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ABSTRACT With excellentmobility and flexibility, mobilemanipulators have great potential for loading and

unloading tasks of numerical control machine tools (CNC) in manufacturing workshops. However, because

of the rough and oily ground, dynamic obstacles and the convex plate of a CNC, harsh manufacturing work-

shop poses a huge challenge to the localization system of an autonomous mobile manipulator. To address

the above problem, this paper presents a hybrid maps enhanced localization system which mainly consists

of a global localization method and a pose tracking method. Hybrid maps including hybrid grid map, multi-

resolution likelihood fields (MLFs) and hybrid point map are constructed to efficaciously model the harsh

environment and to improve localization performance. Our global localization method employs the convex

hull sampling to spares dense Lidar data and the MLFs based branch and bound (BnB) search to speed up

global search. To achieve real-time localization reliably and accurately, our pose tracking method seamlessly

combines the BnB search and the adaptive Monte Carlo localization, and the Iterative Closest Point (ICP)

based scan matching using the hybrid point map is adopted for higher accuracy. In addition, a distance filter

improved by unscented transform is integrated into the pose tracking process to mitigate the influence of

dynamic obstacles. The developed localization system is evaluated through different experiments including

two weeks of loading and unloading tasks in a real manufacturing scenario, resulting in superior localization

performance.

INDEX TERMS Mobile manipulator, localization system, hybrid maps, global localization, pose tracking,

manufacturing workshop.

I. INTRODUCTION

Loading and unloading workpieces for CNC is an essential

process for a manufacturing workshop. To automate this

process, mobile manipulator is considered as core equip-

ment due to its flexibility and mobility [1], [2]. To this end,

we have developed a four-wheel-steering and four-wheel-

driving (4WS4WD) mobile manipulator shown in Fig. 1.

It mainly consists of two components: a 4WS4WD mobile

platform equipped with two Hokuyo UTM-30LX 2D Lidars

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

and eight encoders for omnidirectional locomotion and a

robot arm equipped with a camera for precisely loading and

unloading workpieces. Once a mobile manipulator gets a

service request from a CNC, it will autonomously navigate

to a pre-taught position near that CNC and then complete its

task with its robot arm.

Through our test, we found that only if the positioning

error of the robot arm is less than 0.2mm, workpieces can

be successfully placed into fixture. Therefore, we employ

a QR code based visual positioning module to obtain the

relative pose between the robot arm and a fixture with sub-

millimeter accuracy. However, to ensure that a QR code
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FIGURE 1. Self-developed mobile manipulator and its working scenario.

FIGURE 2. A typical manufacturing workshop: the right part shows three
issues which challenge to mobile platform localization.

image is availably captured, the mobile platform must park

within 20mm of the pre-taught position each time. Therefore,

it is crucial to achieve an accurate and reliable localization

for the mobile platform. Some works have been done for

robot localization in industry environments [3]–[5]. In their

implementation, 2D Lidar is the key sensor due to its high fre-

quency, high accuracy, low cost and small data size. However,

their methods do not explicitly take account of challenges in

a harsh manufacturing workshop, especially using 2D Lidar.

Also, the time consumption of pose initialization or localiza-

tion failure recovery, which is important for manufacturing

industry, is not sufficiently considered.

Fig. 2 shows a typical manufacturing workshop. In this

environment, Lidar-based localization faces three serious

challenges: rough and oily ground, dynamic obstacles and

the convex plate of a CNC. Specifically, the rough and oily

ground may cause wheel slip so that the accuracy of encoder

based odometry is poor. Dynamic obstacles such as moving

workers always lead to occlusion of a Lidar sensor. Moreover,

due to the changing roll angle of a mobile manipulator on the

rough ground, the two-layer structure of the convex plate will

cause dramatic fluctuation of Lidar data.

In this paper, to explicitly address the abovementioned

challenges, we develop a localization system by using hybrid

maps, which allows accuracy and reliable localization in

harsh manufacturing workshop. The developed localization

system has been successfully applied to our self-developed

4WS4WD mobile manipulator. An average positioning error

of 0.005 m/0.111 deg is obtained through two weeks of load-

ing and unloading tasks. In our work, the robot localization

technology is transferred from laboratory experiments to real-

world applications and the contributions are as follows:

1) A localization system is developed using three different

hybrid maps including hybrid grid map, MLFs and

hybrid point map. Those maps are designed to model

the harsh manufacturing environment in detail and to

improve the performance of localization.

2) For reliable and fast pose initialization, the convex

hull sampling(CS) based BnB localization is proposed

through three strategies: the CS strategy to sparse dense

Lidar data, MLFs based BnB search strategy for effi-

ciency global search and multi-times localization strat-

egy to improve reliability.

3) For accuracy and robust pose tracking under the sit-

uation of large odometry error and dramatic fluctua-

tions of Lidar data, a localization method referred to

as branch and bound adaptive Monte Carlo localization

(BnB-AMCL) is proposed

4) For mitigating the influence of dynamic obstacles,

a distance filter improved by unscented transform is

proposed.

5) Experiments in a harsh manufacturing workshop are

carried out to verify the performance of the proposed

localization system.

This paper is organized as follows: the next section presents

related works. The overview of the localization system is

presented in Section III. The methods of constructing hybrid

maps are introduced in Section IV. Our global localization

method and BnB-AMCL are introduced in Section V and

Section VI respectively. Different experiments in a real man-

ufacturing workshop are presented in Section VII, followed

by conclusions in Section VIII.

II. RELATED WORK

A. SENSORS FOR ROBOT LOCALIZATION

Choosing the proper sensor is the foundation for accuracy

and reliable localization. The commonly used sensors are

visual sensors, wireless sensor networks, radio frequency

identification (RFID), 2D/3D Lidar and so on. Visual sen-

sors such as mono-camera [6] and RGB-D camera [7] can

obtain abundant information for robot localization. However,

they are sensitive to the light changes and the field of view

variations, which makes them difficult to meet the reliability

requirements of industry application. Wireless sensor net-

works [8] and radio frequency identification (RFID) [9] are

robust to environment changes and require little computation

so that they allow robust and fast localization. However, about

10cm accuracy can be achieved through such sensors and

it is not accurate enough for robots operating in industrial

environments. Due to accurate distance measurement over a

wide range, 2D/3D Lidar based localization can meet both

requirements of accuracy and reliability [10]–[12]. 3D Lidar

can obtain more environment information than 2D Lidar

and it can achieve localization in six degrees of freedom.

However, at present, 3D Lidar is much expensive than 2D and

more information requires more computational resources.

Thus, 2D Lidar has obvious advantages over 3D Lidar for

robot localization in indoor manufacturing workshop.
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B. GLOBAL LOCALIZATION

Global localization is a procedure to estimate the initial pose

of a robot or to re-localize a robot after localization failure.

With a large number of particles, MCL is a convenient way

to solve the global localization problem [13]. The drawbacks

of this method are that it is time-consuming and its success

rate is low. By finding correspondences between a set of

sparse features detected in two occupancy grid maps, a map

to map matching based global localization is designed by

Blanco et al. [14]. Park et al. adopt the SVM method to train

a place classifier which can be used for global localization.

However, their method relies on reliable feature detection

which is a tough job for Lidar data [15]. Liu et al. employ

the BnB strategy for global point cloud registration [16].

Also, the same strategy is employed for loop closure and

vehicle localization [17]–[19]. Each of those four methods

can be regarded as a global localization method and their

experiments show that the BnB strategy allows performing

a fast global search while maintains a high success rate.

However, their methods do not try to sparse the dense Lidar

data for further improving efficiency and their BnB strategy

cannot be seamlessly combined with AMCL [20], [21].

C. POSE TRACKING

After getting the initial pose, pose tracking is performed

to incrementally track the pose of a mobile manipulator.

A graph-based pose tracking method using sparse point fea-

ture and lane marking is proposed by Wu et al. [22]. Their

approach performs with less than 0.50 m/0.41 deg localiza-

tion error in an outdoor city environment. Biswas et al. apply

the state space gradients to refine the localization result of

MCL and a centimeter-level accuracy can be achieved by

their method [23]. An accurate pose tracking method based

on particle filter and scan matching is verified through a

highly accurate motion capture system [24]. They are able

to achieve average localization error and positioning error

in a laboratory static environment within 3mm/0.06deg and

5 mm/0.15 deg respectively. By using the discrete Fourier

transform, Vasiljević et al. develop an accuracy pose track-

ing method for autonomous warehousing in an industrial

setting whose positioning accuracy reached 1.5 cm and

0.5 deg [3]. Although accuracy pose tracking can be achieved

through those methods, however, without explicitly consider-

ing the negative impacts of a harsh manufacturing workshop,

their localization method may be hard to apply to the self-

localization of mobile manipulators.

D. MAPS FOR ROBOT LOCALIZATION

To improve the localization performance in complex envi-

ronments, previous works have employed different forms of

maps. Due to its concise form and abundant information,

the occupancy grid map [25] is commonly used for robot

localization. Tipaldi et al. develop the dynamic occupancy

grid to deal with the semi-static object in a dynamic envi-

ronment, in which an RBPF based localization method is

FIGURE 3. Localization system architecture.

employed to simultaneously locate a robot and update the

dynamic occupancy grid [26]. In our previous work [27] a

novel localization method is proposed for robot localization

in ambiguous environments, which is based on a pre-built

map named ambiguity grid map that models the ambiguous

property of an environment. To realize robust localization

in an oil and gas industrial environment, a pre-computed

3d likelihood field using hybrid octree is presented by

Merriaux et al. and efficiency likelihood computation can be

obtained through this map [28]. By employing multi-layer

maps, Vasiljevic et al. achieve a robust forklifts localization in

a dynamic industrial environment with theMCLmethod [29].

Those methods show that maps are very useful to enhance the

localization performance in some special scenes. Therefore,

it is a reason for this paper to explore hybrid maps to make up

for the shortage of 2D Lidars in harsh manufacturing work-

shop and to improve localization accuracy and reliability.

III. OVERVIEW OF THE LOCALIZATION SYSTEM

The proposed localization system, as demonstrated in Fig. 3,

mainly contains three modules: data capturing, mapping and

localization, which integrally solves the localization problem

in harsh manufacturing workshop. Each module of our local-

ization system are briefly explained below:

1) Data capturing module: This module is used to read

and preprocess the original sensor data from two Lidars

and eight encoders.

2) Mapping module: Three maps including hybrid grid

map, MLFs and hybrid point map are created in this

module. Hybrid grid map models the two-layer struc-

ture of amanufacturingworkshop, which can be used to

deal with the dramatic fluctuation of Lidar data. MLFs

are used for computing the match score and the upper

bound during the BnB search while improving search

efficiency. Also, this map can bridge the gap between

BnB search and AMCL so that those two methods can

be combined seamlessly. Hybrid point map is used for

ICP based accuracy localization.

3) Localization module: CS based BnB localization is

employed to fast and reliably obtain the initial pose of a
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FIGURE 4. Combination of two occupancy grid maps at different height:
(a) Occupancy grid map below standard height. (b) Occupancy grid map
above standard height. (c) Hybrid grid map. (d) Hybrid point map.

robot. Subsequently, the BnB-AMCLwith UDF is used

to filter out dynamic obstacles and to track robot pose

accurately. Pose tracking procedure is under the super-

vision of localization failure detection which using the

match score produced by BnB-AMCL to detect distinct

localization failure. Successful tracking results will be

adopted by the planning and control module. Other-

wise, the robot will stop for re-localization through our

global localization method and then resume its work

after locating itself.

IV. MAPPING

In this section, we will introduce the building process of

the hybrid grid map. The hybrid point map can simply be

created through binarization of the hybrid grid map and then

converting its pixel coordinates to the Euclidean coordinates

according to its grid resolution. The detailed building process

of the MLFs is presented in Section V.

The standard Lidar installation height for our mobile

manipulator is designed to meet the requirement of mechani-

cal structure and electrical arrangement of the mobile plat-

form. Then, the hybrid grid map is a combination of two

occupancy grid maps at different heights which are below

and above the standard Lidar installation height. Concretely,

the building process of the hybrid grid map is as follows:

1) By mounting a Lidar on a height of 5cm higher and lower

than the standard installation height respectively and manu-

ally steering the robot traversing through a workshop, two

occupancy grid maps of different heights are built through

graph-based SLAM method [17]. The resulting occupancy

grid maps are shown in Fig. 4 (a) and (b); 2) The coordi-

nate systems of these two maps are inconsistent. Therefore,

we use the BnB based global localization method presented

in Section V to obtain a coarse coordinate transformation of

those two maps; 3) The two occupancy grid maps are then

converted into point maps. Afterward, by using the coarse

coordinate transformation as the initial alignment, the refined

coordinated transformation can be computed through point

TABLE 1. Occupancy probability calculation.

cloud registration such as ICP. It should be noted that one

point cloud registration may not be enough to get an ideal

alignment. In this situation, multi- times of point cloud regis-

tration should be performed with different initial coordinate

transformations which are close to the coarse coordinated

transformation. After alignment, those two grid maps have a

consistent coordinate system; 4) Finally, the occupancy prob-

ability of each grid map should be updated.More specifically,

we define p as the pixel coordinate of a grid map, Oh(p) as

the hybrid gird map and O1(p), O2(p) as the occupancy grid

map at the lower height and the higher height respectively.

ThenOh(p) can be calculated according to Table 1. The result

hybrid grid map is shown in Fig. 4 (c), and the corresponding

hybrid point map is shown in Fig. 4 (d).

V. CS BASED BnB-LOCALIZATION

A reliable global localization requires a comprehensive

search in the solution space constrained by an occupancy

grid map and the original Lidar data for global localization is

dense. Thus, those two issuesmake global localization a time-

consumption task. In this paper, for a fast and reliable global

localization, we employ three strategies: the CS strategy to

sparse Lidar data, a MLFs based BnB search strategy to

efficiently and reliably find the global optimal solution and

a multi-times localization strategy to improve reliability.

A. CS STRATEGY

CS is achieved by extracting convex hull from the original

Lidar data [30], followed by a random sampling procedure

to preserve more Lidar data. A convex hull of a given point

set can be defined as the smallest convex polygon containing

all points in the point set. There are two reasons to employ

convex hull: 1) Convex hull, to some extent, characterize the

shape property of a point set; 2) Relative small distance mea-

surements usually arise from dynamic obstacles. However,

those points belonging to a convex hull correspond to large

distancemeasurements which aremore likely caused by static

objects such as walls and machine tools.

By using CS, the amount of the original Lidar data can

be significantly decreased, however, the concave property of

Lidar data is disregarded. To address this problem, some extra

points are randomly sampled from the original points. To bal-

ance the influence of randomly sampled points, the number of
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FIGURE 5. Schematic diagram of CS: Red points and blue points
represent the original Lidar data and the sampled data by using CS
respectively. The green polygon represents the convex hull of the original
data. (a) Convex hull extracted from the original Lidar data. (b) Convex
hull and random samples.

such points is equal to the number of the convex hull points.

An example of CS can be seen from Fig. 5.

B. MLFs BASED BnB SEARCH

Global localization can be formulated as an optimal match

problem which aims at finding a pose x that maximum a

match score:

x∗ = argmax
x∈W

NLidar
∑

n=1

M (T xz
[n]) (1)

where T x denotes a transformmatrix derived from a pose x ,

(xx , yx , θx)
T and z[n] , (xz[n] , yz[n])

T denotes the n th point

from the sampled Lidar data. NLidar is the number of Lidar

data. More specifically,

T xz
[n]=

(

cos θx − sin θx
sin θx cos θx

) (

xz[n]

yz[n]

)

+
(

xx
yx

)

(2)

M is a map for computing the match score, i.e.: M : rZ ×
rZ → R, where r is the resolution ofM . In our implementa-

tion, we use likelihood fields asM .

W is the discrete solution space which contains all pixel-

accuracy pose in an occupancy grid map, i.e.:

W = {xmin + ir : i ∈ N, xmin + ir ≤ xmax}
× {ymin + jr : j ∈ N, ymin + jr ≤ ymax}
× {−π + kδθ : k ∈ N, −π + kδθ < π} (3)

where × represents the Cartesian product and i, j, k denote

index. xmin, ymin, xmax, ymax are the bounding box of the

map M . δθ is the angular step for angular search. Given a

robot pose x, the match score
NLidar
∑

k=1

M (T xz
[n]) tells us the

match quality between sampled Lidar data and a mapM .

We employ the BnB strategy to solve the above optimal

match problem, where the node selection method, branch

method and upper bound computation method need to be

specified. Similar to the implementation of BnB method

in [17], we employ a depth-first search to select node and

quadtree to divide the X-Y dimension while the angular

dimension is searched exhaustively with the angular step δθ .

As shown in Fig. 6, given a fixed angle, the X-Y solution

FIGURE 6. Schematic diagram of BnB based search: The left part shows
the recursive division of a search space using the depth-first search. The
right part shows the corresponding search tree. The blue regions indicate
the sub-spaces with the highest upper bound.

space is recursively divided into four sub-spaces until a sub-

space only consists of one possible pose. After each subdi-

viding, the upper bound of each sub-space, which is a value

bigger than or equal to the maximum match score of those

poses in that sub-space is computed and the sub-space with

the highest upper bound is selected for the next subdividing.

Moreover, if the upper bound of the possible pose, which is

also the match score of that pose, is higher than the upper

bound of other sub-space, those sub-spaces are pruned and the

possible pose is the optimal pose. Otherwise, the sub-space

with the highest upper bound is continued searched with the

depth-first search.

The same equation
NLidar
∑

n=1

M (T xz
[n]) is used for upper bound

computation, the difference is that at this time MLFs are used

as M . MLFs are a generalization of likelihood fields which

is a kind of grid map made up by cells and is developed

to compute the observation likelihood for robot localiza-

tion [31]. The advantage of MLFs for BnB based global

localization is that they make localization robust to sensor

noise and cluttered environment. In addition, they allow a

relatively large angular step for angular exhaustive search.

Furthermore, by using likelihood fields to compute the match

score, the BnB search and AMCL can be combined seam-

lessly which will be detailed described in the next section.

The MLFs can be expressed as:

M0
LF (ξ )= αprand + (1 − α)

1

σ
√
2π

e
− (||ξ−ξnearest ||)2

2σ2 (4)

Mh
LF (ξ )=max({M0

LF (i) :

i ∈ {(ix , iy)∈Z
2 :

(

ξx ≤ ix ≤ ξx + 2h − 1

ξy ≤ iy ≤ ξy + 2h − 1

)

}})

(5)

where M0
LF (ξ ) represents the likelihood fields of a hybrid

grid map and also it is the likelihood fields with the highest

resolution, whose resolution equals to the resolution of the

hybrid grid map. ξ indicates a cell in the 2D grid map, ξnearest
indicates the occupied cell nearest to ξ in the hybrid grid map,
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FIGURE 7. An example of MLFs.

σ indicates the distance standard deviation of a Lidar and α

is a weight parameter. Equation (4) demonstrates that a cell

value of a likelihood field is a weighted sum of two distribu-

tion, one of which is a uniform distribution parameterized by

prand and the other one is a Gaussian distribution.

To define an integer h greater than zero as the level of

resolution, the MLFs is represented by Mh
LF and can be built

according to Equation (5). In detail, the value of a cell ξ for

Mh
LF is the maximum cell value of a square region in M0

LF ,

where the top left corner of the square region is at ξ and its

length equals 2h − 1 which indicates the resolution at the

level h. In fact, the size of the square region indicates the

size of a sub-space during the BnB search. And the MLFs

are look-up tables for the value that is bigger than or equal to

the maximum match score of a sub-space, and this value is

the upper bound of such sub-space. An example of MLFs is

shown in Fig. 7.

Using the law of cosine, the angular step can be computed

according to (6) and (7).

dmax = max
n=1,...,NLidar

∥

∥

∥
z[n]

∥

∥

∥
(6)

δθ = arccos(1 − 2σ 2

d2max

) (7)

As we can see, the angular step is selected that the max-

imum distance measurement does not move more than the

distance standard error of a Lidar. This selection method will

give us a relatively small angular step and ensure a high

success rate for localization.

C. PSEUDO-CODE OF OUR GLOBAL

LOCALIZATION METHOD

Besides CS and MLFs based BnB search, a multi-times

localization strategy is employed to further improve local-

ization reliability. The complete pseudo-code of our global

localization method is shown in Table 2. In line 2,

the point set C which is the convex hull of the origi-

nal point set P is extracted. Line 4 to 10 shows a loop

that implements the multi-times localization strategy. This

loop will be break if the current match score is higher

TABLE 2. CS based BnB-Localizaiton.

than score_reliable or reaches the maximum loop count

max_gloc_count. At each localization, we first obtain D

through combining the randomly sampled point set R and C .

Then BnB search is employed in step 7. One important thing

to note is that a parameter named minmum_score is induced

for the BnB search. This parameter constrains the minimum

match score. Those sub-spaces whose upper bound are lower

than this parameter are pruned. It is not necessary for global

localization. However, this parameter will benefit our pose

tracking method described below. In line 8, the current score

is computed where {z[n]p } are those points from the original

point set P and then it is used to decide whether or not to

drop out of the loop.

VI. BnB-AMCL WITH UDF

The aim of the BnB-AMCL with UDF localization method

is to address three issues in harsh manufacturing work-

shop: 1) the inaccuracy odometry caused by the rough and

oily ground; 2) dramatic fluctuation of Lidar measurements

caused by two-layer structure and rough ground; 3) Lidar

occlusion caused by dynamic obstacles. In our implementa-

tion, we employed the AMCL method as the basic localiza-

tion method, meanwhile, some novel strategies are adopted

to improve AMCL so that it can meet the requirements in

harsh manufacturing workshop. The odometry is computed

by the data from 8 encoders and is used for the motion model

of AMCL. In this paper, we mainly focus on the overall

localization process, the detail of the odometry computation

is out of the scope. Researches on encoder odometers have

been thoroughly studied in [32] and [33].

A. BnB-AMCL

Given a prior occupancy grid map mg, robot localization can

be considered as a probabilistic reasoning problem:

Bel(xt ) = P(xt |z1:t ,u1:t ,mg) (8)
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where xt denotes the robot pose at a time t , z1:t is the sequence
of observations, u1:t denotes a sequence of motion control

commands or odometry measurements.

Based on Markov independence of the odometry and

Markov independence of the observation [34], (8) can be

rewritten as:

Bel(xt ) = ηP(zt |xt ,mg)

·
∫

xt−1

P(xt |xt−1,ut )Bel(xt−1)dxt−1 (9)

where η is a normalization coefficient, P(xt |xt−1,ut ) and

P(zt |xt ,mg) correspond to the motion model and observation

model, respectively.

In general, the pose which maximum the posterior

Bel(xt ) is selected as the current pose estimation, which is

expressed as:

x̂
MAP
t = argmax

xt

Bel(xt ) (10)

By using a set of weighted samples {< ω
[i]
t , x

[i]
t >

Nt
i=1}, also

referred to as particles to represent probability distribution,

Monte Carlo localization (MCL) [25] is an approximate but

efficient way to solve the maximum posterior estimation

of (10). The key technique of MCL is to firstly sample from

a so-called proposal distribution which allows efficiently

sampling. Then, the weight of each particle is computed

through a likelihood function. After that, the current pose

posterior distribution Bel(xt ), which also referred as to target

distribution, can be expressed by those weighted particles and

the particle with the highest weight is select as the current

pose estimation. Finally, resampling is performed to obtain

particles which have the same weight. For standard MCL,

the motion model P(xt |xt−1,ut ) is chosen as the proposal

distribution and the likelihood fields which is an instanti-

ation of the observation model P(zt |xt ,mg) is adopted to

compute the particle weight. To adaptive the particle set size

for further efficiency, the AMCL method is developed by

KLD-sampling. This method shows that the more the uncer-

tainty of a motion process, the more the number of particles

is required, and vice versa. To implement the KLD-sampling,

some bins with a fixed size will be defined. Once a particle

falls into a new bin during the sampling process, the number

of particles is updated according to

n = m− 1

2ε

{

1 − 2

9(m− 1)
+

√

2

9(m− 1)
z1−δ

}3

(11)

where ε and δ are pre-specified error bound threshold, z1−δ

is the upper quantile of the standard normal distribution. m is

the number of bins.

In harsh manufacturing workshop, inaccuracy odome-

try will cause a relative dispersive proposal distribution.

Meanwhile, the target distribution may be multimodal

because of the two-layer structure. Under these circum-

stances, AMCL always gives a poor pose estimation and

requires a lot of particles. This situation is shown in

FIGURE 8. The process of BnB-AMCL: Dashed line and solid line
represent proposal distribution and target distribution respectively. Each
stick represents a particle and its length indicates the weight of a
particle. Red sticks represent particles produced by BnB search or ICP
based scan match. Gray boxes represent those bins produced by
KLDsampling. (a) Prediction step. (b) Update step. (c) ICP step. (d) BnB
step. (e) re-ICP step.

Fig. 8 (a) and (b). Fig. 8 (a) shows those particles sampled

from proposal distribution. Those particles are widespread

and a little of them particle is near the location with the

largest posterior. In Fig. 8 (b), the weight of each particle is

presented, which is computed by using observation likelihood

function. We can clearly see that the particle with the largest

weight is far from the location with the largest posterior.

As we know from Section IV, the BnB search can be

used to obtain a global optimal pose, therefore we com-

bine BnB search and AMCL to develop a pose tracking

method called BnB-AMCL to solve the abovementioned

issues. In fact, there are relations between those two methods.

Those bins generated during KLD-sampling can be regarded

as a search space of BnB. Furthermore, by using likelihood

fields, the computation method for match score is the same

method for weight computation. That is if we use the maxi-

mum weight from AMCL as the minmum_score, BnB search

will give us a global optimal pose whose weight is higher than

the maximum weight from AMCL and inefficient searches

are avoided because those sub-spaces whose upper bound are

lower than minmum_score are pruned.

To obtain a more accuracy pose estimation in BnB-AMCL,

we employed ICP to match the current Lidar data with the

hybrid point map. Specifically, BnB-AMCL has three more

steps after weight computation: 1) find pose xat with the max-

imum weight and obtain a particle < ωb
t , x

b
t > (Fig. 8 (c)) by

performing ICP which uses xat as the initial alignment; 2) take

ωb
t as the minmum_score and the bins generated from the

KLD-sampling process as the initial search space, a particle

< ωc
t , x

c
t > (Fig. 8 (d)) is obtained through BnB search;

3) ICP is again performed by using xct . as the initial alignment

to get the final pose estimation < ωd
t , x

d
t > (Fig. 8 (e)).
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Once the ICP based matching performs successfully, it is

obvious to know that ωd
t ≥ ωc

t ≥ ωb
t ≥ ωa

t . Besides, with

the global optimality of the BnB search, xdt corresponds to

the pose with the largest posterior among the search space

generated from KLD-sampling. Therefore, a more reliable

and accuracy pose estimation can be acquired by our method.

One important thing to note that if we choose the bin size

the same as the lowest resolution of the MLFs, only fewer

particles is enough for BnB-AMCL. This is because it is a

relative large bin size and a wide initial search space for the

BnB search will be generated with such size.

B. UDF

Dynamic obstacles may produce distance measurements that

are shorter than expected. Those relative short measurements

can be filtered through the distance filter [35]. To effectively

integrated distance filter with BnB-AMCL, unscented trans-

formation is adopted to improve the original distance filter,

which leads to UDF.

The probability that a distance measurement d [i] at index i

is shorter than expected is expressed as:

pshort (d
[i]) =

∫

pshort (d
[i]|x)p(x)dx (12)

where x denotes robot pose and p(x) is the distribution of

robot pose at the current time. Given x and a grid map,

the expected distance measurement d
[i]
µ at index i can be

obtained through the raycasting algorithm. If pshort (d
[i]) is

greater than a predefined threshold tb, we think d
[i] is caused

by moving workers and such measurement will be ignored

during localization. pshort (d
[i]|x) can be expressed as a cumu-

lative probability of a Gaussian distribution N (d
[i]
µ , σd ):

pshort (d
[i]|x) =

∫

dj>d [i]

1√
2πσ

e
− (dj−d

[i]
µ )2

2σ2 ddj (13)

By using the look-up table, the cumulative probability of

(13) is easy to compute. In (12), p(x) is unknown. Perhaps,

the goal of localization is to compute p(x). Using those par-

ticles produced in the prediction step of BnB-AMCL is an

approximate and feasible way to represent p(x). However,

each particle requires one raycasting operation. And a lot

of computation may be required with too many particles.

Hence, we adopt unscented transformation in three dimen-

sions to reduce the number of particles to 7 to represent

p(x). More specifically, based on the unscented transforma-

tion, those seven particle and their corresponding weight are

expressed as:

x
[0]
U = x̄prior ω

[0]
U = κ/(nx + κ) i = 0

x
[i]
U = x̄prior +

(√

(nx + κ)Pprior

)

i

× ω
[i]
U = 1/{2(nx + κ)} i=1, . . . , nx

x
[i]
U = x̄prior −

(√

(nx + κ)Pprior

)

i−nx
× ω

[i]
U = 1/{2(nx + κ)} i=nx + 1, . . . , 2nx (14)

TABLE 3. Pseudo-code for BnB-AMCL with UDF.

where x
[i]
U and ω

[i]
U represent the i th particles produced by

unscented transformation and its corresponding weight. nx is

the dimension of x, which is set to 3. x̄prior and Pprior denote

the mean and covariance matrix of those particles produced

by the prediction step of BnB-AMCL, and κ represents a

scaling parameter, which is set to 1 in our implementation.

Then (12) can be rewritten as:

pshort (di) =
2nx+1
∑

i=1

pshort (di|x[i]U )ω
[i]
U (15)

By using (15), the improved distance filter, referred to

as UDF, can be efficiently integrated into BnB-AMCL to

mitigate the influence of dynamic obstacles.

C. PSEUDO-CODE OF OUR POSE TRACKING METHOD

The pseudo-code for BnB-AMCL with UDF is shown

in Table 3. In step 2, odometry is computed through encoder

readings. The prediction step is shown from step 5 to step 7.

By using KLD-sampling, the size of particles is update from
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FIGURE 9. The harsh manufacturing workshop for our experiments.

TABLE 4. Parameters for our experiments.

step 8 to step 13, also bin set B is generated. nmin is a

parameter which constrains the minimum particle number.

In step 16, the UDF is adopted to filter Lidar data. Then

update step is performed from step 17 to step 20. Step 21 to

25 shows the ICP and BnB step, where bin set B is used as

the initial search space for BnB step. After that, all weights

are normalized.

VII. EXPERIMENTS AND RESULTS

To comprehensively evaluate the performance of the pro-

posed localization system, our experiments are carried out

from two aspects: global localization and pose tracking.

We conduct all experiments in a real manufacturingworkshop

shown in Fig. 9 using our self-developed 4WS4WD mobile

manipulator. The hybrid maps for this workshop are created

before experiments, which can be seen in Fig. 4 and Fig. 7.

Some parameters for our experiments are shown in Table 4.

A. GLOBAL LOCALIZATION EXPERIMENTS

Offline Lidar data from 11 different stations are collected

for our global localization experiments. At each station,

we record 500 frames of Lidar data so that 500 times of

FIGURE 10. Selected stations for experiments: All stations indicate
pretaught positions for loading and unloading workpieces or automatic
charging.

global localization can be performed at one station. Those

stations indicate pre-taught positions where the robot per-

forms loading and unloading tasks or automatic charging,

as shown in Fig. 10. In these experiments, we mainly focus

on the success rate and average running time. Specifically, we

assume a global localization is successful if its distance error

is smaller than 0.5 m and its orientation error is smaller than

5 deg.

In our global localization experiments, we compare three

methods: branch and bound localization (BnB-localization)

with all data, random sampling (RS) based BnB-localization

and CS based BnB-localization. For random sampling,

the sample set size is set to be consistent with the convex set

based sampling for comparison. It is worth mentioning that

MCL andmap tomapmatching based global localization [14]

as common global localization algorithms are also verified

in our experimental environment. But the above methods

require 1s-30s and their success rate are low, so their results

are not detailed in our global localization experiments.

Fig. 11 shows the global localization results. In terms

of the success rate, which is shown in Fig. 11(a),

CSBnB-localization and BnB-localization with all Lidar data

have similar performance, while RSBnB-localization gets the

worst result among three methods. Interestingly, at station 7,

the CSBnB-localization method gets a much higher success

rate than that of BnB-localization with all Lidar data. For a

clear explanation, an example of localization results at station

7 is shown in Fig. 12. In this example, CSBnB-localization

achieves a success localization while others are not. From the

original Lidar data (Fig. 12 (b)) at station 7, we can see that

only a few measurements correspond to the right wall. Hence

it is hard to determine the location in the horizontal direction.

However, as shown in Fig. 12(c), through CS, the proportion

of those measurements corresponding to the right wall is

increased. In addition, more dynamic obstacles are removed

and more useful information is reserved by CS. Therefore,

compared to the other two methods, CSBnB-localization

tends to achieve a successful localization. Fig. 11(b) shows

the results of the average running time. As we can see sam-

pling based localization method is much faster than using

all Lidar data. Further, at each station, the average run-

ning time of the proposed CSBnB-localization is less than

RSBnB-localization. This is because those samples produced
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FIGURE 11. Localization performance of different global localization
methods: (a) Success rate. (b) Average running time.

FIGURE 12. Registered Lidar data according to different global
localization results: Red points represent Lidar measurements. Those
measurements caused by dynamic obstacles are shown in blue circles.
Both (a) RSBnB-localization and (b) BnB-localization with all data result a
wrong registration, however(c) CSBnB-localization get a right localization
result. Compared with (c), (a) and (b) involve more undesirable
measurements caused by the dynamic obstacles. In addition, (c) reserves
the shape property of the original Lidar data.

by CS can better express the shape of the original Lidar

data and can result in more pruned branches during the BnB

search.

It only takes 10 to 60 ms to run a CSBnB-localization,

which make it possible to perform multiple times of

localization to improve reliability while ensuring fastness.

Therefore, we carry out experiments to show the global local-

ization performance with different repetition times, which

is denoted by parameter max_gloc_count. From Table 2,

we know that once a good localization result is obtained the

localization process will terminate or it will max_gloc_count.

FIGURE 13. Global localization performance of CSBnB-localization with
different max_gloc_count: (a) Success rate. (b) Average running time.

The max_gloc_count is set from 1 to 4 in our experiment

and the results are shown in Fig. 13. It can be clearly seen

that our global localization method has 100% success rate

at most stations when max_gloc_count equals 4 and there

is a little increment for the average localization time as

max_gloc_count increasing. In addition, some stations such

as station 8 get 100% success rate through only one time of

localization. At those stations, the average localization time

is not increased because of the early terminated localization

process.

Through the global localization experiments, it has been

verified that CSBnB-localization using MLFs has a very

outstanding performance for balancing reliability and effi-

ciency, which can be used for pose initialization and rapid

localization failure recovery in an industrial environment.

B. POSE TRACKING EXPERIMENTS

The effectiveness of the proposed pose tracking method is

verified from two aspects: localization accuracy and posi-

tioning accuracy. Localization accuracy is only related to the

localization system while in addition to the localization sys-

tem, positioning accuracy is also affected by the mechanical

structure and control strategy of the mobile platform. Pose

tracking experiments are all performed in a real manufactur-

ing scenario which means more than 3 workers are moving

during the experiment. For localization accuracy, we compare

four localization methods including AMCL, AMCL with

ICP, BnB-AMCL and BnB-AMCL with UDF. In addition,

we also verify the performance of our localization method

using hybrid maps and single layer maps. Given a station, its

localization accuracy is evaluated through localization devia-

tion and standard deviation of 500 localization results, which

VOLUME 8, 2020 10791



G. Li et al.: Hybrid Maps Enhanced Localization System for Mobile Manipulator in Harsh Manufacturing Workshop

FIGURE 14. QR code based visual positioning module: This module is
used for obtaining the relative pose between the robot arm and the
fixture with sub-millimeter accuracy. With this module, the positioning
error of the mobile platform can be determined. In (a), the robot arm is
capturing a QR code image which is shown in (b) as well as the
positioning error.

TABLE 5. Localization accuracy using different methods.

use the same Lidar data set mentioned in global localization

experiments. The localization deviation means the difference

between a localization result and the average localization

result among 500 times of localization. At each localization, a

relative large odometer error following a uniform distribution

U (−0.1, 0.1) is introduced to simulate the odometer error

during pose tracking. The bins size for AMCL is 0.1 m/5 deg

while for BnB-AMCL is 0.8 m and the angular size is

computed online according to (7). For positioning accuracy,

the positioning error data from 463 loading and unloading

tasks of the mobile manipulator in two weeks is adopted and

all those tasks are finished successfully. One thing to note

that the positioning error can be measured from the QR code

based visual positioningmodule of our self-developedmobile

manipulator, which is shown in Fig. 14. A more detailed

description can be found in our previous work [36].

Table 5 shows an overview of localization accuracy and

Fig. 15 shows a box plot that expresses the distribution

of localization deviation of different methods. For clarity,

the distance errors over 0.1m and orientation errors over

2 deg are ignored in our boxplot. Besides, all localization

errors using our localization method are within such error

range. As we can see from Table 5, BnB-AMCL with UDF

has the best results regardless of average localization devi-

ation and standard deviation. In addition, our BnB-AMCL

is more accuracy than AMCL with ICP. From the box plot

we can see that at some stations, the third quartile of AMCL

with ICP is similar to the third quartile of BnB- AMCL,

however, there are more outliers by using AMCL with ICP.

This is because the ICP based scan match is susceptibility to

the problem of local minima especially under the situation

FIGURE 15. Box plot of localization results using different localization
methods: (a) Distance error. (b) Orientation error.

FIGURE 16. The average running time of different pose tracking methods.

of large odometry error and multimodal target distribution.

However, the above problems can be well solved by using

the BnB-AMCL method.

The corresponding running time during the localization

accuracy experiment is recorded, which are shown in Fig. 16.

Since more steps are performed, our proposed pose tracking

method inevitably requires more time than AMCL with ICP,

where station 1 gets the maximum average runtime of 62 ms.

However, 62 ms still meets the real-time requirement at the

movement speed of 0.7m/s. Moreover, compared to AMCL

with ICP, the localization performance in a harsh manufac-

ture workshop is significantly improved through BnB-AMCL

with UDF, hence it is totally worth it to spend a little more

time.

To verify the impact of hybrid maps on pose tracking,

localization results with hybrid maps and with single layer

maps are compared. Using single layer maps means all maps
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TABLE 6. Localization accuracy using different maps.

FIGURE 17. Box plot of localization results using different maps:
(a) Distance error. (b) Orientation error.

for localization are created from an occupancy grid map

which represents the lower plane of the two-layer structure of

an environment. In this experiment, we only use BnB-AMCL

with UDF as the localization method. Other localization

methods with different types of maps will produce simi-

lar results. The results are shown in Table 6 and Fig. 17.

As we can see, using hybrid grid maps can significantly

reduce distance and orientation errors for most stations.

However, the localization accuracy of using single-layer

maps at station 9 is slightly better than that of using

hybrid grid maps. This is because the ground near sta-

tion 9 is flat and the Lidar data obtained at that station

perfectly matches the single layer maps. But for a harsh

manufacturing environment, the existence of flat ground is

very accidental. Overall, our proposed method with hybrid

maps has better performance for a randomly moving mobile

manipulator in harsh manufacturing workshop. From the

positioning accuracy experiments, the average positioning

error of 0.005 m/0.111 deg and the standard deviation of

0.003 m/0.090 deg are obtained. The box plot of position-

ing error is shown in Fig. 18, where the maximum error is

0.016 m/0.528 deg and the third quartile of the distance error

and the orientation error at all stations are below 0.01 m and

0.2 deg respectively. These results satisfy the accuracy of

FIGURE 18. Box plot of positioning error at different stations:
(a) Distance error. (b) Orientation error.

FIGURE 19. Localization results after robot moving along a trajectory: The
blue curve shows the robot trajectory obtained by our localization
system. The red point cloud shows the captured Lidar data during robot
moving. All Lidar data is registered on the map according to our
localization results. The green point cloud is the dynamic obstacle filtered
by UDF. Note that part of green points forms a trajectory as well as our
localization results. Those points are such measurements blocked by the
mobile manipulator itself.

loading and unloading tasks. From the above experiments,

it has been verified that our localization system can achieve

real-time, reliable and high-precision pose tracing in harsh

manufacturing workshops.

Fig. 19 shows the localization results of BnB-AMCL with

UDF with all captured Lidar data after the mobile manipula-

tor moving along a trajectory. All Lidar data is registered on

the map according to the localization result. We can clearly

see that randomly moving workers and other dynamic obsta-

cles are effectively removed using UDF, as shown by the

green point cloud. In addition, all registered Lidar data no

matter caused by the higher or lower plane of the two-layer

structure are all well-matched to the hybrid gird map.
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VIII. CONCLUSION

In this paper, we present a hybrid maps enhanced local-

ization system to address the self-localization problem of a

mobile manipulator in harsh manufacturing workshops. The

hybrid maps are used to model the two-layer structure of an

environment and to improve the performance of localization.

With such a localization system, the mobile manipulator can

reliably load and unload workpieces for CNC in a harsh

manufacturing workshop. The two main parts of our local-

ization system are the CS based BnB-localization for global

localization and the BnB-AMCL with the UDF method for

pose tracking. Our global localization method adopts CS to

sparse Lidar data and BnB search to achieve a fast global

search. For an efficiency BnB search, theMLFs are employed

to compute the match score and the upper bound. Moreover,

we present that the computation method for the match score

is the same computation method for the weight in AMCL

and those bins generated by KLD-sampling can be used as

the initial search space for BnB search. Thus, by combining

BnB search andAMCL, we proposed the BnB-AMCL, which

can achieve accuracy localization under the situation of large

odometry error and multimodal target distribution. To future

improve the pose tracking accuracy, two times of ICP based

scan match are integrated into BnB-AMCL by using the

hybrid point map. Finally, the unscented transform is adopted

to improve the distance filter for mitigating the influence of

dynamic obstacles such as moving workers. We evaluate our

localization system through global localization experiments

and pose tracking experiments in a real manufacturing work-

shop. The results demonstrate that our localization system

has superior performance than many popular localization

methods. Using the proposed localization system, our self-

developed mobile manipulator had completed loading and

unloading tasks in a manufacturing workshop for two weeks

with a success rate of 100%.
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