.5 70.3 79.0
HO-3 [14] 81.6± 0.47 71.2± 0.94 80.0± 0.64
HO-4 [14] 81.6± 0.63 71.2± 0.84 80.1± 0.65
MixHop [15] 81.8± 0.62 71.4± 0.81 80.0± 1.10
MixHop (learned) [15] 81.9± 0.40 71.4± 0.81 80.8± 0.58
HLHG-2 (ours) 82.7± 0.28 71.5± 0.22 79.1± 0.18
HLHG-3 (ours) 82.7± 0.29 71.5± 0.39 79.3± 0.15

Computational Intelligence and Neuroscience 7



parameters, our HLHG-3 model has fewer parameters than
the GCN [6].-e reason is that our model shares the weights
in the same layer among the different order neighborhood
matrixes.

5. Conclusion

In this paper, we propose a hybrid lower-order and higher-
order GCN model for the supervised classification of text
network datasets and for semisupervised classification in a
citation network. In our model, we propose a novel non-
linear information fusion layer to combine the low- and
higher-order neighborhoods. To reduce the number of
parameters, we propose sharing the weights in the same
convolutional layer with different order neighborhoods.
Experiments on the two network datasets suggest that
HLHG has the capability to fuse higher-order neighbor-
hoods for supervised classification and semisupervised
classification. Our model significantly outperforms the
benchmarks. We also find that the computational com-
plexity and the number of parameters are less than those of
the high-order method. In order to obtain more neigh-
borhood information, we could use more higher-order
adjacency matrix. However, the direct use of higher orders
may lead to oversmoothing problems. -erefore, in future
research work, we will extend our HLHG models to fuse
graph attention networks [36] to develop a deeper graph
convolutional network.

Data Availability

-e Supervised Text Network Classification data used to
support the findings of this study have been deposited in the
repository DOI:10.1609/aaai.v33i01.33017370. -e Semi-
supervised Node Classification data used to support the
findings of this study have been deposited in the repository
DOI:10.1609/aimag.v29i3.2157

Disclosure

-e funding sponsors had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the
writing of the manuscript; nor in the decision to publish the
results.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported in part by the National Natural
Science Foundation of China under Grants U1701266,
61571141, 61702120, and 61672008; Guangdong Province
Key Laboratory of Intellectual Property and Big Data under
Grant 2018B030322016; Scientific and Technological Proj-
ects of Guangdong Province under Grant 2019A070701013;
and Qingyuan Science and Technology Plan Project under
Grants 170809111721249 and 170802171710591.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Proceedings of the International Conference on Neural Infor-
mation Processing Systems, pp. 1097–1105, Lake Tahoe, NV,
USA, December 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 770–778, Las
Vegas, NV, USA, December 2016.

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, “Geometric deep learning: going beyond
Euclidean data,” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 18–42, 2017.

[4] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” 2017, https://arxiv.org/
abs/1706.02216.

[5] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and locally connected networks on graphs,” 2013,
https://arxiv.org/abs/1312.6203.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

[7] F. P. Such, S. Sah, M. A. Dominguez et al., “Robust spatial
filtering with graph convolutional neural networks,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 6,
pp. 884–896, 2017.

[8] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning con-
volutional neural networks for graphs,” 2016, https://arxiv.
org/abs/1605.05273.

[9] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein, “Geometric deep learning on graphs and
manifolds using mixture model CNNs,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5115–5124, Honolulu, HI, USA, July 2017.

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chemistry,”
in Proceedings of the 34th International Conference on Ma-
chine Learning, pp. 1263–1272, Sydney, Australia, August
2017.

[11] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional
networks on graph-structured data,” 2015, https://arxiv.org/
abs/1506.05163.

[12] S. Cao, W. Lu, and Q. Xu, “Grarep: learning graph repre-
sentations with global structural information,” in Proceedings
of the 24th ACM International on Conference on Information

Table 8: Comparison of network complexity and number of
parameters.

Methods Comp. Params

GCN [6] O (16 ×m × r) O (16 × r)
HO-3 [14] O (10 × 3 ×m × r) O (10 × 3 × r)
HO-4 [14] O (10 × 4 ×m × r) O (10 × 4 × rr)
MixHop [15] O (20 × 2 ×m×r) O (20 × 3 × r)
MixHop (learned) [15] O (20 × 2 ×m × r) O (60 × r)
HLHG-2 (ours) O (16 × 2 ×m × r) O (16 × r)

HLHG-3 (ours)

O (8 × 3 ×m × r)
(CiteSeer)

O (8 × r)
(CiteSeer)

O (10 × 3 ×m × r)
(Cora, PubMed)

O (10 × r)
(Cora, PubMed)

8 Computational Intelligence and Neuroscience

https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1605.05273
https://arxiv.org/abs/1605.05273
https://arxiv.org/abs/1506.05163
https://arxiv.org/abs/1506.05163


and Knowledge Management, pp. 891–900, Melbourne,
Australia, October 2015.

[13] M. Defferrard, X. Bresson, and P. Vandergheynst, “Con-
volutional neural networks on graphs with fast localized
spectral filtering,” 2016, https://arxiv.org/abs/1606.09375.

[14] S. Abu-El-Haija, N. Alipourfard, H. Harutyunyan, A. Kapoor,
and B. Perozzi, “A higher-order graph convolutional layer,” in
Proceedings of the 32nd Conference on Neural Information
Processing Systems (NIPS 2018), NIPS, Montreal, Canada,

December 2018.
[15] S. Abu-El-Haija, B. Perozzi, A. Kapoor et al., “MixHop:

higher-order graph convolution architectures via sparsified
neighborhood mixing,” 2019, https://arxiv.org/abs/1905.
00067.

[16] L. Tiao, P. Elinas, H. Nguyen, and E. V. Bonilla, “Variational
spectral graph convolutional networks,” 2019, https://arxiv.
org/abs/1906.01852.

[17] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cay-
leyNets: graph convolutional neural networks with complex
rational spectral filters,” IEEE Transactions on Signal Pro-
cessing, vol. 67, pp. 97–109, 2018.

[18] G. Ma, N. K. Ahmed, T. Willke et al., “Similarity learning with
higher-order graph convolutions for brain network analysis,”

2019, https://arxiv.org/abs/1811.02662.
[19] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are

graph neural networks?,” 2019, https://arxiv.org/abs/1810.

00826.
[20] J. Atwood and D. Towsley, “Diffusion-convolutional neural

networks,”Advances in Neural Information Processing System,

vol. s, pp. 1993–2001, 2016, https://arxiv.org/abs/1511.02136.
[21] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks

for text classification,” 2018, https://arxiv.org/abs/1809.05679.
[22] Y. Kim, “Convolutional neural networks for sentence clas-

sification,” 2014, https://arxiv.org/abs/1408.5882.
[23] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for

text classification with multi-task learning,” 2016, https://
arxiv.org/abs/1605.05101.

[24] J. Tang, M. Qu, and Q. Mei, “PTE: predictive text embedding
through large-scale heterogeneous text networks,” in Pro-
ceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 1165–1174,
Sydney, Australia, August 2015.

[25] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of

tricks for efficient text classification,” 2016, https://arxiv.org/
abs/1607.01759.

[26] D. Shen, G. Wang, W. Wang et al., “Baseline needs more love:

on simple word-embedding-based models and associated
pooling mechanisms,” 2018, https://arxiv.org/abs/1805.09843.

[27] G. Wang, C. Li, W. Wang et al., “Joint embedding of words

and labels for text classification,” 2018, https://arxiv.org/pdf/
1805.04174.pdf.

[28] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2014, https://arxiv.org/pdf/1412.6980.pdf,.

[29] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and

T. Eliassi-Rad, “Collective classification in network data,,” AI
Magazine, vol. 29, no. 3, p. 93, 2008.

[30] Z. Yang, W. W. Cohen, and R. R. Salakhutdinov, “Revisiting

semi-supervised learning with graph embeddings,” in Pro-
ceedings of the ICML, New York, NY, USA, June 2016.

[31] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regula-

rization: a geometric framework for learning from labeled and
unlabeled examples,” Journal of Machine Learning Research,
vol. 7, pp. 2399–2434, 2006.

[32] J. Weston, F. D. R. Ratle, H. Mobahi, and R. Collobert, “Deep
learning via semi-supervised embedding,” in Neural Net-
works: Tricks of the Trade, Springer, Berlin, Germany, 2012.

[33] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised
learning using Gaussian fields and harmonic functions,” in
Proceedings of the ICML, Washington, DC, USA, August 2003.

[34] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: online
learning of social representations,” in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining—KDD’14, New York, NY, USA,
August, 2014.

[35] Q. Lu and L. Getoor, “Link-based classification,” in Pro-
ceedings of the ICML, Washington, DC, USA, August 2003.
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