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Abstract: Gully erosion is a serious threat to the state of ecosystems all around the world. As a result,
safeguarding the soil for our own benefit and from our own actions is a must for guaranteeing the long-
term viability of a variety of ecosystem services. As a result, developing gully erosion susceptibility
maps (GESM) is both suggested and necessary. In this study, we compared the effectiveness of three
hybrid machine learning (ML) algorithms with the bivariate statistical index frequency ratio (FR),
named random forest-frequency ratio (RF-FR), support vector machine-frequency ratio (SVM-FR),
and naïve Bayes-frequency ratio (NB-FR), in mapping gully erosion in the GHISS watershed in the
northern part of Morocco. The models were implemented based on the inventory mapping of a total
number of 178 gully erosion points randomly divided into 2 groups (70% of points were used for
training the models and 30% of points were used for the validation process), and 12 conditioning
variables (i.e., elevation, slope, aspect, plane curvature, topographic moisture index (TWI), stream
power index (SPI), precipitation, distance to road, distance to stream, drainage density, land use,
and lithology). Using the equal interval reclassification method, the spatial distribution of gully
erosion was categorized into five different classes, including very high, high, moderate, low, and very
low. Our results showed that the very high susceptibility classes derived using RF-FR, SVM-FR, and
NB-FR models covered 25.98%, 22.62%, and 27.10% of the total area, respectively. The area under the
receiver (AUC) operating characteristic curve, precision, and accuracy were employed to evaluate the
performance of these models. Based on the receiver operating characteristic (ROC), the results showed
that the RF-FR achieved the best performance (AUC = 0.91), followed by SVM-FR (AUC = 0.87), and
then NB-FR (AUC = 0.82), respectively. Our contribution, in line with the Sustainable Development
Goals (SDGs), plays a crucial role for understanding and identifying the issue of “where and why”
gully erosion occurs, and hence it can serve as a first pathway to reducing gully erosion in this
particular area.
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1. Introduction

Gully erosion is considered the most destructive type of soil erosion, and it is asso-
ciated with various topographic, climatic, and anthropogenic factors [1], causing serious
environmental and human issues across the world [2], especially in arid and semi-arid
regions. Gully erosion occurs over a short period of time. Gullies are a common cause of
land degradation, as inappropriate land management and land use practices can lead to
increased soil erosion, with gullies as the primary landform [3].

The effective functioning of soil has a significant impact on ecosystem services and
is linked to the attainment of the Sustainable Development Goals (SDGs). The soil-water
system is the most important component in achieving multiple SDGs, with a focus on
neutralizing land degradation and restoring land [4,5]. As a result, one of the most signif-
icant issues for the long-term development of the environment and economic activity is
prevention of land degradation. As a result, extensive planning and erosion protection
have always been essential. Therefore, it is a thoughtful environmental issue that loses a
considerable quantity of productive soils each year all around the world [6,7]. Hence, map-
ping soil erosion is very essential for communicating the spatial information risk of gully
erosion for managers and decision-makers for its conservation and management planning.

Soil erosion in Morocco has increased dramatically, leading to severe negative effects
on crop production, water ecosystems, and the environment. It is estimated that at least
13% of Moroccan lands are affected by soil erosion [8]. However, there is little research
on gully erosion in Morocco in the literature [8,9]. Azedou et al. [10] used frequency ratio
(FR), logistic regression (LR), and random forest (RF) to project the spatial distribution of
gully erosion in the Souss-Massa watershed, Morocco. The results revealed that among
the models tested, the RF model had the best prediction performance. Tairi et al. [11] used
the revised universal soil loss equation (RUSLE) for estimating soil erosion in the Tifnout
Askaoun watershed in Morocco. Such efforts resulted in a vital tool for the local region’s
long-term land management. It is important to perform soil erosion research in this envi-
ronment to add to the current literature and assist local governments in developing suitable
plans for soil and land management, watershed management, and infrastructure planning.

Recently, expert knowledge methods such as the analytical hierarchy process (AHP) [12–14],
bivariate statistical methods (BSMs), such as FR [15,16], certainty factors (CF) [17,18],
weight of evidence (WoE) [19], the information value (InfVal) [20], and the evidential
belief function (EBF) [16], conditional probability (CP) [21], index of entropy (IOE) [22],
multivariate statistical methods (MSMs), such as linear regression (LiR) [23] and logistic
regression (LR) [24], and machine learning (ML) methods such as artificial neural networks
(ANN) [25,26], support vector machine (SVM) [27,28], RF [29,30], classification and re-
gression trees (CART) [31], and Naive Bayes [32,33], have been applied for soil erosion
mapping. ML algorithms are widely employed for a variety of purposes, including soil
erosion mapping, due to their superior prediction capacity compared to other traditional
methods [34,35]. There are a variety of approaches, each with its own set of pros and cons.
ML models, on the other hand, are useful for determining gully erosion and have been
utilized for susceptibility mapping [36–38] and ML mode piping erosion susceptibility pre-
diction [35,39]. The RF model and information value approaches are the most often utilized
methods in the bivariate model category [36,40]. The RF model has produced positive
outcomes in various studies [36,41,42]. Bivariate models can be simply applied within a
geographic information system (GIS) due to their straightforward interpretation [43]. These
have yielded positive findings in the literature, both in Morocco through studies in the
Ourika and Rheraya watersheds [10,20] and elsewhere [38,44–46]. Selecting gully trigger-
ing elements, generating susceptibility maps, implementing land management decisions,
and establishing future strategies have all been performed using GIS- and ML-based mod-
els [47]. Indeed, ML approaches allow for the evaluation of the role of various components
and their interactions, which has significant potential and has been increasingly applied in
recent years [34]. With the rapid advancement of different ML algorithms in recent years,
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determining which model is optimal for a certain location has become difficult. It is critical
to look into a variety of algorithms and determine which one is best for each situation.

More recently, hybrid/ensemble models are developed in a combined way, via an
integration of individual ML models and statistical approaches. The usefulness of hybrid
models that have been discussed in previous publications [48,49] lies in their highest
accuracies in comparison to individual models [50,51]. Additionally, in this study, the
efficiency of different approaches for gully erosion susceptibility, such as FR, RF, SVM, and
NB, is investigated. Although these ML techniques have been employed in the past, they
have only been used infrequently for gully erosion modeling.

Gullies inflict severe damage in arid and semi-arid areas, for example the GHISS
watershed in northern Morocco, and are regarded as a major environmental hazard [52,53].
As a result, executive agencies must continue to identify the reasons for gully erosion
development and zoning to build comprehensive management plans. This will be crucial
in the development of restoration methods that are based on natural solutions to ensure
long-term sustainability. Regardless of the high susceptibility of this study region to gully
erosion, no thorough research has been conducted to date to recognize places that are
particularly vulnerable to gully erosion; however, the scientific community is working
extremely hard and producing intriguing results. In this analysis, a hybrid methodology
combining bivariate statistical approaches and ML algorithms was employed to identify
locations susceptible to gully erosion. The main objective of this study is to create a
gully erosion susceptibility map in an area with identified soil erosion processes, such
as the GHISS watershed of northern Morocco. For that objective, the efficacy of the FR
as a statistical model as well as other ML techniques were evaluated in terms of their
applicability for predicting gully erosion-prone areas.

2. Materials and Methods
2.1. Study Area

The selected study area in this study is the GHISS watershed, located in the province of
Al Hoceima, in the northern part of Morocco. The study area lies between longitudes 3◦45′

and 4◦30′ W and latitudes 34◦15′ and 35◦17′ N, covering an area of 837.69 km2 (Figure 1).
Elevation ranges from 0 to 2032 m.a.s.l, characterized by mostly steep reliefs with slopes of
more than 35%. The climate in this region is described as semi-arid, and the majority of
rainfall occurs during September to May, with an average annual rainfall of 300 mm [54],
characterized by both seasonal and interannual variabilities [55]. The average temperature
ranges from 21 ◦C, in July, to 10 ◦C in January [56].

Figure 1. Study area map showing GHISS basin, its elevation profile, and training and validation
points used for the gully inventory map.
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From a geological point of view, the GHISS basin is characterized by the Ketama unit,
which outcrops in the central Rif and is essentially formed of flysch of the Albo-Aptian
domain. It belongs to the external domain (intra-Rif) and the flyschs nappes deposits.

Due to its topographical conditions (i.e., slopes higher than 55◦) and geological for-
mations (shale, marl, and marl-limestone) [57–59], the watershed has suffered severe soil
erosion and decline of forest ecosystems’ resources [57]

The study area belongs to the GHISS-Nekkor aquifer, which is an important source
of groundwater in that region [60]. However, insufficient and poor sanitation facilities,
as well as unsustainable agriculture in the study area, have resulted in deterioration of
groundwater quality in this region [60,61]. Previously, a study [62] using the RUSLE
method reported that more than 50% of the watershed is considered as moderately eroded.
Thus, our research effort is directed towards a deep understanding of gully erosion in this
study area.

2.2. Data Used and Methodology

The methodology adopted for this research is divided into three steps, as shown
in Figure 2. The first step of the methodology is the data gathering, in which different
datasets, including topographic, climatic, and human variables, were preprocessed, and
then different geo-environmental variables were generated. Besides geo-environmental
variables, a gully erosion inventory map was prepared which was later used in step 2.
The second step is the analysis part, in which gully inventory data from step 1 were used
to prepare the training and validation data. FR and normalization were performed for
training data along with geo-environmental variables, and then all resulting data were fed
to three different hybrid ML algorithms (RF-FR, SVM-FR, and NB-FR). In the third step, the
validation data prepared in step 2 were used and an accuracy assessment was performed
for each of the three hybrid classifiers. Based on the training dataset, the gully erosion maps
have been generated using natural breaks classification, available in Arc GIS 10.4. Thus,
five categories have been identified: very low, low, moderate, high, and very high gully
erosion susceptibility classes. Finally, the gully erosion susceptibility maps were created
using the best-suited hybrid classifier. The complete ML implementation was performed in
Python utilizing GIS tools and the Jupyter environment.

Figure 2. Methodology followed in this study.
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2.3. Gully Erosion Inventory Map

The elaboration of the gully erosion inventory map (i.e., target variable) is the first
task, and it aims to statistically elucidate the relationship between the distribution of gully
erosion (dependent variable) and the conditioning factors (independent variables) of gully
erosion hazards [40]. In this study, gully erosion points were identified during field surveys
using Global Positioning System (GPS) receivers, and once these locations were recorded,
interpretations of high-resolution images from Google Earth were performed. Hence, the
178 points of gully erosion were randomly split into 70% (125) for training, and 30% (53)
for validation were kept for the modeling task. An equal total number of non-gully erosion
points was randomly selected and split into two sets: 70% (125) for training and 30% (53)
for validation. Some examples of point locations and their field photographs are shown in
Figure 3.

Figure 3. Gully erosion photos in the GHISS watershed area.

2.4. Parameters’ Description

For building binary predictive models, it is necessary to gather both a dependent vari-
able (i.e., target) and a set of independent variables. In this study, 12 variables were selected
from different sources (Table 1) due to their importance in gully erosion, as discussed in
previous works [37,40]. The selected gully erosion factors classified as topographic, hydro-
logic, and geologic [37] were used to derive the following variables: elevation, slope, aspect,
plan curvature, topographic moisture index (TWI), stream power index (SPI), precipitation,
distance to road, distance to stream, drainage density, land use/land cover (LULC), and
lithology. All these gully erosion controlling factors were prepared and reclassified based
on expert knowledge and statistical analysis using the natural break classification method
using GIS tools [63]. To calculate the proportion of gully/non-gully data in each class
of each variable, we reclassified each continuous conditioning factor into a set of classes.
It should be noted that we adopted an automatic classification for some variables, and
for some parameters the classification remains the same as those provided in the source
data. The digital elevation model (DEM) with a pixel size of 30×30 m was downloaded
from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/), (accessed on 20
August 2021).

It is considered in this study because of its importance in the gully erosion process [37].
Using spatial analysis tools available in ArcGIS 10.4 software, DEM was used to calculate
other topographic parameters, including slope, aspect, plan curvature, TWI, and SPI. Due
to its effects on vegetation and microclimate [40], elevation plays an important role in
gully erosion. It was classified automatically into five classes, including: 0–417, 417–799,
799–1125, 1125–1427, and 1427–2032 m (Figure 4a).

https://earthexplorer.usgs.gov/
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Table 1. Data used in this study.

Conditioning
Factor Unit Source Resolution

Spatial/Scale

Slope Degrees (◦)
DEM 30 m, from

https://earthexplorer.usgs.gov/
(accessed on 20 August 2021)

30 m

Elevation Meters (m)
DEM 30 m, from

https://earthexplorer.usgs.gov/
(accessed on 20 August 2021)

30 m

Plane
curvature -

Morocco DEM 30 m, from
https://earthexplorer.usgs.gov/

(accessed on 20 August 2021)
30 m

Aspect -
DEM 30 m, from https

https://earthexplorer.usgs.gov/
(accessedon 20 August 2021)

30 m

Land cover -
Landsat-8-OLI image, from

https://earthexplorer.usgs.gov/
(accessed on 12 July 2021)

30 m

Rainfall (mm)
ERA-Interim, from

https://apps.ecmwf.int/datasets
(accessed on 18 July 2021)

30 m

Distance
from Road m Road map of Morocco 30 m

Distance
from stream m Stream map of Morocco 30 m

Drainage
density -

DEM 30 m, from
https://earthexplorer.usgs.gov/

(accessed on 20 August 2021)
30 m

Lithology - Geological map of Morocco 1/1,000,000 30 m

TWI -
DEM 30 m, from

https://earthexplorer.usgs.gov/
(accessed on 20 August 2021)

30 m

SPI -
DEM 30 m, from

https://earthexplorer.usgs.gov/
(accessed on 20 August 2021)

30 m

As reported in previous studies [64,65], slope has an influence on gully erosion, and it
becomes more serious in the upslope. In this study, the generated slope factor was classified
automatically into five classes: <5, 5–10, 10–20, 20–30, and >30◦ (Figure 4b).

Aspect has an important effect on gully erosion, as it can influence evapotranspiration,
vegetation cover, and incoming solar radiation [66]. In this study, it was classified automat-
ically into nine classes: (1) Flat, (2) North, (3) Northeast, (4) East, (5) Southeast, (6) South,
(7) Southwest, (8) West, and (9) Northwest (Figure 4c).

Plan curvature is the curvature of a contour line formed by intersecting a horizontal
plane with the surface [67], and it plays an important role in divergence or convergence
of water during downslope flow [68]. It was classified automatically into three classes:
concave, flat, and convex (Figure 4d).

TWI has been shown to be useful for gully erosion [40], and it was calculated through
Equation (1) [69]:

TWI = ln (As/tanβ) (1)

where A is the watershed area in meters, and β is the slope gradient. This index was
classified into five classes (Figure 5b): (18–21), (21–22), (22–23), (23–24), and (24–34).

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://apps.ecmwf.int/datasets
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Figure 4. Gully erosion conditioning factors: (a) elevation, (b) slope, (c) aspect, and (d) plan curvature.
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Figure 5. Gully erosion conditioning factors: (a) SPI, (b) TWI, (c) distance to road, and (d) distance
to stream.

SPI is an index used to measure the capacity and resistance of the soil through surface
water flow, runoff, and infiltration, that allows the development of gullies [70]. It was
calculated using Equation (2), proposed in [69].

SPI = As ∗ tanβ (2)

where AS is the special area of the basin (m2 m−1) and β is the slope, in degrees.
It is well-established that gullies occur more in the areas near roads [38]. Hence,

distance to road, distance to stream, and drainage density were considered in this study.
Using the Euclidean Distance tool available in ArcGIS 10.4, these factors were generated
(Figure 5c).
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LULC was prepared using the Landsat-8-OLI image acquired on 12 June 2019 down-
loaded from the United States Geological Survey (USGS) website. First, it was radiometri-
cally and atmospherically calibrated, and then the maximum likelihood supervised classifi-
cation algorithm using the ENVI software tool was employed. A total of 1079 ground-truth
points were randomly selected based on visual interpretation and high-resolution orthorec-
tified Google Earth imagery. Afterwards, based on field investigation, five classes were
generated, including: water bodies, forestlands, agricultural lands, buildings/settlements,
and bare lands (Figure 6a). The accuracy assessment showed that the generated map had
an overall accuracy of 92.4%.

Figure 6. Gully erosion conditioning factors: (a) LULC, (b) lithology, (c) rainfall, and (d) drainage density.
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This study used monthly precipitation data for a period of 2010 to 2019, downloaded
from https://apps.ecmwf.int/datasets, (accessed on 18 August 2021) with a pixel size
of 0.25 × 0.25◦ and resampled to a 30 m pixel size using the nearest neighbor resam-
pling method. A rainfall map was generated using the inverse distance-weighted (IDW)
interpolation method, and it was classified into five groups (Figure 6c): (315–461 mm),
(461–560 mm), (560–634 mm), (634–778 mm), and (778–1042 mm).

A lithology map of the watershed was digitized from the geological map of Morocco
at a scale of 1:000 000. The lithology classes in the study area include four classes, as shown
in Figure 6b.

2.5. Multicollinearity Analysis

The correlation of conditioning variables is represented by multicollinearity analysis,
which was used to select the optimal controlling factor for gully erosion susceptibility
mapping [71]. Many researchers have looked at the value of controlling variables, par-
ticularly for gully susceptibility mapping, and virtually all have come to the conclusion
that each variable’s importance is mostly determined by its surroundings [37,40]. In this
study, multicollinearity analysis was performed using variance inflation factors (VIF),
which show multiplicative inverse of tolerance (TOL), which is computed as 1 − R2, where
R2 is calculated through reverting all resulting variables in multivariate regression [40].
Multiplicative analysis was performed using the 12 geo-environmental variables prepared
earlier. From the literature, it is evident that values for TOL = 0.10, and VIF = 0.5 represents
issues in overall multicollinearity [72]. For multicollinearity analysis, equations used to
derive tolerance and VIF are given as Equations (3) and (4), respectively.

Tolerance = 1 − R2j (3)

VIF = 1/Tolerance (4)

where R2j is the coefficient of determination of regression for the variable j.

3. Models and Methods Background
3.1. Frequency Ratio (FR)

The FR model adopts a theory of probability to define the relationship between in-
dependent and dependent variables of spatial information using the multi-class mapping
approach [73]. It has been used for a variety of environmental hazards, such as land-
slide [74], flood [75], forest fire [76], and gully erosion susceptibility mapping [77]. It is
a bivariate probability statistic index, used to identify the spatial relationship between
erosion and different factors contributing towards gully erosion in the region. The FR
model can be defined as (Equation (5)):

Fri = b/a (5)

where b is the ratio between erosion pixels by total number of erosion pixels, a is the
ratio between no erosion cells by total number of non-erosion cells, while Fri donates the
importance of the conditioning factor in relation to erosion occurrence. FR > 1 indicates
high correlation with the erosion probability, while FR < 1 represents low correlation.

3.2. Random Forest (RF)

The RF model works on the principle of constructing multiple decision trees from
different subsets of data. RF is an integrated approach that combines the ideas proposed
in [78] with the methods described in [79]. The RF starts growing when the algorithm
predicts the variables and targets, leading to a decision tree which can be further pruned [80].
A RF is so large that it is very difficult to explain. It is necessary to summarize its information
using quantitative indicators. The famous indicators are the mean decrease Gini index and

https://apps.ecmwf.int/datasets
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mean decrease accuracy [80]. RF utilizes mean decrease accuracy and the mean decrease
Gini index in the ranking of factors [40,81].

3.3. Support Vector Machine (SVM)

SVM is a typical ML algorithm method which uses statistical learning theory based
on the structural risk minimization (SRM) [82]. This algorithm is best-suited to solving
regression analysis and classifier problems [64]. Generally, four kinds of computing func-
tions were used in SVM: linear kernel (LN), polynomial kernel (PL), sigmoid kernel, and
radial basis function (RBF) [70,83]. The accuracy of the prediction usually depends on the
selection of the type of function [84]. The SVM model works well only for linear data; in
case of nonlinear datasets, it transforms the nonlinear data into linear by using the so-called
“Kernel-trick” [85].

3.4. Naïve Bayes (NB)

The NB model is based on Bayes’ theorem, which uses a set of assortment algorithms
for classification [86]. This is a family of algorithms, where all explanatory variables are
completely independent of each other, which share a common principle [87]. The NB model
is well-suited against noise and irreverent models [88]. This model can also be used with a
relatively small amount of training data to estimate parameters for classification [89].

3.5. Model Validation

Validation of the developed models is an essential part of any modeling study [90,91].
Thus, several statistical indices were widely used, and among them, accuracy, specificity,
sensitivity, and precision were calculated in this research. Overall accuracy (OA) is the
probability of occurrence of correctly classified pixels which are computed by the sum of
true positive and true negative divided by all available singular tests. The equation form of
OA is given in Equation (6). Specificity, also known as the true-positive rate, represents
the proportion of gully erosion pixels correctly predicted as gully erosion (Equation (8)).
Sensitivity focuses only on correctly classified pixels from the test data and is calculated
by dividing the true-negative values by the sum of true negative and false positive (Equa-
tion (7)). Precision is the measure of the quality of the results and is calculated by dividing
the true positive by the sum of the true positive and the false positive (Equation (9)).

Accuracy = (TP + TN)/TP + TN + FP + FN (6)

Sensitivity = TP/TP + TN (7)

Specificity = TN/TN + FP (8)

Precision = TP/TP + FP (9)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
For the AUC (area under the receiver operating characteristic curve) and the receiver
operating characteristic (ROC) curve, on the y-axis, the sensitivity is plotted, and the x-axis
shows the specificity in terms of gully erosion probability occurrences.

3.6. Variable Importance Using Information Gain Index

Various statistical indices have been used for feature selection, which include, one-rule
attribute elevation (ORAE) [92], forward elimination [93], backward elimination [93], and
information gain (IG) [94]. Based on the results of the RF-FR model, IG was used to reveal
the importance of each conditioning factor for the modeling process [95].

4. Results
4.1. Results of Frequency Ratio

The FR was calculated to reveal the relationship between gully erosion as the depen-
dent variable and each gully erosion conditioning factor as the independent variables.
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Based on findings form this analysis (Table 2), the highest FR value (i.e., 3.528) was found
in the class of lithology of Cenomanian to Santonian with “flysch” Rif facies of Tisrin
slick, which represents the area more susceptible to gully erosion, mainly composed of
the alternation of sandstone marl-limestone flysch and sandstone flysch, more sensitive to
erosion, followed by the highest class of rainfall (885–1042) (i.e., 3.058).

The lowest classes of slope, elevation, curvature, plan curvature, distance from roads,
distance from stream, drainage density, TWI, and SPI are more susceptible to gully erosion.
From the analysis of the LULC parameter, it was observed that this erosion occurred more
in the bare lands class, followed by the buildings/settlement class. For the aspect factor, it
was also observed that the susceptibility to gully erosion is more pronounced in flat areas.

Table 2. Frequency ratio.

Factors Classes No. of Points % of Points Classes Area % of Class Area FR

Slope
(◦)

0–7 35,100 22.807 245,253 26.165 0.872
7–13 45,000 29.240 176,502 18.830 1.553
13–19 43,200 28.070 256,397 27.354 1.026
19–27 20,700 13.450 187,187 19.970 0.674
27–55 9900 6.433 71,995 7.681 0.838

Elevation
(m)

3–417 66,600 43.275 228,898 244.194 1.772
417–799 48,600 31.579 183,996 196.292 1.609

799–1. 125 11,700 7.602 119,356 127.332 0.597
1.125–1.427 21,600 14.035 242,315 258.508 0.543
1. 427–2.032 5400 3.509 162,771 173.648 0.202

Aspect

N 15,300 9.942 122,315 13.049 0.762
NE 19,800 12.865 107,738 11.494 1.119
E 17,100 11.111 95,212 10.158 1.094

SE 20,700 13.450 103,068 10.996 1.223
F 26,100 16.959 91,816 9.795 1.731

SW 18,900 12.281 79,477 8.479 1.448
W 10,800 7.018 86,691 9.249 0.759

NW 11,700 7.602 112,366 11.988 0.634
S 13,500 8.772 138,652 14.792 0.593

Plan curvature
(100/m)

Concave 50,400 32.749 237,242 25.310 1.294
Flat 30,600 19.883 194,743 20.776 0.957

Convex 72,900 47.368 505,350 53.913 0.879

Distance from
road (m)

0–1. 308 103,500 65.714 339,677 36.495 1.801
1. 308–2. 956 5400 3.429 51,948 5.581 0.614
2.956–4.894 23,400 14.857 239,404 25.722 0.578
4.894–7.462 6300 4.000 119,729 12.864 0.311

7.462–12,357 18,900 12.000 179,984 19.338 0.621

Distance from
stream (m)

0–312 37,800 24.000 290,993 31.049 0.773
312–659 53,100 33.714 249,852 26.659 1.265

659–1.050 36,000 22.857 206,734 22.058 1.036
1.050–1. 520 24,300 15.429 134,222 14.321 1.077
1.520–2.850 6300 4.000 55,409 5.912 0.677

Drainage
density

(km/km2)

0–905 83,700 53.143 362,876 38.719 1.373
905–2.136 18,900 12.000 96,881 10.337 1.161

2.136–3.622 6300 4.000 58,783 6.272 0.638
3.622–5.396 36,000 22.857 249,700 26.643 0.858
5.396–9.236 12,600 8.000 168,970 18.029 0.444

TWI

18–21 15,300 9.942 76,047 8.136 1.222
21–22 72,900 47.368 403,332 43.152 1.098
22–23 33,300 21.637 192,428 20.588 1.051
23–24 2700 1.754 18,292 1.957 0.896
24–34 29,700 19.298 244,575 26.167 0.738
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Table 2. Cont.

Factors Classes No. of Points % of Points Classes Area % of Class Area FR

SPI

−8–−2 2700 1.754 27,308 2.992 0.586

−2–−1 16,200 10.526 84,430 9.252 1.138

−1–−0,5 23,400 15.205 104,777 11.482 1.324
−0,5–0 60,300 39.181 326,669 35.797 1.095

0–1 41,400 26.901 294,190 32.238 0.834
1–5.9 9900 6.433 75,183 8.239 0.781

Rainfall (mm)

315–472 53,100 33.908 231,033 18.601 1.823
472–606 18,000 11.494 334,596 26.940 0.427
606–748 10,800 6.897 295,083 23.758 0.290
748–885 34,200 21.839 276,282 22.245 0.982

885–1.042 40,500 25.862 105,025 8.456 3.058

Lithology

Alluvium (Holocene) 9000 5.714 40,715 4.344 1.315
Lower pleistocene
“villafranchian” 22,500 14.286 52,106 5.560 2.569

Cenomanian to
Santonian with “flysch”
Rif facies of Tisrin slick

34,200 21.714 57,680 6.155 3.528

Lower and Middle
Cretaceous with
“flysch” facies

91,800 58.286 786,673 83.941 0.694

LULC

Water bodies 0 0.000 134 0.014 0.000
Forestlands 900 0.571 55,437 5.960 0.096

Agricultural lands 10,800 6.857 124,566 13.392 0.512
Buildings/settlements 57,600 36.571 322,690 34.692 1.054

Bare lands 88,200 56.000 427,319 45.941 1.219

4.2. Results of Multicollinearity Assessment

Multicollinearity analysis represents the correlation of conditioning variables, corre-
lated or interrelated [46]. It was applied in this study to analyze the correlation among the
gully erosion factors (independent variables). To perform this, we used two indexes: TOL
and VIF [64]. If the value of TOL is less than 0.1 and the value of VIF is greater than 10 [96],
collinearity exists amongst the variables. Our results (Table 3) showed that LULC had
the lowest tolerance value of the gully erosion conditioning factors (0.454), while aspect
had the highest tolerance value (0.893). Regarding the variance inflation factor (VIF), the
highest value was 2.203 (LULC), and the lowest value was 1.120 (aspect). These gully
erosion conditioning factors had tolerance values greater than 0.1, and the VIF values were
less than 0.1 and 10, indicating that no collinearity exists amongst these factors. Therefore,
all 12 conditioning factors were kept in this research.

Table 3. Multicollinearity analysis.

Factors
Collinearity Statistics

TOL VIF

Aspect 0.893 1.120
Slope 0.691 1.447

Plan curvature 0.747 1.338
Distance to stream 0.797 1.254
Distance to road 0.782 1.279
Drainage density 0.757 1.321

Elevation 0.756 1.323
Rainfall 0.748 1.337

Lithology 0.778 1.285
LULC 0.454 2.203

SPI 0.766 1.306
TWI 0.577 1.732
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4.3. Identification of Gully Zones

Based on the training dataset, the gully erosion maps have been generated using
natural breaks classification, available in Arc GIS 10.4. Thus, five categories have been
identified: very low, low, moderate, high, and very high gully erosion susceptibility classes.
Figure 7 and Table 4 present the spatial distribution of the susceptibility classes in the gully
erosion susceptibility maps. In the gully erosion susceptibility map constructed using the
RF model, 25.98% of the study area had a very high susceptibility to erosion, while 17.88%,
19.30%, 19.64%, and 17.20% of the area was classified as very low, low, moderate, and high
susceptibilities, respectively. In the case of the SVM model, 22.62% of the area was classified
as very high susceptibility, while 15.01%, 14.4%, 20.00%, and 27.95% had very low, low,
moderate, and high susceptibilities, respectively. For the NB model, 27.10% of the study
area was classified to the very high gully hazard category, while 17.40%, 17.67%, 20.37%,
and 17.44% had very low, low, moderate, and high susceptibilities, respectively. Figure 7
shows the spatial distribution of gully erosion in the watershed. By comparing the spatial
distribution of gully erosion obtained by all the used models, a quiet homogeneity of the
most erosion-prone areas throughout the watershed was clearly observed. The most eroded
areas were located in different parts of the watershed, which were characterized mainly
by variations in slope, rapidly increasing the transport of sediments. The characteristic
lithology of this watershed might be another reason [97]. In addition, inappropriate
agriculture practices and overgrazing also acted as other driving forces in gully erosion in
this study area [62].

Figure 7. Gully erosion susceptibility mapping using: (a) NB-FR, (b) RF-FR, and (c) SVM-FR.
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Table 4. Percentages of gully erosion susceptibility classes.

Susceptibility
Class

RF SVM NB

Class % of Area Class % of Area Class % of Area

Very low 5954 17.88 4996 15.01 5791 17.40
Low 6423 19.30 4791 14.4 5880 17.67

Moderate 6538 19.64 6658 20.00 6779 20.37
High 5723 17.20 9302 27.95 5805 17.44

Very high 8648 25.98 7529 22.62 9021 27.10

4.4. Variable Importance

The importance of variables for gully erosion mapping was performed based on the
RF model. As can be seen in Figure 8, TWI (1.78), LULC (1.73), distance from stream
(1.47), drainage density (1.45), slope (1.42), aspect (1.34), rainfall (1.28), SPI (1.06), and
distance from road (1.02) were the most importance factors for gully erosion susceptibility
mapping, whereas elevation (0.79), plan curvature (0.76), and lithology (0.74) were of the
least importance.

Figure 8. The importance of conditioning factors.

4.5. Validation of Gully Erosion Models

The validation results for both training and validation datasets using accuracy, pre-
cision, and AUC are presented in Table 5 and Figure 9. The statistical parameters for
each model were almost the same for both training and validation datasets, with a slight
difference in favor of the AUC for the FR-NB model.
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Table 5. Model statistical measures assigned to the training and validation datasets.

FR-RF SVM-FR NB-FR

Training Validation Training Validation Training Validation

Accuracy 86.29 86.11 80.64 80.55 65.72 65.74
Precision 83.58 83.05 78.35 77.96 67.89 68.08

AUC 0.83 0.83 0.78 0.79 0.69 0.79

Figure 9. (a) ROC curves of success rate. (b) ROC curves of prediction rate.

5. Discussion

The effective functioning of soil has a significant impact on ecosystem services and
is linked to the attainment of the SDGs. The soil-water system is the most important
component in achieving multiple SDGs, with a focus on neutralizing land degradation and
restoring land [4,5]. With the shifting land-use trends and compaction of productive soil,
excessive degradation in productive land is observed globally due to gully erosion. As a
result, one of the most significant issues for the long-term development of the environment
and economic activity is preventing land degradation. Therefore, extensive planning and
erosion protection have always been essential.

Machine learning methods are reliable tools for mitigating and controlling the influ-
ence of gully erosion in different regions all over the world. Based on the Web of Science
(WoS) database and using the common keywords “gully erosion susceptibility” and “ma-
chine learning algorithms”, nine papers published between 2019 and 2021 were selected
from different parts of the world, and their results are reported in Table 6. RF generates
models with high accuracy in comparison to the different approaches, and this is due to its
ability to handle large datasets and produce fast classifications, based on multiple features.
Additionally, RF is widely used to assess the importance of each variable used in order
to calculate a multi-classifier and evaluates its own accuracy and its suitability for the
modeling process [98].

Table 6. A comparison of machine learning models in gully erosion susceptibility.

Region ML Model Performances Based
on Accuracy/AUC Paper Reference

Brazil (Rio das
Velhas watershed)

RF 0.996

[99]
LR 0.935
NB 0.947

ANN 0.987
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Table 6. Cont.

Region ML Model Performances Based
on Accuracy/AUC Paper Reference

Iran (Robat
Turk Watershed)

RF 0.893

[34]
CDTree 0.808

KLR 0.825
BFTree 0.789

India
RF 90.38

[100]BRT 88.29
Naïve bayes 86.37

Brazil (South
Mato Grosso)

MDA 78.47

[101]
LR 77.62

CART 82.81
RF 86.09

India

MARS 91.4

[36]
FDA 84.2
RF 96.2

SVM 88.3

China
RF 0.944

[46]GBDT 0.938
XGBoost 0.947

India (Hinglo
River basin)

RF 0.87

[35]
GBRT 0.80
NBT 0.81
TE 0.82

Iran
(Bastam watershed)

ADTree 0.922
[102]NBTree 0.939

LMT 0.944

Iran (Fars province)
RF 0.958

[64]BRT 0.991
SVM 0.914

Abbreviations: random forest (RF), logistic regression (LR), naïve Bayes (NB), artificial neural network (ANN),
credal decision trees (CDTree), kernel logistic regression (KLR), best-first decision tree (BFTree), boosted regression
tree (BRT), multivariate discriminant analysis (MDA), classification and regression tree (CART), gradient boosted
decision trees (GBDT), extreme gradient boosting (XGBoost), multivariate additive regression splines (MARS),
flexible discriminant analysis (FDA), support vector machine (SVM), gradient boosted regression tree (GBRT),
naïve Bayes tree (NBT), tree ensemble (TE), alternating decision tree (ADTree), logistic model tree (LMT).

In this research, the relationship between gully erosion occurrence and various envi-
ronmental factors was investigated for the GHISS watershed. We used three hybrid ML
models (i.e., RF-FR, SVM-FR, and NB-FR) for gully erosion susceptibility mapping. We
found that the FR-RF model achieved better performance results compared to the other
models. Our findings are consistent with previous studies, for example [36,40]. In one
study [103], the authors argued that RF’s better performance is because it is less prone to
both over-fitting and outliers in the training dataset.

In terms of accuracy, the RF model is followed by the SVM-FR model due to its
capacity to handle non-linear data, and it has yielded good results for both classification
and regression problems in many applications [104].

The performance of NB-FR was slightly weaker than the other models. It assumes
conditional independence between features [105]. It has been used with great results in
previous papers [106].

Based on our results, among model variables, LULC and topographic moisture index
(TMI) showed the maximum importance factors in enhancing the performance of hybrid
models. Land-use change affects gully erosion by altering the hydrological and physic-
ochemical properties of the soil. Other factors, such as distance from stream, drainage
density, and slope, also showed reasonable importance output after LULC and TWI. Vege-
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tation stabilizes gullies because of the role of plant roots. Thus, areas with no and sparse
vegetation are most affected by gully erosion and widely exposed to rainfall and runoff.
The land resources in the northern part of Morocco that have been found to be influenced by
environmental and anthropogenic activities mainly include: rainfall irregularity [107,108],
steep slopes, and weak geologic units, i.e., the type of geological formation that forms the
northern parts make the lands more prone to erosion. Moreover, Cannabis cultivation has
become a complex and challenging practice to control, leading to the loss of forestlands
and accelerating soil erosion processes [76]. Thereby, the approach developed in this study
could be effective in gully erosion prediction. The maps generated here can be a good
reference to reduce the phenomenon of gully erosion and can be used as a valuable tool
for the establishment of sustainable strategies and actions. It should be highlighted that
there is not one perfect algorithm in comparison to others, because each one has its specific
advantages and drawbacks, and each algorithm highlights its own usefulness for each
study case.

6. Conclusions

The use of ML algorithms for environmental hazard modeling is an emerging focus
in many studies, thanks to the technological advancements of Internet of Things (IoT).
The relationship between gully erosion occurrence and various environmental factors was
investigated for the study area. As investigated in this study, three hybrid models (FR-
RF, FR-SVM, and FR-NB) have been elaborated for gully erosion susceptibility mapping.
The results of this study showed that the FR-RF hybrid model outperformed the other
developed models for gully erosion susceptibility mapping. In summary, this study showed
that the use of hybrid ML models for gully erosion is better than single ML models, which is
consistent with previous studies. The methodology proposed in this study can be applied to
areas influenced by identical environmental and anthropogenic activities, which includes,
for instance, rainfall irregularity, steep slopes, and weak geologic units, for mapping gully
erosion. For the elaboration of new studies, researchers are encouraged to use the above
three models to address new questions and research directions. Further research may
consider the application of deep learning approaches in gully erosion mapping from local
to regional scale areas.
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