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Abstract

A review of the theoretical and experimental status of hybrid hadrons is presented. The states
π1(1400), π1(1600), and π1(2015) are thoroughly reviewed, along with experimental results from
GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical
lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and
transition matrix elements are discussed. These are compared with bag, string, flux tube, and
constituent gluon models. Strong and electromagnetic decay models are described and compared
to lattice gauge theory results. We conclude that while good evidence for the existence of a
light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its
iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models
and provides a reference to judge the success of others.
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1 Introduction

For forty years Quantum Chromodynamics (QCD) has served as one of the pillars of the Standard
Model. Early doubts about the existence of quarks were dispelled by the discovery of the J/ψ,
while—following a suggestion due to Ellis, Gaillard, and Ross – gluons were confirmed by the
discovery of three jet events at DESY in 1979 [1].

Although gluons are now firmly established as the carriers of the strong force, their nonpertur-
bative behavior remains enigmatic. This unfortunate circumstance is chiefly due to two features of
QCD: the theory is notoriously difficult to work with in the nonperturbative regime, and experi-
mental manifestations of glue tend to be hidden in the spectrum and dynamics of hadrons. Hadrons
that carry valence quark and gluonic degrees of freedom are one such experimental manifestation
that has been postulated since the early days of QCD [2]. These states are called hybrids and a
review of their experimental and theoretical status is the purpose of this article.

That discovering explicit nonperturbative glue is difficult can be gleaned from the history of the
development the quark model and QCD. All the well-established mesons have JPC equal to 0−+,
0++, 1++, etc, which can be created with fermion-antifermion pairs in an given orbital momentum
state. This strongly suggests that quarks are spin-1/2, while the spectrum ordering suggests that
energy increases with orbital angular momentum. Furthermore, the absence of mesons with isospin
or strangeness greater than unity supports the idea that mesons are fermion-antifermion states.
Thus the simple quark model of mesons (and baryons) was partly motivated by the absence of
“exotic” hadrons such as multiquark or gluonic states. It is thus perhaps no surprise that QCD
exotics have been difficult to observe.

The simplest explanation for this observation is that gluonic degrees of freedom are somewhat
“stiff” and therefore difficult to excite. Of course, with the increasing energy, luminosity, and
capabilities of modern accelerators and detectors one might hope that this regime can be explored.
The interesting question then is: can an analogous spectroscopy of glue be discerned in the data?

A basic question that the data and its interpretation must address is what is meant by the notion
of valence glue. As an example of the importance of choosing correct degrees of freedom, we mention
the simple problem of determining the number of components of a constituent gluon. For example,
one might suppose that a massive constituent gluon (of mass mg) should be transverse so as to
maintain consistency with Yang’s theorem. However, this is inconsistent with the requirements of
Lorentz invariance. Thus, for example, J = 1 glueballs are expected to exist and lattice calculations
indicate that they are quite heavy (roughly 3 GeV) [3]. Such a state may not be constructed from
two transverse constituent gluons (due to Yang’s theorem) and therefore may be expected to have
a mass of roughly 3mg. However massive vector gluons have no such constraint and one therefore
expects them to have a mass of approximately 2mg. Clearly the assumed active degrees of freedom
play a large role in determining the gross features of the spectrum.

There are two broad ideas concerning soft glue: it is some sort of string or flux tube or it is
an effective constituent confined by a bag or potential. In different language, nonperturbative glue
can be thought of as collective, nonlocal degrees of freedom, or as a local quasiparticle degree of
freedom. Lattice gauge theory and experiment are the two main methods which permit resolving
this longstanding issue. Of course the primary task is to experimentally verify that such excitations
of QCD exist. Then a thorough investigation of the hybrid spectrum and its production and decay
mechanisms must ensue; this must be compared to lattice gauge and model computations, and a
qualitative picture must be built before we can claim to fully understand the enigmatic gluonic
sector of the Standard Model.
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We will start with a review of properties of hybrids and related gluonic systems as determined
by lattice gauge computations. This will serve to set terminology and establish a base to which
models can be compared. This is followed by brief summaries of the ideas and main results in
string-based models, bag models, and constituent glue models. We then summarize the current
status of the experimental search for hybrid mesons. Finally, future experimental prospects and an
outlook on what is required and expected from theory is presented.

Before starting, it will be useful to note that valence gluonic degrees of freedom increase the
quantum numbers that are available to fermion-antifermion systems. The parity and charge conju-
gation that are available to qq̄ systems are specified by P = (−)L+1 and C = (−)L+S where L and
S are the qq̄ total angular momentum and spin. This means that JPC = 0−−, odd−+, and even+−

are not available to simple quark-antiquark systems. Hadrons with these quantum numbers are
called “(quantum number) exotic”. A variety of notations have developed over the years for hy-
brids. Terminology appears to have settled on using standard PDG notation to describe the flavor
of a hybrid, a subscript to denote the total spin, with parity and charge conjugation following that
of the named hadron. Thus, for example, a JPC = 1−+ isovector hybrid would be denoted π1.

2 Lattice Gauge Theory

The use of a lattice regulator for Euclidean field theories permits the numerical evaluation of
path integrals. Thus all correlation functions can, in principle, be computed under controlled
approximations. Historically, this brilliant promise has been compromised by various technical
issues including large quark masses, the difficulty in computing “hairpin” fermion lines, difficulty
in computing the excited spectrum, and most prominently, difficulty in computing the determinant
of the Dirac operator. The latter issue was handled by ignoring it (this is called the “quenched
approximation”; it is, in fact, not an approximation, but a truncation that renders a quantum
field theory inconsistent). The root problem of all of these issues is that they introduce excessive
noise into observables – however, to some extent all of them have been overcome in the past
decade. Thus modern lattice computations are made on large lattices, are not quenched (they
include the effects of virtual quarks), incorporate large bases of interpolating fields (which permits
the extraction of excited states), and employ sophisticated stochastic methods to compute hairpin
fermion propagators. The remaining issues are chiefly quark masses that tend to be too large
and the necessity of incorporating continuum interpolating operators. Both of these are rapidly
becoming things of the past.

2.1 Adiabatic Gluonic Surfaces

Lattice investigations of soft gluonic matter date to an investigation of the adiabatic gluonic spec-
trum by Griffiths, Michael, and Rakow [4]. The idea is that gluons are a “fast” degree of freedom
with respect to heavy quarks. In the static limit the quark and antiquark serve as a color source and
sink at a distance R and the gluonic field arranges itself into configurations described by various
quantum numbers. These quantum numbers match those of diatomic molecules: the projection of
the gluonic angular momentum onto the qq̄ axis (denoted Λ), the product of gluonic parity and
charge conjugation η ≡ (PC)g, and Y -parity, which represents the reflection of the system through
a plane containing the qq̄ axis. The notation
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ΛY
η

will be used in the following, where Λ = 0, 1, 2, . . . is denoted Σ, Π, ∆, . . .; η is labelled u (negative)
or g (positive); and Y = ±. For Λ 6= 0 the two Y -parity eigenstates are degenerate and the Y
quantum number is not given.

Griffiths et al. sought to compute the adiabatic configuration energies, E(ΛY
η ;R) as a function

of the distance between the color source and sink. This computation was made in SU(2) quenched
gauge theory on an 84 lattice and rough results for the lowest two surfaces were obtained.

Subsequent work was carried out by the UKQCD collaboration [5, 6] and Juge, Kuti, and
Morningstar [7]. Juge et al. performed a large scale computation with many basis states and were
able to obtain many excited states out to large distance. The results are presented in Fig. 1; here
r0 is approximately 0.5 fm and the potentials have been renormalized by subtracting the value of
E(Σ+

g ) at r0.

An interesting feature of the spectrum is that the adiabatic surfaces tend to finite values at
small interquark separation. This may be a surprise because the expected perturbative behavior
at small R for a pair of quarks in a color octet is

E(ΛY
η ;R) ∼ 1

6

αs

R
. (1)

Alternatively, quarks in a color singlet should have an energy

E ∼ −4

3

αs

R

at very small distances. The figure shows that this distance scale is evidently smaller than 0.1 fm.

The actual behavior of the adiabatic potentials at small distance is problematic: lattice gauge
computations diverge at the origin and must be regulated in some way. Furthermore, level crossing
is expected to occur; namely, it will become energetically favorable for a configuration to emit a
scalar glueball and convert to a qq̄ color singlet state at some distance. This surface and the level
crossings are indicated by the dashed line in the figure. Of course the quantum numbers must agree
for the transition to occur and the mixing matrix element must be large enough to resolve it at the
temporal extent used in the lattice computation.

The large distance behavior of the adiabatic surfaces is of interest because it is widely held
that this behavior is governed by string dynamics [9, 10]. The simplest geometric string model is
described by the Nambu-Goto action

σ

√

1 + ∂µ
~ξ · ∂µ~ξ (2)

where ~ξ is a massless vector field with two transverse components. In D dimensions this gives rise
to a spectrum (computed with fixed ends) of [11] (the string tension is denoted σ)1

E(N ;R) = σR

(

1 − D − 2

12σR2
π +

2πN

σR2

)1/2

(3)

1Note that D = 26 is required for consistent quantization, but this problem is not relevant for large R.
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Figure 1: Lattice Adiabatic Hybrid Potentials. Figure curtesy of C.J. Morningstar [8].

The fact that this formula works quite well for the ground state surface for R > 0.5 fm has been
traditionally taken as an indication for the robustness of the string description of gluodynamics
[9, 10].

At large distances the Nambu-Goto action predicts splittings between adiabatic surfaces that
behave as π/R. Detailed comparison to large distance lattice results by Juge et al. reveal that
the expected universal behavior is achieved, but only for quark separations greater than 2 fm;
furthermore residual deviations from string behavior indicate the presence of fine structure in the
interaction, so that an effective string interaction is more appropriate for the description of gluonic
excitations at large distances [12].

2.2 Gluelumps

A “gluelump” is a hadronic state comprised of a static source in the octet representation with
accompanying glue, such that the resulting state is a singlet under gauge transformations. Investi-
gation of gluelumps was motivated by interest in the properties of bound states of massive gluinos
and gluons [13]. The initial lattice investigation was made by Michael in 1985 in quenched SU(2)
gauge theory [14,15].

We note that the gluelump spectrum can be determined up to an infinite self energy due to the
static adjoint gluon. Thus energy differences can be unambiguously extracted. Absolute energies
can also be obtained under specified renormalization schemes. Here we present the results of Bali
and Pineda [16], which were obtained in quenched SU(3) gauge theory. Absolute gluelump energies
were obtained by employing a renormalon subtraction scheme [17] with a matching scale set to
2.5/r0 ≈ 1 GeV. Results for the lowest lying eight levels are shown in Table 1. The authors of
Ref. [18] have examined a large set of quantum numbers and non-octet sources, with results similar
to those presented here.
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JPC mass (GeV)

1+− 0.87(15)
1−− 1.25(16)
2−− 1.45(17)
2+− 1.86(19)
3+− 1.86(18)
0++ 1.98(18)
4−− 2.13(18)
1−+ 2.15(20)

Table 1: Low Lying Gluelump Spectrum [16].

HERE

Because the quark and antiquark can be regarded as merging into a color octet as the separation
between them lessens, the spectrum of adiabatic hybrid surfaces is related to the gluelump spectrum
as R → 0 [19]. In this limit greater symmetry is obtained because the gluonic spin, Jg, becomes a
good quantum number [15,20] and the gluelump spectrum can be mapped to the adiabatic surfaces
as shown in Table 2. The match between the adiabatic and gluelump spectra is displayed in Fig.
2, where reasonably good agreement is seen. The exception is the Σ+

g
′′
, which appears headed

towards the 0++ gluelump energy, but then deviates downwards. This is perhaps an example of
the adiabatic surface crossing mentioned above. In fact, the final point on the Σ′′

g surface appears
to have landed on the surface given by V (Σ+

g ;R) +m0++ , shown in the figure as a cyan line.

gluelump JPC adiabatic surface quantum numbers

1+− Σ−
u , Πu

1−− Πg, Σ+
g
′

2−− Σ−
g , Π′

g, ∆g

2+− Σ+
u , Π′

u, ∆u

3+− Σ−
u
′
, Π′′

u, ∆′
ui, Φu

0++ Σ+
g
′′

4−− Σ−
g
′
, Π′′

g , ∆′
gi, Φg, Γg

1−+ Σ+
u
′
, Π′′′

u

Table 2: Adiabatic Gluon Surface Degeneracies at Small Distance. The 2+− and 3+− identifications
could be reversed.

2.3 Heavy Hybrids

The simplest method to access hybrids with heavy quarks is to leverage the adiabatic gluonic
potentials of section 2.1 by solving the non-relativistic Schrödinger equation for quark motion on
the relevant surface. This approach has been adopted by Juge, Kuti, and Morningstar [22], who
address a non relativistic Schrödinger equation with a centrifugal factor given by

〈L2
QQ̄〉 = L(L+ 1) − 2Λ2 + 〈J2

g 〉, (4)
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Figure 2: Adiabatic Hybrid Potentials with Gluelump Spectrum. (Figure reproduced with permis-
sion from reference [16]).

where L is the total angular momentum of the system. The result is a spin-averaged spectrum that
depends on the adiabatic surface employed as a potential. For the Σ+

g surface one has 〈J2
g 〉 = 0 and,

since the Σ+
g surface mimics the phenomenological Cornell potential, the usual results for heavy

quarkonia are recovered. For excited surfaces, Πu and Σ−
u , one can approximate 〈J2

g 〉 = 2 since this
corresponds to the minimum gluonic field angular momentum permitted in these configurations.

Meson quantum numbers are constructed in terms of the total quark spin S, the total angular
momentum L, and the mesonic spin ~J = ~L+ ~S. In the leading Born-Oppenheimer approximation
the eigenvalues L(L+ 1) and S(S + 1) of ~L2 and ~S2 are good quantum numbers and the parity P
and charge conjugation C of a meson is given in terms of L, S, and Λ by [22]

P = ǫ (−)L+Λ+1 (5)

and

C = ǫ η (−)L+Λ+S . (6)

Here L ≥ Λ ǫ = ± for Σ± and both signs apply for Λ > 0. Note that η is the product of gluonic
charge and parity quantum numbers defined above. Low lying quantum numbers in the ground
state Σ+

g state are thus as given in Table 3.
This is, of course, the usual pattern of the non-relativistic constituent quark model.

For the phenomenologically relevant Πu surface the low lying quantum numbers are (we take
Λ = 1, η = −1, ǫ = ±) given in Table 4.

Because the spectrum only depends on the radial quantum number and L at this order, the
leading Born-Oppenheimer multiplets are (0−+, 1−−), (1+−, (0, 1, 2)++), etc, for the Σ+

g surface
and

1−−, (0, 1, 2)−+; 1++, (0, 1, 2)+− (7)
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S L JPC

0 0 0−+

1 0 1−−

0 1 1+−

1 1 (0, 1, 2)++

Table 3: Σ+
g Meson Quantum Numbers.

S L JPC

0 1 1−−, 1++

1 1 (0, 1, 2)−+, (0, 1, 2)+−

0 2 2++, 2−−
1 2 (1, 2, 3)+−, (1, 2, 3)−+

Table 4: Πu Meson Quantum Numbers.

for the lowest states on the Πu surface. We remark that these multiplets do not agree with
those observed in explicit lattice hybrid computations. Rather, the low lying multiplet contains
JPC = 1−−, (0, 1, 2)−+, which corresponds to ǫ = +1.

Fitting the S-wave Σ+
g energy to the spin-averaged ηb and Υ mass gave a bottom quark mass

of 4.58 GeV. This was then used to obtain the spectrum shown in Fig. 3. Experimental results
are given as solid lines in the figure. Notice that the agreement of the conventional spectrum
with experiment appears to worsen dramatically once past BB̄ (BB̄∗, B∗B̄∗) threshold. Although
similar large shifts due to light quarks may be present in the hybrid spectrum, there is reason to
believe that these will be small for the lowest lying states. This is discussed further in section 4.

Lattice studies with heavy quarks are difficult because heavy quarks tend to lie above the
ultraviolet cutoff on typical lattices and hence are removed from the dynamics of the theory. One
way to avoid this problem is to work directly with non-relativistic effective field theory, which
removes the heavy quarks in an ordered expansion. An early study of this type by the CP-PACS
collaboration neglected all spin-dependent operators in the effective Lagrangian [21]. The authors
employed a “magnetic” hybrid interpolating fields for a spin singlet H1 = ψ†Biχ and spin triplet
H3 = ψ†σjBiχ states (ψ† and χ are the heavy quark and antiquark creation operators respectively).
Since spin-dependent operators were not included in the Lagrangian, the result was a degenerate
multiplet of hybrid states with quantum numbers 1−−, (0, 1, 2)−+.

The computations yielded a charmonium hybrid multiplet 1.323(13) GeV above the spin av-
eraged charmonium ground state (i.e., 3.069 GeV) and a bottomonium hybrid multiplet 1.542(8)
GeV above the ground state (at 9.445 GeV).

A calculation of hybrid masses with large lattices in quenched QCD has been performed by
Bernard et al. [20]. They obtained charmonium hybrid masses of

1−+ 4.39(8) GeV 0+− 4.61(11) GeV. (8)

The error in these results is statistical only – additional truncation and quenching errors also exist.

Advances in computer technology, especially leveraging the power of graphical processing units,
has permitted the recent computation of charmonium states with the full QCD Lagrangian. In
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Figure 3: Leading Born-Oppenheimer Spectrum for bottomonium (S, P) and Hybrids (Πu and Σ−
u ).

(Figure reproduced with permission from reference [22]).

particular, the Hadron Spectrum Collaboration has performed a large scale unquenched calculation
that employs a large variational basis, a fine temporal lattice spacing, two light dynamical quarks,
a strange dynamical quark, and improved lattice actions to obtain a comprehensive charmonium
spectrum [23]. Despite these technical advances, the dynamical quarks are still heavy, yielding
a pion mass of 396 MeV, and a J/ψ − ηc splitting of 80(2) MeV – too small compared to the
experimental value of 117 MeV.

Despite these shortcomings, the spectrum, shown in Fig. 4, is of relatively high quality. The
figure shows charmonium masses as boxes (with vertical extent indicating errors) and experimental
states as lines. One sees good agreement for low lying states, with diminishing accuracy higher in
the vector channel. Numerical values for the computed masses are presented in Table 5.

The authors of Ref. [23] also measured state overlaps with various operators, 〈M |O|0〉, as a
probe of the internal structure of the state |M〉. Thus, for example, some vectors have large
overlaps with a quark-antiquark pair in a 3S1 state, while others have larger overlap with 3D1

operators. These overlaps only provide qualitative indications of state configurations because they
are scale-dependent and comparison to continuum matrix elements can be confounded by operator
mixing. Nevertheless, comparison with conventional quarkonia structure as determined by the
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non-relativistic quark model [24–26] reveals that the method is reliable.

This method can be used to determine states with large overlaps with operators with gluonic
content. The resulting states are indicated with red and blue boxes in Fig. 4. As can be seen, an
approximate multiplet forms with quantum numbers 1−− and (0, 1, 2)−+. This structure can easily
be obtained if the effective gluonic degrees of freedom have (JPC)g = 1+−. Combining this with a
qq̄ pair in a 1S0 state yields the 1−− component of the hybrid multiplet, while combining it with
qq̄ in 3S1 yields the remaining members. Higher quantum numbers obtained in this manner are
listed in Table. 6. Note that the higher hybrid multiplet in Fig. 4 contains JPC = (0, 1, 2, )++ and
(0, 1, 2, 3)+− states, which maps very well to the expected P -wave multiplet.

2.4 Light Hybrids

Computations with light quarks are more difficult than those with moderate mass quarks because
the Dirac matrix that must be inverted becomes rapidly ill-conditioned and larger (a lighter pion
requires a larger lattice to maintain constant physics). Furthermore, light quarks mean that decays
to multiple pion states are possible, greatly complicating the extraction of observables.

The earliest computations of light hybrid masses were made in the quenched approximation
which effectively ignores internal qq̄ loops. These calculations all predicted that the 1−+ nonet of
hybrid mesons was the lightest, with a masses in the 1.8 to 2.1 GeV mass region [27–31].

A summary of 1−+ hybrid mass computations is shown in Fig. 5. Open symbols represent
quenched computations, while filled symbols are unquenched. General agreement in the data is
evident; and a naive extrapolation to the physical pion mass gives an unquenched 1−+ mass of
approximately 1.6 GeV.

Finally, we present the results of a recent exhaustive computation of the light meson spectrum
by the Hadron Spectrum Collaboration [38]. This computation was made with a large operator
basis, on lattice of size 163×128 up to 243×128 lattice, a temporal lattice spacing around 0.034 fm
and a spatial lattice spacing of approximately 0.12 fm, and pion masses of 702, 524, and 391 MeV.
Hairpin (disconnected) diagrams were included with the aid of the “distillation” method [39]. The
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JPC (M −Mηc) / MeV

0−+ 0 663(3) 1143(13) 1211(13)
1−− 80.2(1) 698(6) 840(3) 1154(28) 1301(14) 1339(38)
2−+ 860(3) 1334(17) 1350(17)
2−− 859(5) 1333(18)
3−− 867(3) 1269(26) 1392(12)
4−+ 1444(10)
4−− 1427(9)

0++ 461.6(7) 972(9) 1361(46) 1488(30)
1+− 534(1) 1006(9) 1360(38) 1462(51) 1493(19) 1513(39)
1++ 521.6(9) 1002(10) 1415(14) 1484(48)
2++ 554(1) 1041(12) 1112(8) 1508(21)
3+− 1142(6) 1564(22)
3++ 1130(9)
4++ 1129(9)

1−+ 1233(16)
0+− 1402(9)
2+− 1411(40) 1525(18)

Table 5: Charmonium Spectrum [23].

(JPC)g L S JPC

1+− 0 0 1−−

1+− 0 1 (0, 1, 2)−+

1+− 1 0 (0, 1, 2)++

1+− 1 1 (0, 1, 1, 1, 2, 2, 3)+−

Table 6: Hybrid Multiplets

computation did not include glueball or multihadron operators, and thus the extracted “masses”
are only approximations to the resonance mass parameters.

Results for the isovector and isoscalar spectra are shown in Fig. 6 for pion masses of 392
MeV. Notice that mixing between light and strange quarks is represented (in green and black) in
the figure. States outlined in orange have large overlap with gluonic operators. Notice that the
quantum number-exotic states (to the right) are all predicted to be approximately ideally mixed.

The quark mass-dependence of the lightest hybrid multiplet is of phenomenological interest.
This has been evaluated by the Hadron Spectrum Collaboration and is discussed by Dudek in
Ref. [40]. Fig. 7 shows the multiplet for four different pion masses. It is apparent that the P-wave
0+− and 2+− are approximately independent of quark mass, implying that a short range poten-
tial dominates the effective hybrid spin-dependent potential. Furthermore, the 1−− state is also
largely spin-independent, which implies that quark spin-triplets are required in the spin-dependent
potential. Finally, it appears that the spin-triplet J−+ multiplet slowly splits as the quark mass
is reduced, with the J = 0 component decreasing slowly, the J = 1 decreasing more rapidly, and
the J = 2 increasing slowly. Developing a phenomenological model for these observations is an
interesting task.
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Figure 5: The mass of the JPC = 1−+ exotic hybrid as a function of the pion mass from lattice
calculations. The open (cyan) symbols correspond to quenched calculations, while the solid (red
and blue) symbols are dynamic (unquenched) calculations: open (cyan) star [27], open (cyan)
squares [32], open (cyan) upright triangles [34], open (cyan) circles [33], solid (red) downward
triangles [35], solid (red) squares [36], solid (blue) upright triangles [34] and solid (blue) circles [37].

2.5 Hybrid Baryons

All quantum numbers are available to baryons, hence ‘exotic’ quantum number baryons do not
exist (perhaps explaining the relative lack of interest in these states). Furthermore, conventional
and hybrid baryons will mix to form the physical spectrum, which can seriously affect the ability
to compute the properties of these states and to discover them experimentally.

We are aware of only one lattice computation of the hybrid baryon spectrum, which was carried
out by the JLab group [41]. The authors considered the spectrum of nucleons and deltas at several
quark masses and found a set of positive parity hybrid baryons with quantum numbers 2[N1/2+],
2[N3/2+], N5/2+, ∆1/2+, and ∆3/2+ above the first band of conventional excited positive parity
baryons. Results are shown in Fig. 8. These have been obtained on a 163 × 128 lattice with 2+1
dynamical quarks and a pion mass of 396 MeV.

The low lying hybrid baryons appear as a band with positive parity that lie above the first-
excited positive parity conventional states. This pattern of states is compatible with a color octet
gluonic excitation with JP = 1+, in keeping with hybrid mesons. Furthermore, the hybrid excitation
scale is approximately 1.3 GeV for both mesons and baryons, which indicates a common mechanism
in both of these systems. It is notable that hybrid states appear to mix weakly with conventional
states, which encourages the idea that they might be experimentally detectable.

2.6 Transitions

Relatively little lattice work has been done on hybrid transitions. Indeed, the difficult task of
evaluating two-point correlation functions such as 〈O2(t2)O1(t1)〉 and extracting physical states is
replaced by the daunting task of evaluating three point functions 〈O2(t2)jµ(ti)O1(t1)〉, extracting
physical states and normalizing correctly.
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Figure 6: Isoscalar and Isovector Hybrid Spectrum. States outline in orange have large gluonic
content, (Figure reproduced with permission from reference [38]).
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Figure 7: The Lightest Hybrid Multiplet as a function of Quark Mass. (Figure reproduced with
permission from reference [40]).

2.6.1 Vector Hybrid Mixing

Computing an overlap matrix element is a somewhat simpler task than measuring a transition
matrix element. For example, the MILC collaboration has examined the effects of moving beyond
the static limit in the heavy quark expansion of quenched NRQCD by evaluating the matrix element
〈QQ̄|O|QQ̄g〉 [42]. The operator is the leading order correction in the NRQCD Lagrangian:

O = −cgσ ·B
2M

. (9)

where M is the heavy quark mass, B is the chromomagnetic field, and c is a coupling that is unity
at tree level.

The resulting matrix elements can be written in terms of admixture fractions as

|〈Υ|QQ̄g(1−−)〉|2 ≈ 0.4%, (10)

|〈ηb|QQ̄g(0−+)〉|2 ≈ 1%, (11)
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Figure 8: Nucleon and Delta States. Grey boxes are conventional baryons; blue boxes are hybrid
baryons. (Figure reproduced with permission from reference [41]).

|〈J/ψ|QQ̄g(1−−)〉|2 ≈ 2.3%, (12)

|〈ηc|QQ̄g(0−+)〉|2 ≈ 6%. (13)

The authors caution that the results for charmonium are less reliable than those for bottomonium
since higher order operators can contribute substantially. Furthermore, unquenching effects can be
significant. Neglecting these issues permits a simple estimate for the rate of charmonium vector
hybrid production in electron-positron collisions:

Γ(cc̄g → e+e−) ≈ 0.023(2) · Γ(J/ψ → e+e−) ≈ 0.12(1) keV. (14)

2.6.2 Heavy Hybrid Hadronic Transitions

The first lattice computation of a hadronic transition was made by the UKQCD collaboration for
the case of heavy hybrids [43]. The static quark limit imposes important constraints on the decay
process since the quark-antiquark configuration must remain unchanged. The authors focus on the
decay of the exotic 1−+ state and determine that decay into S-wave mesons is forbidden (since
production of the light quark pair in a spin triplet is forbidden by η while a spin singlet is forbidden
by Λ). Furthermore, decay to an S-wave (Qq̄) + P-wave (qQ̄) configuration is forbidden because
the P-wave excitation energy is typically greater than the hybrid excitation energy. Thus the only
allowed transition in the heavy quark limit is a hidden flavor process, QQ̄g → QQ̄ + S, where S
is a light flavor singlet meson. This amounts to a de-excitation of the excited gluonic string by
emission of a light quark-antiquark pair.

The authors computed two such transitions using unquenched QCD with light quark masses
near the strange quark mass. Heavy valence quarks were fixed in place and integrated out, so that
they did not appear explicitly in the computation. Results (applied to bottomonium) were

bb̄g(1−+) → ηb η(ss̄) ∼ 1 MeV (15)
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and
bb̄g(1−+) → χb σ(ss̄) ∼ 60 MeV. (16)

2.6.3 Light Hybrid Hadronic Transitions

The decays of light hybrids are much less constrained than those with heavy quarks, thus lat-
tice computations become even more important to guiding experiment and phenomenology. The
UKQCD collaboration has examined the decay of a light 1−+ exotic (termed the π1) with two
dynamical quarks [44]. They determined the π1 mass to be 2.2(2) GeV and obtained effective
couplings for two decay modes as follows

Γ(π1 → b1π)/k = 0.66 ± 0.20 (17)

Γ(π1 → f1π)/k = 0.15 ± 0.10, (18)

where k is the relative momentum in the final state. Assuming that these results determine a
constant effective coupling then permitted the authors to obtain partial widths of

Γ(π1 → b1π) = 400 ± 120 MeV (19)

Γ(π1 → f1π) = 90 ± 60 MeV. (20)

As a check of their procedure, they also carried out a similar calculation for b1 → ωπ, obtaining
Γ/k ∼ 0.8, which leads to Γ(b1 → ωπ) ∼ 220 MeV. This is about a factor of 1.6 larger than the
experimental width. Finally, the authors noted that the large hybrid widths arose chiefly due to the
large available phase space in the decay. We remark that in general this expectation is false because
hadronic form factors cause effective couplings to diminish rapidly with increasing momentum.

The latter point was subsequently pursued by Burns and Close, who compared the lattice results
for the transition element near threshold to those of the flux tube model (see section 4.1) [45]. The
two approaches were found to be in rough agreement near threshold, see Table 7. Thus, if the flux
tube model can be trusted to extrapolate to the physical recoil momentum, one obtains substantially
reduced partial widths of Γ(π1 → b1π) ≈ 80 MeV and Γ(π1 → f1π) ≈ 25 MeV. The lattice results
also suggest that the light quark creation vertex has spin triplet quantum numbers.

b1 → ωπ (GeV−1/2 ) π1 → b1π (GeV−1/2) π1 → f1π (GeV−1/2)

Lattice (UKQCD) 2.3(1) 2.9(4) 1.5(4)
Lattice (CP-PACS) 3.4(2) 2.9(3) 1.1(4)

flux tube (a) 2.7 2.9 1.4
flux tube (b) 3.3 3.9 1.9

Table 7: Comparison of lattice and flux tube model transition amplitudes. UKQCD and CP-PACS
refer to different gauge configuration ensembles.

2.6.4 Hybrid Radiative Transitions

More recently, the Hadron Spectrum Collaboration has computed charmonium hybrid radiative
transitions [46]. The calculation was made with a large operator basis in the quenched approxi-
mation. The renormalization constant required to compare the lattice matrix elements to physical
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ones was determined nonperturbatively by conserving charge at zero recoil. The resulting widths
are presented in Table 8, where one sees quite good agreement with experiment, where available.
Notice that the process cc̄g(1−+) → J/ψγ is a magnetic dipole transition. With conventional
charmonia, these require a spin flip and therefore are suppressed for heavy quarks. In this case,
however, the extra gluonic degrees of freedom can permit the transition, and hence it can be large.

transition Γlattice (keV) Γexpt (keV)

χc0 → J/ψγ 199(6) 131(14)
ψ′ → χc0γ 26(11) 30(2)
ψ′′ → χc0γ 265(66) 199(26)
cc̄g(1−−) → χc0γ < 20

J/ψ → ηcγ 2.51(8) 1.85(29)
ψ′ → ηcγ 0.4(8) 0.95 – 1.37
ψ′′ → ηcγ 10(11)
cc̄g(1−−) → ηcγ 42(18)

cc̄g(1−+) → J/ψγ 115(16)

Table 8: Quenched Lattice Charmonia Radiative Decays [46].

3 Hybrid Models

The construction of a reliable model of hybrid meson structure and dynamics is important for
the interpretation of experimental results. At the simplest level, this is because it is expensive to
compute large numbers of experimentally relevant quantities on the lattice. It is also likely that
the computation of complicated amplitudes involving hybrids will remain out of reach of lattice
methods for a long time.

In this section we discuss the salient features of bag models, string models, constituent glue
models, and attempted computations with QCD sum rules and the Schwinger-Dyson formalism.
The prime difference between models is the assumed form that the gluonic degrees of freedom take
on: broadly, these are quasiparticle or collective in nature.

3.1 Bag Models

A detailed phenomenology of hybrids was first developed with bag models, both in the MIT bag
model [47–52], and in the “Budapest variant” [53]. The idea was to place a gluonic field in a
vacuum ‘bubble’ with appropriate boundary conditions. These imposed either transverse magnetic
(1−−, TM) or transverse electric (1+−, TE) solutions, with the TE modes being the lightest. The
predicted result was four low lying nonets with, in order, quantum numbers 0−+, 1−+, 1−−, and
2−+ in the mass range 1.2 – 2.5 GeV.

The Budapest variant was designed to deal with heavy quarks for which a spherical bag was
unrealistic (as it would not naturally yield linear confinement). Thus the bag was allowed to deform
due to the presence of fixed heavy quark and antiquark sources. The resulting adiabatic energy
surface was used in a two-body Schrödinger equation to give mass estimates for hybrids. Masses
found for the lightest hybrids were ≈ 3.9 GeV for cc̄ and 10.45 GeV for bb̄. Readers interested
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in examining this model closely should be aware that the formulas for quantum numbers reported
therein are incorrect [54].

The bag model has also been applied to hybrid baryons [55]. In this case a TE gluonic field was
combined with three quarks in an overall color octet to produce a set of hybrid states: 2[N1/2+],
2[N3/2+], N3/2+, N5/2+, ∆1/2+, and ∆3/2+. Notice that these quantum numbers agree with those
reported for the lattice in section 2.5.

The overall mass scale of these states is not firmly established; for example in Ref. [55] the scale
was set assuming that the π(1300) was a hybrid meson, yielding hybrid baryons near 1.6 GeV.
These days the π(1800) is a more plausible hybrid candidate, which places the low lying bag model
hybrid baryons above 2 GeV in mass.

We remark that although bag models provide a compelling qualitative picture of confined quarks
and gluons, they suffer from a number of ambiguities which makes their application less than ideal.
Among these are difficulties in determining the response of the bag boundary when quarks and
gluons are present, ambiguities in gluon self-energies, and the existence of spurious degrees of
freedom associated with the center of mass.

A more subtle problem concerns the presence of both a bag pressure and valence gluons. This
issue is illustrated with a statement by Jaffe and Johnson, who discuss exotic quantum numbers in
the MIT model and note that they can occur due to “type II exotic quark states”, which are qq̄ or
qqq states with quantum numbers that cannot be obtained in the “conventional” quark model [56].
They contrast these with “mixed states of quarks and glue” and go on to explain that it is the bag
surface that permits the extra quantum numbers.

The problem is that the degrees of freedom in QCD are quarks and gluons, and it is natural
to associate the bag pressure with gluonic properties of the medium. Thus the extra quantum
numbers are due to glue, and “type II” and “qq̄g” states are really the same. In short, an intrinsic
ambiguity exists between bag and gluonic degrees of freedom.

More modern applications of bag models have focussed on reproducing lattice results. For
example, Juge, Kuti, and Morningstar have resurrected the Budapest variant and compared its
adiabatic surfaces to those of the lattice [57]. The results, some of which are given in Fig. 9, show
quite good agreement between the approaches.

Finally, an attempt at reproducing the gluelump spectrum in the bag model has been made
by Karl and Paton [58]. The calculation draws on the mapping between adiabatic surfaces at zero
quark separation and the gluelump spectrum. Computed single gluon modes in a spherical bag do
not agree with the lattice gluelump ordering; including corrections due to the Coulomb interaction
and adjusting the strong coupling gave levels as reported in Table 9. For comparison we display
the lattice results of table 1 with energies shifted to match 1.43 GeV for the 1+− state. As can be
seen, there is broad agreement, while detailed agreement cannot be claimed.

JP : 1+ 2− 1− 3+ 2+

mass (GeV): 1.43 1.97 1.98 2.44 2.64
lattice (GeV): – 2.01 1.81 2.42 2.42

Table 9: Gluelump Bag Model Predictions and Shifted Lattice Spectrum.
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Figure 9: Lattice and Bag Model Adiabatic Potentials. (Figure reproduced with permission from
reference [57]).

3.2 Relativistic String Models

Models of soft glue as collective, ‘stringy’, degrees of freedom have a long history, dating from early
ideas contained in dual resonance models. The formal development of string theory veered off into
mathematical details once it was realized that substantial formalism was required for consistent
quantization. However, variant string models were presented as explicit models of mesons. Thus,
for example, Andreo and Rohrlich noted that dual strings and gauge theories are related, and thus,
“one is ... led to believe that in a certain approximation a meson can be regarded as two point-like
quarks confined to each other by a string” [59]. Once this idea is in place it is natural to examine the
adiabatic potentials of the model and note that “daughter trajectories” correspond to additional
mesonic states.

To our knowledge, the first to draw this connection were Giles and Tye in 1976 [60]. These
authors coupled quarks to a relativistic two-dimensional sheet in what they called the “Quark
Confining String Model” and noted that “The presence of vibrational levels gives ... extra states
in quantum mechanics ... that are absent in the charmonium model”.

The quark-string system was assumed to obey an action

S =

∫

d2u (−det(g))1/2 ψ̄iγµτ
µ
α∂

αψ + . . . (21)

where τ is a collection of tangent vectors to the string surface. Vibrational energies were crudely
estimated and a Born-Oppenheimer Schrödinger equation was solved for the hadronic states:
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H = − 1

m

∂2

∂R2
+ 2m+ Vn(R) +

ℓ(ℓ+ 1)

mR2
(22)

with

Vn = kR

(

1 − 2nπ

2nπ + k((R− 2d)2 + 4d2)

)−1/2

. (23)

Here d is a correction due to the finite quark mass. Vibrational levels (hybrids) in the charmonium
sector were predicted to lie at 3.96, 4.21, 4.41, 4.45, and 4.46 GeV; although no quantum numbers
(other than the angular momentum) were given.

Similar models have been developed by a variety of groups: Ref. [61] extended the work of Giles
and Tye and predicted a vector bottomonium hybrid with mass mΥ+990 MeV and a photocoupling
of Γ(bb̄g(1−−) → e+e−) = 0.20(15) keV. An early application of string models to baryons is
contained in Ref. [62] where adiabatic potentials relevant to the three quark system are developed.
Another application has been to the adiabatic surfaces of section 2.1. The authors of Ref. [63] used
a simple quantized string model with fixed ends to obtain an expression for the adiabatic surfaces

VN (R) =
√

(aR)2 + 2πa(N + c) + C (24)

where N labels the string excitation and is given in terms of phonon occupation numbers as

N =

∞
∑

m=1

m(n+
m + n−m). (25)

The authors added −4/3 ·αs/R to this expression, set c = 0, and fit to the adiabatic Σ+
g surface to

obtain C and a. The resulting excited surfaces agreed reasonably well with the lattice computations.

The extension of effective string models to 1/M2 corrections to the ground state adiabatic
potential has been explored by Brambilla et al. [64]. Explicit expressions for a variety of corrections
were obtained, but a detailed comparison to quarkonium phenomenology was not made.

Recently, the AdS/QCD hypothesis of Maldacena [65] has been used to extract the ground state
Σ+

g surface [66] and the Σ−
u hybrid surface [67]. Although this effort is in its infancy, the agreement

with lattice results is quite good.

3.3 Flux Tube Model

3.3.1 Model Development

The flux tube model was developed by Isgur and Paton as a response to bag models. In particular,
Isgur and Paton objected to the use of perturbative gluons in constructing a hadron, and argued
that nonperturbative degrees of freedom, such as in a string model, should be used [68]. Noting
that the QCD lattice Hamiltonian also is not written in terms of perturbative gluons, Isgur and
Paton built a simple model by truncating the Hamiltonian with a series of approximations [69,70].
In particular, the lattice degrees of freedom are quarks fields on lattice sites and gluonic ‘link
variables’ Uℓ = exp(−iagAµ(x)) where ℓ represents the link (x, µ̂). In the strong coupling limit the
Hamiltonian is given by

21



HscQCD =
g2

2a

∑

ℓ

Ea
ℓEaℓ +m

∑

n

ψ̄nψn (26)

where g is the strong coupling, a is the lattice spacing, and n is a lattice site. The velocity
variables U̇ℓ have been replaced by electric field operators Eℓ. Gauge invariant pure glue states are
formed by closed (possibly multiply connected) loops of link operators. The commutation relation
[Ea, U ] = T aU then implies that the energy of these states is simply the sum of the quadratic color
charges of each link:

Eloop =
g2

2a

∑

ℓ∈loop

C2
ℓ (27)

where C2 = 4/3 for a field in the 3 or 3̄ representations, 10/3 for 6 or 6̄, etc. The presence of quarks
permits gauge invariant states with open flux strings which terminate on quark color sources or
sinks. Perturbations to these states are provided by subleading quark hopping and magnetic terms.
The former allow flux tube breaking via quark pair production or quark motion. The latter can
change link color representations, cause link hopping, or change loop topology.

Isgur and Paton simplified the dynamics by (i) assuming an adiabatic separation of quark and
gluon degrees of freedom (ii) neglecting ‘topological mixing’ such as loop breaking or loop Euler
number changing transitions (iii) working in the non-relativistic limit. The model is meant to be
applied to the ‘intermediate regime’ where 1/a ∼

√
b. They then modelled link variable dynamics

in terms of spinless colorless particles (‘beads’) of mass ba where b is the string tension in the static
quark potential. Finally these particles are assumed to interact via a linear potential and perform
small oscillations about their resting positions. The result is a simple discrete string model for glue
described by the Hamiltonian:

H = b0R+
∑

n

[

p2
n

2b0a
+
b0
2a

(yn − yn+1)
2

]

, (28)

where yn is the transverse displacement of the nth of N string masses, pn is its momentum, b0
is a bare string tension, and R = (N + 1)a is the separation between the static quarks. This
Hamiltonian may be diagonalized in the usual way yielding

HFTM = b0R+

(

4

πa2
R− 1

a
− π

12R
+ . . .

)

+
∑

nλ

ωnα
†
nλαnλ (29)

where α†
nλ creates a phonon in the nth mode with polarization λ. Notice that the string tension has

been renormalized by the first term in the brackets. The last term in the brackets is the Lüscher
term of string phenomenology [71]. The mode energies are given by ωn = 2/a sin[πn/2(N + 1)].
Thus ω1 → π/R as N → ∞ is the splitting between the ground state Coulomb+linear potential
and the first gluonic excitation surface at long range. The energy of a given phonon state is
approximately

E = E0 +N
π

R
(30)

with N given by Eq. 25.
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Hybrid mesons are constructed by specifying the gluonic states via phonon operators and com-
bining these with quark operators with a Wigner rotation matrix:

|LML; ss̄; Λ, {nm+, nm−}〉 ∝
∫

d3rϕ(r)DL
MLΛ(r̂) b†r/2,sd

†
−r/2,s̄

∏

m

(α†
m+)nm+(α†

m−)nm− |0〉. (31)

The projection of the total angular momentum on the qq̄ axis is denoted by Λ =
∑

m(nm+ −nm−).
The parity and charge parity of these states are given by

P |LML;SMS ; Λ, {nm+, nm−}〉 = (−)L+Λ+1|LML;SMS ;−Λ, {nm−, nm+}〉, (32)

C|LML;SMS ; Λ, {nm+, nm−}〉 = (−)L+S+Λ+N |LML;SMS ;−Λ, {nm−, nm+}〉. (33)

States of good parity are thus formed as

|LML;SMS ; ζ; Λ, {nm+, nm−}〉 =
1√
2

(

|LML;SMS ; Λ, {nm+, nm−}〉+ζ|LML;SMS ;−Λ, {nm−, nm+}〉
)

.

(34)
Possible single phonon (m = 1) mesons are listed in table 10, where underlined quantum

numbers represent quantum number exotic hybrids.

ζ L S JPC

+ 1 0 1++

+ 1 1 (2, 1, 0)+−

+ 2 0 2−−

+ 2 1 (3, 2, 1)−+

- 1 0 1−−

- 1 1 (2, 1, 0)−+

- 2 0 2++

- 2 1 (3, 2, 1)+−

Table 10: Flux Tube Model Single Phonon Mesons

Isgur and Paton obtained hybrid meson masses by solving a model Hamiltonian of quark motion
on the single-phonon excited surface:

HIP = − 1

2µ

∂2

∂R2
+
L(L+ 1) − Λ2

2µR2
− 4αs

3R
+
π

R
(1 − e−f

√
bR). (35)

The interaction term incorporates several important additional assumptions. Namely the π/R
phonon splitting is softened at short range. The parameter f which appears in the softening
function was estimated to be roughly unity. Furthermore, it was assumed that the attractive
Coulomb (1/R) potential remains valid for hybrid mesons.

Finally the quark angular momentum operator is now complicated by the presence of glu-
onic/string degrees of freedom. One may write

Lqq̄ = L− LS||
− LS⊥

(36)
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where L (LS) is the total (string) angular momentum. Note that LS⊥
mixes adiabatic surfaces.

Using LS||
= ΛR̂ and neglecting surface mixing yields the centrifugal term of Eq. 35 (notice that

this is not the same as used by Juge et al.).

The hybrid masses obtained by solving Eq. 35 are labelled EIP in table 11. Isgur and Paton
also estimated the effects of adiabatic surface mixing and used these as their final mass estimates
(labelled E′

IP ). The column labelled KW lists hybrid masses obtained when the adiabatic surfaces
of section 2.1 are used along with the centrifugal term of Eq. 4 [72].

flavor EIP (GeV) E′
IP (GeV) EKW (GeV)

I=1 1.67 1.9 1.85
I=0 1.67 1.9 1.85
ss̄ 1.91 2.1 2.07
cc̄ 4.19 4.3 4.34
bb̄ 10.79 10.8 10.85

Table 11: Hybrid Mass Predictions

3.3.2 Further Developments

In developing the flux tube model, Isgur and Paton assumed adiabatic separation of bead and quark
motion and that the string executes small oscillations. Both of these assumptions were tested
by numerically solving a bead-quark-antiquark system with a quantum Monte Carlo algorithm
[73]. The results indicate that the small oscillation approximation is accurate for long strings
but overestimates gluonic energies by an increasing amount as the interquark distance shrinks.
Typical energy differences are order 100 MeV at 1 fm. Similarly, the adiabatic approximation
underestimates true energies by roughly 100 MeV, with slow improvement as the quarks get very
massive. It thus appears that these approximation errors tend to cancel each other, leaving the
mass estimates of Isgur and Paton largely intact.

The effects of adiabatic surface mixing were examined by Merlin and Paton by considering the
full quark-bead system [74]. Although the effects can be quite complicated, with mixing between
all surfaces possible, they found that the majority of the effects can be absorbed in a redefinition of
the hybrid potential by including the rigid body moment of inertia of the string in the centrifugal
term:

1

2µR2
→ 1

2µR2 + 1
6bR

3
, (37)

and with a more important effect that increases the strength of the π/r splitting as r becomes larger
than mq/b. An explicit computation revealed found mass shifts of order -100 MeV for conventional
S-wave light quark mesons and +200 MeV for light quark hybrids.

Merlin and Paton also examined spin orbit forces in the context of the flux tube mode [75]. The
idea was to map the operators of the leading spin orbit term in the heavy quark expansion of QCD,
namely VSO = g/2m · σ · B, onto phonon degrees of freedom. Explicit computations revealed that
spin orbit splittings due to VSO are small and that the majority of the splittings arise from Thomas
precession, VTh = 1/4(r̈q × ṙq) · σ. This was modelled by including the effects of phonons on the
quark coordinate. The resulting mass splittings for light hybrids are listed in table 12. One sees
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that the lowest member of the octet of light hybrids is predicted to be the 2+− while the heaviest
is the 0+−. These results do not agree with those of lattice gauge theory.

JPC 2+− 2−+ 1−+ 0−+ 1+− 0+− 1++ 1−−

δM (MeV) -140 -20 20 40 140 280 0 0

Table 12: Spin Orbit Hybrid Mass Splittings.

Isgur pointed out that the energy carried by the flux tube will change several features of the
naive quark model [76] (see also [74]). For example, zero point oscillation of the flux tube about
the interquark axis will induce transverse fluctuations in the quark positions, something which is
not present when the flux tube is treated as a potential. The additional fluctuations have the effect
of increasing the charge radius of a heavy-light meson (qQ):

r2Q =

[

(

mq

mq +mQ

)2

+
2b

π3m2
q

ζ(3)

]

〈r2〉 (38)

where the second term in the bracket is the new contribution. Isgur estimated this to give rise to
a 50% increase in charge radii of light quark hadrons.

3.4 Hybrid Baryons in the Flux Tube Model

Capstick and Page have made a detailed study of baryon flux tube dynamics [77], [78]. This is
a technically challenging problem due to the multitude of vibrational and rotational modes that
are available to a Y-shaped string system. However, they have found that the problem simplifies
considerably because the string junction decouples to good accuracy from the rest of the bead
motion. Thus a hybrid baryon can be approximated by three quarks coupled via linear potentials
to a massive “junction bead”. The dynamics of this system are completely specified by the flux
tube model and variational calculations indicate that the lowest lying hybrids are JP = 1

2

+
and 3

2

+

states at approximately 1870 MeV. Notice that the lattice confirms these lightest states, but that
the lattice mass is somewhat higher at 2550 MeV (section 2.5).

We remark that lattice investigations of the static baryon interaction have been carried out [79].
The chief point of interest is whether the expected flux tubes form into a ‘Y’ shape or a ‘∆’
shape. This may be addressed by carefully examining the baryonic energy in a variety of quark
configurations. Current results are mixed, with some groups claiming support for the two-body
hypothesis [80] and some for the three-body hypothesis [81]. Finally, a strong operator dependence
in the flux tube profiles has been observed [82], which clearly needs to be settled before definitive
conclusions can be reached.

3.5 Constituent Glue Models

Constituent gluon models for hybrids were introduced by Horn and Mandula [83] and were subse-
quently developed by Iddir et al. and Ishida et al. [84–86]. Since these models assume a diagonal
gluon angular momentum ℓg their predictions for quantum numbers differ somewhat from other
models.

Horn and Mandula assumed a massless JP = 1− gluon interacting via linear potentials with
quarks. The short range repulsive interquark potential was absorbed into a constant with the
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argument that repulsive forces do not produce vacuum polarization instabilities. Their model thus
took the form:

H = 2mc +
p2

q

mc
+ pg +G(|rq − rg| + |rq̄ − rg|) + C (39)

where the string tension was taken to be G = 0.30 GeV2.
For the lightest hybrid states (with ℓg = 0) Horn and Mandula predicted nonexotic quantum

numbers equivalent to P -wave qq̄ states, since the gluon has JP = 1−. Exotic quantum numbers
including 1−+ are predicted in the higher-lying (ℓqq̄, ℓg) = (1, 0) and (0, 1) multiplets. Detailed
spectroscopic predictions for hybrids have not been published using these constituent gluon models,
and the estimated masses are assigned large uncertainties. A typical result, due to Ishida et al., is
1.3-1.8 GeV for light nonexotic hybrids and 1.8-2.2 GeV for light exotics.

More recently, the idea of constituent glue models has been revived in the context of QCD in
Coulomb gauge [87]. The model takes the Hamiltonian of QCD in Coulomb gauge as its starting
point. A nontrivial mean field vacuum Ansatz is used to construct self-consistent constituent
quarks and gluons, and these are used to construct hadrons in the Tamm-Dancoff approximation.
In this picture the gluon remains transverse, but has a dynamically generated mass. Interactions
were truncated at the two-body level. An eigenvalue equation was derived for the case of static
quarks and the adiabatic energy surfaces were obtained. Although they mimic those of section
2.1 reasonably well, the level ordering was incorrect. This problem can be traced to the JP = 1−

assignment for the constituent gluon, and hence applies to all models that make this assumption.
It is also possible to reproduce the gluelump spectrum with this method by setting the interquark

distance to zero. In this limit the gluonic angular momentum becomes a good quantum number
and Y -parity is simply given by P (−)jg . Thus degeneracies appear in the gluelump spectrum,
precisely as shown in section 2.2 (although the level ordering remains incorrect). With this method
the splitting between the lowest two levels was predicted to be 500 MeV, which should be compared
to the 360 MeV measured in lattice gauge theory (see table 1).

Despite these failings, it would be premature to dismiss a constituent gluon picture of hybrids
because important three body interactions exist in the system and these cannot be neglected in a
nonperturbative context. Fig. 10 shows some of these interactions; the first two are self-energies,
the second pair were considered in older constituent models, and (e) and (f) represent important
additional interactions. In fact, Szczepaniak and Krusinski have shown that the three-body in-
teractions are sufficient to invert the naive parity ordering in the gluelump and adiabatic surface
spectra [88]. Detailed comparison to lattice results show reasonable agreement, although the model
levels tend to be several hundred MeV high.

A follow-up paper generalized the Coulomb gauge model by fitting the gluonic quasiparticle
dispersion relation to the gluelump spectrum (rather than obtaining it by minimizing the vacuum
energy) [89]. The result and lattice data are shown in table 13.

JP 1+ 1− 2− 2+ 3+ 0+ 4−

model (GeV) 0.87 1.27 1.47 1.59 1.99 – 2.49
lattice (GeV) 0.87(15) 1.25(16) 1.45(17) 1.86(19) 1.86(18) 1.98(18) 2.13(18)

Table 13: Lattice and Constituent Gluon Model Gluelump Spectra.

The modified Coulomb gauge model was also employed in a computation of the heavy hybrid
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Figure 10: Interactions in a Constituent Hybrid Model.

spectrum [90]. General agreement with lattice results were found, although the predictions appear
to be systematically high. The 1−+ charmonium hybrid was predicted to lie at 4.47 GeV.

3.6 Sum Rule and Schwinger-Dyson Calculations

QCD sum rules have been used since their inception for the study of nonperturbative properties
of QCD [91]. Their application to hybrid mesons dates to the beginnings of the field. A collection
of results for the light quantum number exotic hybrid are presented in table 14. Evidently mass
estimates have been climbing over the years, with more recent results tending to agree with lattice
computations.

1−+ mass (GeV) Ref year

1.3 [92] 1983
∼ 1 [93] 1986
1.7(1) [94] 1987
1.65(5) [95] 2000
1.81(6) [96] 2009

Table 14: Sum Rule Hybrid Mass Estimates

Sum rules have also been applied to hybrid baryons in Ref. [97]. The authors considered the
possibility of a hybrid baryon as the first excited state above the nucleon with N1/2+ quantum
numbers and concluded that such a state should have a mass near 1.5 GeV. This is 1 GeV lighter
than current lattice results.

Finally, exploratory computations of hybrid masses have been carried out with the Schwinger-
Dyson and Bethe-Salpeter formalism [98], [99]. Although the authors solve a two-body Bethe-
Salpeter equation, exotic quantum numbers are accessible because the formalism is relativistic and
the Bethe-Salpeter kernel can contain gluonic degrees of freedom. Of course the dynamics and
eigenvalues of hybrids then depends crucially on the assumed form of the scattering kernel. In this
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case, a separable kernel Ansatz of the form

K(p, q) = −4

3
g2γµ[G(p2)G(q2) + p · q F (p2)F (q2)]γµ (40)

was used. The functions F and G are related to the full quark propagator via the Schwinger-Dyson
equations for the gluon propagator. Results for a selection of states are presented in table 15 along
with possible resonance assignments suggested by the authors. The authors point out that the 1−+

states carry negative norm, which is normally regarded as a sign of a spurious state [100], although
they argue that this is not enough to dismiss the states as physical.

JPC mass (GeV) assignment

0++ 749 σ(540), a0(980)
0+− 1082 exotic
0−− 1319 exotic

1−− 730 ρ(770)
1+− 1244 h1(1170)
1++ 1337 a1(1260)
1−+ 1439, 1487 π1(1400), π1(1600)

Table 15: Bethe-Salpeter Hybrid Masses

3.7 Model Comparison

It is instructive to confront the models of the past section with the lattice data for the gluelump
spectrum, adiabatic surfaces, and hybrid masses.

With regards to the general features of the adiabatic surfaces, it is possible for spherical bag
models to reproduce the lattice calculations at small quark separation, but they fail at large R.
Furthermore, flux tube model or Nambu-Goto string models reproduce the lattice reasonably well
for intermediate to large quark separations, but do not perform well at small R or in detail at large
R.

The flux tube model fits the first excited state, Πu, quite well over a wide range of the quark
separation (one must ignore the Coulomb term present in Eqn. 25 of Ref. [69] [70]). It is, however,
the only surface to do so at small distance. Furthermore, this may be a fluke due to the particular
choice of the short distance cutoff of the π/R term employed in Ref. [69], [70].

Of course, π/R splittings are expected to be universal behavior of string systems. Juge, Kuti,
and Morningstar have carried out a detailed analysis of the relationship of the hybrid surfaces of
Fig. 1 to string excitations. They have found that π/R splittings are manifest only for very large
source separation (roughly 4 fermi or greater). This is something of a surprise since one expects a
phonon-like excitation spectrum on general grounds.

The lightest flux tube multiplet: (0, 1, 2)−+, 1−−, (0, 1, 2)+−, and 1++ is larger than that
observed in lattice computations. Taken together, it appears that the flux tube model is not an
effective model of gluonic excitations. Alternatively, bag models that have a lowest energy TE mode
yield multiplets in agreement with the lattice. Yet these models suffer from internal consistency
issues (center of mass motion, bag distortion, double counting degrees of freedom) that render their
detailed predictions inaccurate or suspect.
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Simply achieving the quantum numbers of the adiabatic potentials is not possible in many
models. Thus, for example, models that employ single spinless gluons do not contain sufficient
degrees of freedom to reproduce the adiabatic potential spectrum. In particular, transverse “single
bead” flux tube models (Ref. [73]) cannot make Πg or Σu states while three dimensional “bead”
models (Ref. [83]) cannot make Σ+ states. Thus including gluon spin is a minimal necessity in
this class of models (although the level ordering problem must be overcome as discussed above).
Furthermore, including this spin is not sufficient to obtain the correct level ordering [87], as it
appears that three-body interactions are required, at least in some models [88]. Alternatively,
models with constituent gluons with JP = 1− in relative S-waves with qq̄ systems fail to describe
the observed lattice states. However, if the dynamics favors a P-wave coupling then the lowest
hybrid multiplet can be explained if the qq̄ system is in an S-wave and the heavier lattice multiplet
can be explained if the quark pair is in a P-wave. If this promise is fulfilled, constituent glue models
must still strive to incorporate the effects of multiple gluons, which are presumably required to
obtain string-like large distance behavior [101].

4 Hybrid Decay Models

Hybrid decay mechanisms were considered from the beginnings of the development of hybrid models.
Tanimoto categorized these in terms of three possibilities [102]: (i) decays of the type hybrid →
hybrid + meson; these can occur via a mechanism for quark pair production, such as the 3P0 decay
model [103], [104]; (ii) hybrid → hybrid + meson → meson + meson, a two-step process in which
the virtual hybrid undergoes a gluonic de-excitation to a (conventional) meson state; (iii) hybrid
→ meson + meson, where the valence gluon produces a quark pair.

An important early observation was that a 1−+ hybrid cannot decay to identical S-wave mesons
[85, 86, 102]. This result was obtained in the non-relativistic limit employing a decay vertex of the
form ψ̄A/ψ. Early computations of this sort found that TM hybrids tended to have typical hadronic
widths, while TE hybrids tend to be narrow [102].

4.1 Flux Tube Decay Model

The difficulties bag models had in predicting detailed properties of the conventional mesons led to a
waning of interest in them and an increasing reliance on flux tube models. In fact, shortly after its
introduction, the flux tube model of meson structure was extended by Isgur, Kokoski, and Paton
(IKP) to provide a description of meson [105] and hybrid [106] decays. The transition operator was
envisioned as arising due to the quark hopping term of the lattice QCD Hamiltonian. The lowest
terms in the expansion of this operator are

Hhop =
∑

n,µ

ψ†
nα · µψn + a

∑

n,µ

ψ†
nα · µ∇ · µψn, (41)

where µ is a unit vector along the string. If one assumes a smooth string then the first term
dominates as the lattice spacing gets small and one has a 3S1 strong decay operator. Alternatively,
if the string is rough then the first term averages to zero upon summing over all local string
orientations and the second term dominates, yielding a 3P0 strong decay operator. The authors of
Ref. [105,106] assumed the second scenario since it has a long history of phenomenological success.

Flux tube degrees of freedom were incorporated by assuming factorization:
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〈{. . .}bd; {. . .}bd|O|{. . .}b†d†〉 ≈ 〈bd; bd|3P0|b†d†〉 · 〈{. . .}; {. . .}|{. . .}〉. (42)

Here {. . .} refers to the collection of (phonon) quantum numbers required to describe the flux
tube and O is a transition operator. The first matrix element on the right hand side is a typical
3P0 mesonic decay overlap. The second represents the overlap of the gluonic/flux tube degrees
of freedom. Assuming that the quark pair creation occurs at a transverse distance y⊥ from the
interquark axis of the parent meson yields the results

〈{0 . . .}; {0 . . .}|{0 . . .}〉 ∼ e−fby2
⊥ (43)

for meson decay and

〈{0 . . .}; {0 . . .}|{1 . . .}〉 ∼ y⊥e−fby2
⊥ (44)

for hybrid decay. The factor f is a computable constant of order unity. The extra factor of y⊥ in
the hybrid decay vertex forces the decay to pairs of identical S-wave mesons to be zero. This gives
rise to a selection rule that states that hybrids cannot decay to meson with identical S-wave spatial
wavefunctions. This is because the string angular momentum cannot be absorbed by the relative
coordinate between the final state mesons and therefore must go into a qq̄ angular momentum. We
stress that this result hinges on the assumed factorization of the quark pair production operator
from the gluonic degrees of freedom. A more general discussion of selection rules in hybrid decays
is contained in Ref. [107]

The observation that flux tube motion can affect the center of mass of the quarks that was
mentioned in section 3.3.2 was expanded upon by Close and Dudek who commented that radiative
decays of hybrid mesons can proceed because the recoil of the radiating quark affects the string
degrees of freedom giving a nonzero overlap of the flux tube wavefunction with the ground state
flux tube wavefunctions of ordinary mesons [108].

A similar scheme involving the emission of pointlike pions may be used to compute hybrid
decays to final states such as πρ [109]. The most striking result here is that this decay mechanism
evades the selection rule discussed above.

4.2 The PSS Hybrid Decay Model

An alternative hybrid decay model has been developed in which the gauge field in the interaction
−g

∫

ψ̄α ·Aψ was mapped to phonon degrees of freedom [110], [111]. This model is quite different
from that of IKP because it explicitly correlates quark pair production with gluonic degrees of
freedom. The resulting decay vertex is given by

Hint =
iga2

√
π

∑

m,λ

∫ 1

0
dξ cos(πξ)T a

ij b
†
i (ξrQQ̄)σ · êλ(r̂QQ̄)

(

αa
mλ − αa†

mλ

)

d†j(ξrQQ̄), (45)

where the ê(r̂) are polarization vectors orthogonal to r̂. The qq̄ creation occurs on a line joining the
original QQ̄ quarks, smeared over the transverse size of the flux tube. The spin operator contracts
with the flux tube phonon polarization vector, which is absent in the IKP model. Finally, the
decay amplitude vanishes when the final mesons are identical due to the nodal structure in the
vector potential. This is true for any single-phonon hybrid in an odd mode. Thus one obtains the
selection rule: low-lying hybrids do not decay to identical mesons. This subsumes the selection rule
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of IKP so that none of their qualitative conclusions are changed. However the model predicts, for
example, that hybrids do not decay to pairs of identical P-wave mesons.

Another rule, the “spin selection” rule, exists: if the qq̄ in either hybrid or conventional mesons
are in a net spin singlet configuration then decay into final states consisting only of spin singlet
states is forbidden. This rule follows because pair creation is spin-triplet and appears to be a
universal feature in all non-relativistic decay models.

Notice that the spin selection rule can be used to distinguish conventional and hybrid vector
mesons. This is because conventional vector mesons have (2S+1)LJ = 3S1 or 3D1 while hybrid
vectors have their quarks coupled to a spin singlet. Thus, for example, the decay of hybrid ρH , is
forbidden to πh1 whereas πa1 is allowed; this is the reverse of the case of 3S1 conventional mesons
where the πa1 channel is relatively suppressed and πh1 is allowed.

Finally, the IKP and PSS decay models can be compared to the UKQCD lattice results for π1

decay with the modification introduced by Burns and Close (discussed in section 2.6.3). The model
widths reported in Table 16 are obtained from Ref. [110], [111].

mode ΓPSS (MeV) ΓIKP (MeV) Γlattice (MeV)

π1 → f1π 10-18 14 25
π1 → b1π 40-78 51 80

Table 16: Comparison of lattice and model hybrid decay modes.

4.3 Hybrid Photocoupling and Production

Model hybrid decay computations focus on OZI allowed decays, and thus charmonium or bottomo-
nium decays are to open flavor final state mesons. In the case of light flavors, an OZI allowed decay
to a final state such as πρ will permit an estimate of the radiative transition to πγ via the vector
meson dominance model. The phenomenology of this case was examined in Ref. [112]; the authors
noted that hybrid photoproduction could be significant in the case of ω or π exchange because the
incoming ρ is replaced by a photon and because the exchanged particles are off-shell.

The cross section for deep exclusive electroproduction of an exotic 1−+ hybrid was estimated
in the Bjorken regime by Anikin et al. [113]. This cross section was found to be large, and in fact
scales like 1/Q2, as is usual for meson electroproduction. The authors also noted that forward-
backward asymmetry in the production of π and η mesons can serve as a useful signal for hybrid
meson production.

We are aware of one attempt to compute the hidden flavor decay of hybrid mesons [114]. The
model assumed hybrids constructed with constituent gluons such that the TE mode is the lowest
lying. The electromagnetic transition was modelled in bound state perturbation theory with the
valence gluon being absorbed by quarks or by the Coulomb interaction with photon emission from
a quark line. The authors were not able to predict absolute rates so that comparison to the lattice
results of section 2.6.4 is not possible. The rates for all the low lying TE hybrid multiplet transitions
were found to be comparable.

The utility of polarized photoproduction of hybrid mesons was analyzed in Ref. [115]. The
authors examined the process ~γp → ρ0π+n at low momentum transfer via pion exchange. They
assumed a simple form for the photon-pion-hybrid vertex and fixed the ratio of partial waves
according to the vector meson dominance model. The computed cross sections indicated that
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corrections due to absorption are required and that linear photon polarization permits separating
the exotic wave, even without partial wave analysis.

5 Experimental Situation

Experimental data on exotic hybrid mesons goes back nearly three decades, and continues until
today. An extensive review on spectroscopy in general can be found in reference [116], while a
review focussing only on hybrid mesons is given in reference [117]. The experimental situation
has evolved since these previous reviews, with new data from several experiments and detailed
systematic studies of production mechanisms made possible by very-large data sets. To date, there
is experimental evidence for three exotic quantum number states [118]. All have the same quantum
numbers, IGJPC = 1−1−+, the π1(1400), π1(1600) and π1(2015), and there are experimental and
interpretational issues surrounding all of them. The field is now on the cusp of a new experiment
to study the photoproduction of hybrids, and a few years away from a new antiproton experiment.
Thus it seems timely to take stock of the current situation.

In order to search for exotic hybrids, it is first necessary to catalog the possible decay modes.
These are given in Table 17 where the widths come from model calculations (see Section 4.2).
The decay modes are obtained by simple quantum number counting arguments. The list is not
exhaustive, but covers the most likely and most detectable modes.

Name JPC Total Width MeV Allowed Decay Modes
PSS IKP

π1 1−+ 81 − 168 117 b1π, πρ, πf1, πη, πη
′, ηa1, πη(1295)

η1 1−+ 59 − 158 107 πa1, πa2, ηf1, ηf2, ππ(1300), ηη′, KKA
1 , KKB

1

η′1 1−+ 95 − 216 172 KKB
1 , KKA

1 , KK∗, ηη′

b0 0+− 247 − 429 665 ππ(1300), πh1, ρf1, ηb1
h0 0+− 59 − 262 94 πb1, ηh1, KK(1460)
h′0 0+− 259 − 490 426 KK(1460), KKA

1 , ηh1

b2 2+− 5 − 11 248 πa1, πa2, πh1, ηρ, ηb1, ρf1

h2 2+− 4 − 12 166 πρ, πb1, ηω, ωb1
h′2 2+− 5 − 18 79 KKB

1 , KKA
1 , KK∗

2 , ηh1

Table 17: Exotic quantum number hybrid widths and possible decay modes [110].

5.1 Exotic Quantum Number states

Data on exotic-quantum-number mesons have come from both diffractive production using incident
pion beams, antiproton annihilation on protons and neutrons and charmonium decays. Diffractive
production is schematically shown in Fig. 11. A pion beam is incident on a proton (or nuclear)
target, which recoils following a t-channel exchange. The process can be written down in the
reflectivity basis [119] where the production factorizes into two non-interfering amplitudes—positive
reflectivity (ǫ = +) and negative reflectivity (ǫ = −). The absolute value of the spin projection
along the z-axis is M , and is taken to be either 0 or 1 (it is usually assumed that contributions from
M larger than 1 are small and can be ignored [120]). It can be shown in this process that naturality
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of the exchanged particle can be determined by ǫ. Natural parity exchange (n.p.e.) corresponds
to JP s of 0+, 1−, 2+, · · · , while unnatural parity exchange (u.p.e.) corresponds to JP of 0−, 1+,
2−, · · · . For a state which is observed in more than one decay mode, one would expect that the

p (target) p (recoil)

X (J PC M )

Figure 11: The diffractive process with an incident pion (π beam) and a proton (p) target. The
exchange has z-component on angular momentum M and reflectivity ǫ. The recoil proton and a
state X of given JPC constitute the final state. For positive reflectivity, the t-channel is a natural
parity exchange, while for negative reflectivity, it is unnatural parity exchange.

production mechanism (M ǫ) would be the same for all decay modes. If not, this could be indicative
of more than one state being observed, or possible analysis problems.

In antiproton-nucleon annihilation, there are a number of differences between various annihila-
tion processes. For the case of p̄p, the initial state is a mixture of isospin I = 0 and I = 1. For p̄n
annihilation, the initial state is pure I = 1. For annihilation at rest on protons, the initial state is
dominated by atomic S-waves. In particular, 1S0 and 3S1 atomic states, which have JPC = 0−+

and 1−− respectively (with a small admixture of P states). For annihilation in flight, the number
of initial states is much larger and it may no longer make sense to try to parametrize the initial
system in terms of atomic p̄p states.

The combination of initial isospin and final state particles may lead to additional selection rules
that restrict the allowed initial states. In the case of p̄p → ηπ0π0, the annihilation is dominated
by 1S0 initial states (JPC = 0−+). For the case of p̄n → ηπ0π−, quantum numbers restrict this
annihilation to occur from the 3S1 initial states (JPC = 1−−). In addition, the neutron is bound in
deuterium, where the Fermi motion introduces substantial p-wave annihilation. Thus, one may see
quite different final states from the two apparently similar reactions. The results to date came from
the Crystal Barrel experiment at CERN. New results are expected from the PANDA experiment
at FAIR sometime after 2020.

A limited number of results on the photoproduction of exotic mesons have been published, with
no reported signals to date. Extensive new results are expected with the advent of the GlueX
experiment at Jefferson Lab in 2015, and the CLAS-12 experiment two years later.

The decays of χc mesons should also be a good place to search for hybrid mesons. Results
from CLEO-c report interesting results in the η′π system. More extensive results with much higher
statistics should be available from BES-III.

5.2 The π1(1400)

5.2.1 GAMS results on the π1(1400)

The GAMS experiment made the first reported observation of an exotic quantum number state,
using a 40 GeV/c π− beam to study the reaction π−p→ pηπ−. They reported a JPC = 1−+ state
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Figure 12: The results of a partial-wave analysis of the ηπ− final state from VES. (a) shows the
intensity in the 2++ partial wave, (b) shows the intensity in the 1−+ partial wave and (c) shows
the relative phase between the waves. (Figure reproduced from reference [126].)

(the M(1405)) in the ηπ− system [121]. They reported a mass of 1.405 ± 0.020 GeV and a width
of 0.18 ± 0.02 GeV for this state. In the neutral channel, ηπ0, an earlier search found no evidence
for an exotic quantum-number state [122].

5.2.2 KEK results on the π1(1400)

Somewhat later, an experiment at KEK using a 6.3 GeV/c π− beam observed a 1−+ state in the
ηπ− system with a mass of 1.3431 ± 0.0046 GeV and a width of 0.1432 ± 0.0125 GeV [123]. Since
this mass and width is very close to that of the strong signal for the a2(1320), the possibility of
signal leakage into the weak exotic wave from the strong a2 signal often comes up.

5.2.3 VES results on the π1(1400)

The VES experiment studied interactions using a 37 GeV/c pion beam. They reported intensity in
the 1−+ ηπ− exotic wave and saw rapid phase motion between the 1−+ wave and the a2(1320) [124],
as shown in Fig. 12. The exotic wave was present in the M ǫ = 1+ (natural parity) exchange, but
not in the 0− and 1− (unnatural parity) exchange. The observed data could be fit using JPC = 1−+

intensity and the phase motion with respect to the a2(1320) using a Breit-Wigner distribution with
a mass of 1.316 ± 0.012 GeV and width of 0.287 ± 0.025 GeV. However, VES stopped short of
claiming an exotic resonance, as they could not unambiguously establish the nature of the exotic
wave [125]. In a later analysis of the ηπ0 system, they claimed that the peak near 1.4 GeV can be
understood without requiring an exotic quantum number meson [126].

5.2.4 E852 results on the π1(1400)

The E852 collaboration used an 18 GeV/c π− beam to study the reaction π−p → pηπ−. They
reported the observation of a 1−+ state in the ηπ− system [127]. The state was only produced
in natural parity exchange (M ǫ = 1+). Fitting to a Breit-Wigner distribution, they found a
mass of 1.37 ± 0.016+0.050

−0.030 GeV and a width of 0.385 ± 0.040+0.065
−0.105 GeV. The intensity and phase

difference plots are shown in Fig. 13. While the observed exotic signal was only a few percent of the
dominant a2(1320) strength, they noted that its interference with the a2 provided clear evidence
of the existence of the π1(1400). This is most clearly shown in plot (d) of the figure where curve 1
is the phase of the a2, curve 2 is the phase of the π1, 3 is an assumed flat background phase, and

34



4 is the resulting phase difference. When their intensity and phase-difference plots were compared
with those from VES [124], they were found to be identical.
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Figure 13: Data from the E852 experiment showing the π1(1400) [127]. In (a) is shown the intensity
of the JPC = 2++ partial wave, dominated by the a2(1320), as a function of ηπ mass. In (b) is
shown the intensity of the exotic 1−+ wave as a function of the ηπ mass. Frame (c) shows the
phase difference between the two partial waves, 2++ and 1−+. Frame (d) shows the evidence for
the resonant nature of the π1(1400) by looking at the three components that build the total phase
difference. (Figure reproduced with permission from reference [127].)

Due to disagreements over the interpretation of the 1−+ signal, the E852 collaboration split into
two groups. The majority of the collaboration published the resonance interpretation, π1(1400) [127],
while a subset of the collaboration did not sign the paper. As this latter group, centered at Indiana
University, continued to analyze data collected by E852, we will refer to their publications as E852-
IU to distinguish the work of the two groups. An analysis by the E852-IU group of data for the
reaction π−p→ nηπ0 found evidence for the exotic 1−+ partial wave, but was unable to describe it
as a Breit-Wigner-like π1(1400) ηπ0 resonance [128]. However, a later analysis by the E852 collab-
oration of the same final state and data confirmed their earlier observation of the π1(1400) [129].
E852 found a mass of 1.257 ± 0.020 ± 0.025 GeV and a width of 0.354 ± 0.064 ± 0.058 GeV with
the π1(1400) produced via natural parity exchange (M ǫ = 1+). Much of the discrepancy be-
tween these two works arose from the treatment of backgrounds. The E852 collaboration consider
no background phase, and attribute all phase motion to resonances. The E852-IU group allow for
non-resonant interactions in the exotic channel, these background processes are sufficient to explain
the observed phase motion.

5.2.5 Crystal Barrel results on the π1(1400)

The Crystal Barrel Experiment studied antiproton-neutron annihilation at rest in the reaction
p̄n → ηπ−π0 [130]. The Dalitz plot for this final state is shown in Fig. 14 where bands for the
a2(1320) and ρ(770) are clearly seen. They reported an exotic JPC = 1−+ state, the π1(1400), with
a mass of 1.40± 0.020± 0.020 GeV and a width of 0.310± 0.050+0.050

−0.030 GeV. While the signal is not
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obvious in the Dalitz plot, if one compares the difference between a fit to the data without and with
the π1(1400), a clear discrepancy is seen when the π1(1400) is not included (see Fig. 15). While
the π1(1400) was only a small fraction of the a2(1320) in the E852 measurement [127], Crystal
Barrel observed the two states produced with comparable strength. The Crystal Barrel group
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Figure 14: (Color on line.) The Dalitz plot ofm2(ηπ0) versus m2(ηπ−) for the reaction p̄n→ ηπ−π0

from the Crystal Barrel experiment [130]. The bands for the a2(1320) are clearly seen in both ηπ0

and ηπ−, while the ρ(770) is seen in the π0π− invariant mass.

also looked at the reaction p̄p → ηπ0π0 [131]. Here, a weak signal was observed for the π1(1400)
(relative to the a2(1320)) with a mass of 1.360 ± 0.025 GeV and a width of 0.220 ± 0.090 GeV. In
I = 0 p̄p annihilations, the a2(1320) is produced strongly from the 1S0 atomic state. However, the
p̄n is isospin 1 and 1S0 state is forbidden. Thus, the strong a2 production from p̄p is suppressed in
p̄d annihilations—making the π1(1400) production appear enhanced relative to the a2(1320) in the
latter reaction.

5.2.6 OBELIX results on the π1(1400)

Both the OBELIX [132] experiment reported on the observation of the π1(1400) in the reaction
p̄p → 4π. They both claimed the observation of the π1(1400) decaying to ρπ final states, however
there is some concern about the production mechanism. This same result was reported by the
Crystal Barrel Experiment [133] in conference only. The ηπ signal arises from annihilation from
the p-wave initial state, while the signal in ρπ come from the 1S0 initial state. Thus, it is unlikely
that the exotic state seen in ηπ and that seen in ρπ are the same. The origin of these may not be
due to an exotic resonance, but rather some re-scattering mechanism that has not been properly
accounted for.

5.2.7 COMPASS results on the π1(1400)

The COMPASS experiment used a 191 GeV/c π− beam to study the production of both the ηπ
and η′π final states [134]. They note that in the ηπ system, the exotic 1−+ wave “shows a compact
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Figure 15: (Color on line.) The difference between the fit and the data in the Dalitz plot of m2(ηπ0

versus ηπ− for the reaction p̄n → ηπ−π0 from the Crystal Barrel experiment [130]. (a) Does not
include the π1(1400) while (b) does include the π1(1400). There are clear systematic discrepancies
present in (a) that are not present when the π1(1400) is included.

peak of 400 MeV/c2 width, centered at a mass of 1.4 GeV/c2”. They make no comments on the
resonant nature of this structure.

5.2.8 Interpretation of the π1(1400)

Interpretation of the π1(1400) has been problematic. Its mass is lower than most predicted values for
hybrid mesons, and its observation in only a single decay mode (ηπ) is not consistent with models of
hybrid decays. Donnachie and Page showed that the π1(1400) could be an artifact of the production
dynamics. They demonstrated that is possible to understand the π1(1400) peak as a consequence
of the π1(1600) (see Section 5.3) interfering with a non-resonant Deck-type background with an
appropriate relative phase [135]. Zhang [136] considered a molecular picture where the π1(1400)
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was an η(1295)π molecule. However, the predicted decays were inconsistent with the observations
of the π1(1400).

Szczepaniak et al. [137] considered a model in which t-channel forces could give rise to a back-
ground amplitude which could be responsible for the observed π1(1400). In their model, meson-
meson interactions which respected chiral symmetry were used to construct the ηπ p-wave interac-
tion much like the ππ s-wave interaction gives rise to the σ meson. They claimed that the π1(1400)
was not a QCD bound state, but rather dynamically generated by meson exchange forces.

Close and Lipkin noted that because the SU(3) multiplets to which a hybrid and a multiquark
state belong are different, ηπ and η′π decays might be a good way to distinguish them. They found
that for a multiquark state, the ηπ decay should be larger than η′π, while the reverse is true for a
hybrid meson [138]. A similar observation was made by Chung [139] who noted that in the limit of
the η being a pure octet state, the decay of an octet 1−+ state to an ηπ p-wave is forbidden. Such
a decay can only come from a decuplet state. Given that the pseudoscalar mixing angle for the η
and η′ are close to this assumption, they argue that the π1(1400) is qqq̄q̄ in nature.

While the interpretation of the π1(1400) is not clear, most analyses agree that there is intensity
in the 1−+ wave near this mass. A summary of all reported masses and widths for the π1(1400)
is given in Table 18. All are reasonably consistent, and even the null observations of VES and
E852-IU all concur that there is strength near 1.4 GeV in the JPC exotic wave. However, the E852
and VES results can be explained as either non-resonant background [137], or non-resonant Deck
amplitudes [135]. Another possibility is the opening of meson-meson thresholds, such as f1(1285)π.
Unfortunately, no comparisons of these hypothesis have been made with the p̄N data (owing to the
lack of general availability of the data sets), so it is not possible to conclude that they would also
explain those data.

Mode Mass (GeV) Width (GeV) Experiment Reference

ηπ− 1.405 ± 0.020 0.18 ± 0.02 GAMS [121]
ηπ− 1.343 ± 0.0046 0.1432 ± 0.0125 KEK [123]
ηπ− 1.37 ± 0.016 0.385 ± 0.040 E852 [127]
ηπ0 1.257 ± 0.020 0.354 ± 0.064 E852 [129]
ηπ 1.40 ± 0.020 0.310 ± 0.050 CBAR [130]
ηπ0 1.36 ± 0.025 0.220 ± 0.090 CBAR [131]
ρπ 1.384 ± 0.028 0.378 ± 0.058 Obelix [132]
ρπ ∼ 1.4 ∼ 0.4 CBAR [133]
ηπ 1.354 ± 0.025 0.330 ± 0.035 PDG [118]

Table 18: Reported masses and widths of the π1(1400) from the GAMS, KEK, E852, Crystal
Barrel (CBAR) and Obelix experiment. Also reported is the 2014 PDG average for the state. Not
reported here is the COMPASS observation of intensity in the 1−+ partial wave near a mass of
1400 MeV [134].

5.3 The π1(1600)

While the issue of only one decay mode (ηπ) and the low mass have made interpretation of π1(1400)
nature difficult, a second JPC = 1−+ state has a much richer set of observations, both in production
and decay, and in statistics. This other state, the π1(1600), has been observed in diffractive
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production using incident π− beams where its mass and width have been reasonably stable over
several experiments and observed decay modes. There is some evidence in p̄p annihilation as well
as χc1 decays. These positive results have been reported from VES, E852, COMPASS, Crystal
Barrel, CLEO-c and others, and are discussed below. Negative results have been reported in
photoproduction experiments by CLAS.

5.3.1 VES Results on the π1(1600)

In addition to their study of the ηπ− system, the VES collaboration also examined the η′π− system.
Here they observed a JPC = 1−+ partial wave with intensity peaking at a higher mass than the
π1(1400) [124]. However, as with the ηπ− system, they did not claim the discovery of an exotic-
quantum-number resonance. VES later reported a combined study of the η′π−, f1π

− and ρ0π−

final states [140], and reported a “resonance-like structure” with a mass of 1.62 ± 0.02 GeV and
a width of 0.24 ± 0.05 GeV decaying into ρ0π−. They also noted that the wave with JPC = 1−+

dominates in the η′π− final state, peaking near 1.6 GeV and observed a small 1−+ signal in the
f1π

− final state.
VES also reported on the ωπ−π0 final state [141, 142]. In a combined analysis of the η′π−,

b1π and ρ0π− final states, they reported the π1(1600) state with a mass of 1.61 ± 0.02 GeV and a
width of 0.29 ± 0.03 GeV that was consistent with all three final states. To the extent that they
observed these states, they also observed all three final state produced in natural parity exchange
(M ǫ = 1+). They were also able to report relative branching ratios for the three final states as
given in equation 46.

b1π : η′π : ρπ : = 1 : 1 ± 0.3 : 1.5 ± 0.5. (46)

However, there were some issues with the ρπ final state. Rather than limiting the rank of the
density matrix as was done in [143, 144], they did not limit it. This allowed for a more general fit
that might be less sensitive to acceptance affects. In this model, they did not observe any significant
structure in the 1−+ ρπ partial wave above 1.4 GeV. However, by looking at how other resonances
were produced, they were able to isolate a coherent part of the density matrix from which they
found a statistically significant 1−+ partial wave peaking near 1.6 GeV. While VES was extremely
careful not to claim the existence of the ρπ decay of the the π1(1600), in the case that it exists,
they were able to obtain the rates given in equation 46.
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Figure 16: The results of a partial wave analysis on the η′π− final state from VES. (a) shows he 2++

partial wave in ωρ, (b) shows the 1−+ partial wave in b1π and (c) shows the interference between
them. (Figure reproduced with permission from reference [126].)

The VES results have been summarized in a review of all their work on hybrid mesons [126].
This included an updated summary of the π1(1600) in all four final states, η′π ρπ, b1π and f1π. In
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the η′π final state (Fig. 16), they note that the 1−+ wave is dominant. While they were concerned
about the nature of the higher-mass part of the 2++ spectrum (a2(1700) or background) they find
that a resonant description of π1(1600) was possible in both cases. For the case of the b1π final
state (Fig. 17), they found that the contribution of a π1(1600) resonance is required. In a combined
fit to both the η′π and b1π data, they find a mass of 1.56±0.06 GeV and a width of 0.34±0.06 GeV
for the π1(1600). In the f1π final state (Fig. 18), they find a resonant description of the π1(1600)
with a mass of 1.64 ± 0.03 GeV and a width of 0.24 ± 0.06 GeV which they note is compatible
with their measurement in the previous two final states. They also note, that in contradiction with
E852 [146], they find no significant 1−+ intensity above a mass of 1.9 GeV (see Section 5.4). For
the ρπ final state, they are unable to conclude that the π1(1600) is present.

They note that the partial-wave analysis of the π+π−π− system finds a significant contribution
from the JPC = 1+ wave in the ρπ channel (2 to 3% of the total intensity). Some of the models
in the partial-wave analysis of the exotic wave lead to the appearance of a peak near a mass of
1.6 GeV which resembles the π1(1600). However, the dependence of the size of this peak on the
model used is significant [142]. They note that because the significance of the wave depends very
strongly on the assumptions of coherence used in the analysis, the results for 3π final states on the
nature of the π1(1600) are not reliable.

To obtain a limit on the branching fraction of π1(1600) decay to ρπ, they looked at their results
of the production of the π1(1600) in the charge-exchange reaction to η′π0 versus that of the η′π−

final state. They conclude that the presence of the π1(1600) in η′π− and its absence in η′π0 preclude
the formation of the π1(1600) by ρ exchange. From this, they obtain the relative branching ratios
for the π1(1600) as given in equation 47.

b1π : f1π : ρπ : η′π = 1.0 ± .3 : 1.1 ± .3 :< .3 : 1. (47)
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5.3.2 E852 Results on the π1(1600)

Using an 18 GeV/c π− beam incident on a proton target, the E852 collaboration carried out a
partial wave analysis of the π+π−π− final state [143,144]. They saw both the ρ0π− and f2(1270)π−

intermediate states and observed a JPC = 1−+ state which decayed to ρπ, the π1(1600). The
π1(1600) was produced in both natural and unnatural parity exchange (M ǫ = 1+ andM ǫ = 0−, 1−)
with apparent similar strengths in all three exchange mechanisms (see Fig. 19). In Ref. [144], they
noted that there were issues with the unnatural exchange production. The signal in the M ǫ = 1−

wave exhibited very strong model dependence and nearly vanished when larger numbers of partial
waves were included. The signal in the M ǫ = 0− partial wave was stable, but its peak was above
1.7 GeV. They noted that the unnatural-parity exchange is expected to die off at higher energies,
so their results are not at odds with those of VES, where natural parity exchange dominates. In
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Figure 19: The production of the 1−+ partial wave as seen in the π+π−π− final state by E852. (a)
shows the unnatural parity exchange (M ǫ = 0−,1−) while (b) shows the natural parity exchange
(M ǫ = 1+). (Figure reproduced with permission from reference [143].)

the E852 data, the unnatural parity exchange waves make up a small fraction of the total signal. In
unnatural parity exchange, they found no significant waves, which made a study of phase motion of
the 1−+ in this sector problematic. Thus, in their analysis, they only considered the natural parity
exchange. There, they found the π1(1600) to have a mass of 1.593± 0.08+0.029

−0.047 GeV and a width of

0.168 ± 0.020+0.150
−0.012 GeV. In Fig. 20 are shown the intensity of the 1−+ and 2−+ (π2(1670)) partial

waves as well as their phase difference. The phase difference can be reproduced by two interfering
Breit-Wigner distributions and a flat background.

In a follow-up analysis, E852 also studied the reaction π−p → pη′π− to examine the η′π−

final state [145]. They observed, consistent with VES [124], that the dominant signal was the
1−+ exotic wave produced dominantly in the M ǫ = 1+ channel, implying only natural parity
exchange. They found the signal to be consistent with a resonance, the π1(1600) and found a mass
of 1.597±0.010+0.045

−0.010 GeV and a width of 0.340±0.040±0.050 GeV. The results of the E852 PWA
are shown in Fig. 21 where the P+ wave is the 1−+, the D+ corresponds to the 2++ a2 and the G+

corresponds to the 4++ a4. Clear phase motion is observed between both the 2++ and 4++ wave
and the 1−+ and the 4++ wave.

E852 also looked for the decays of the π1(1600) to b1π and f1π. The latter was studied in the
reaction π−p → pηπ+π−π− with the f1 being reconstructed in its ηπ+π− decay mode [146]. The
π1(1600) was seen via interference with both the 1++ and 2−+ partial waves. It was produced via
natural parity exchange (M ǫ = 1+) and found to have a mass of 1.709 ± 0.024 ± 0.041 GeV and
a width of 0.403 ± 0.080 ± 0.115 GeV. A second π1 state was also observed in this reaction (see
Section 5.4).
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The b1π final state was studied by looking at the reaction π−p → ωπ−π0p, with the b1 re-
constructed in its ωπ decay mode [147]. The π1(1600) was seen interfering with the 2++ and
4++ partial waves. In b1π, they measured a mass of 1.664 ± 0.008 ± 0.010 GeV and a width of
0.185 ± 0.025 ± 0.028 GeV for the π1(1600). However, the production mechanism was seen to be
a mixture of both natural and unnatural parity exchange, with the unnatural being stronger. As
with the f1π, they also observed a second π1 state decaying to b1π (see Section 5.4).

final state production (M ǫ) dominant

ρπ 0−, 1−, 1+ npe ∼ upe
η′π 1+ npe
f1π 1+ npe
b1π 0−, 1−, 1+ upe > npe

Table 19: The production mechanisms for the π1(1600) as seen in the E852 experiment. Also shown
is whether the natural parity exchange (npe) or the unnatural parity exchange (upe) is stronger.

The fact that E852 observed the π1(1600) produced in different production mechanisms, de-
pending on the final state, is somewhat confusing. A summary of the observed mechanisms is given
in Table 19. In order to understand the variations in production, there either needs to be two
nearly-degenerate π1(1600)s, or there is some unaccounted-for systematic problem in some of the
analyses.
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The E852-IU group analyzed an E852 data set that was an order of magnitude larger than
that used by E852 in Refs. [143, 144]. In this larger data set, they looked at the reactions π−p →
nπ+π−π− and π−p→ nπ−π0π0 and carried out a partial wave analysis for both the π+π−π− and
the π−π0π0 final states. This yielded solutions that were consistent with both final states [148]. In
this analysis, they carried out a systematic study of which partial waves were important in the fit.
When they used the same wave set as in the E852 analysis [143,144], they found the same solution
showing a signal for the π1(1600) in both final states. However, when they allowed for more partial
waves, they found that the signal for the π1(1600) vanished. Fig. 22 shows these results for the
π−π0π0 final state, while Fig. 23 shows the results for the π+π−π− final state. In both figures, the

43



E
v

e
n

ts
(K

)/
(0

.0
2

5
 G

e
V

)

1.2 1.6 2.0 1.2 1.6 2.0

0

5

0

1

P
h

a
se

  
  
  
(r

a
d

ia
n

s)

M(π- π-π0) (GeV)M(π- π-π0) (GeV)

1-+

Figure 23: (Color on line) The E852-IU PWA solutions for the 1−+ partial wave for the π+π−π−

final state (a) and its interference with the 2++ partial wave (b). See text for an explanation of the
labels. (Figure reproduced with permission from reference [148].)

“low wave” solution matches that from E852, while their “high wave” solution shows no intensity
for the π1(1600) in either channel. An important point is that in both their high-wave and low-wave
analyses, the phase difference between the exotic 1−+ wave and the 2++ wave are the same (and
thus the same as in the E852 analysis). While not shown here, the same is also true for the 1−+

and 2−+ waves.

π2(1670) M ǫ = 0+ M ǫ = 1+ M ǫ = 1−

Decay L H L H L H

(f2π)S × × × × ×
(f2π)D × × × ×

[(ππ)S ]D × × ×
(ρπ)P × × ×
(ρπ)F × ×
(f0π)D × ×

Table 20: The included decays of the π2(1670) in two analyses of the 3π final state. “L” is the
wave set used in the E852 analysis [143, 144]. “H” is the wave set used in the higher statistics
analysis [148].

E852-IU carried out a study to determine which of the additional waves in their “high wave” set
were absorbing the intensity of the π1(1600). They found that the majority of this was due to the
inclusion of the ρπ decay of the π2(1670). The partial waves associated with the π2(1670) in both
analyses are listed in Table 20. While the production from M ǫ = 0+ is similar for both analyses,
the E852 analysis only included the π2(1670) decaying to f2π in the M ǫ = 1+ production. The
high-statistics analysis included both f2π and ρπ in both production mechanisms. The PDG [118]
lists the two main decays of the π2(1670) as f2π (56%) and ρπ (31%), so it seems odd to not include
this latter decay in an analysis including the π2(1670). Fig. 24 shows the results of removing the
ρπ decay from the “high wave” set for the π+π−π− final state. This decay absorbs a significant
portion of the π1(1600) partial wave.

In the E852-IU analyses, the fact that the phase motion of the 1−+ exotic wave relative to
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Figure 24: Results from the E852-IU analysis showing the 1−+ intensity for the charged mode for
the high-wave set (filled circles), the modified high-wave set (filled squares), and the low-wave set
(open circles). In the modified high-wave set the two ρπ decays of the π2(1670) were removed from
the fit. (Figure reproduced with permission from reference [148].)

other partial waves agrees with those differences as measured by E852, and are the same in both
the high-wave and low-wave analyses is intriguing. This could be interpreted as a π1(1600) state
which is simply absorbed by the stronger π2(1670) as more partial waves are added. However,
given the small actual phase difference between the 1−+ and 2−+ partial waves (see Fig. 20), the
opposite conclusion is also possible, particularly if some small non-zero background phase were
present. Here, the 1−+ signal is due to leakage from the stronger π2 and no π1(1600) is needed in
the ρπ final state.

While the results on ρπ between E852 and VES seem at odds, we believe that these discrepancies
are the result of the assumptions made in the analyses. These assumptions then manifest themselves
in the interpretation of the results. The VES analyses fit both the real and imaginary parts of their
amplitudes independently. However, for analytic functions, the two parts are not independent.
Not using these constraints can lead to results that may be unphysical, and at a minimum, are
discarding important constraints on the amplitudes. In E852, many of their results rely on the
assumption of a flat background phase, but there are many examples where this is not true. Thus,
their results are biased toward a purely resonant description of the data, rather than a combination
of resonant and non-resonant parts. It is also somewhat disappointing that E852 is unable to make
statements about relative decay rates, or carry out a coupled channel analysis of their many data
sets. Our understanding is that this is due to issues in modelling the rather tight trigger used in
collecting their data.

5.3.3 Crystal Barrel results on the π1(1600)

An analysis of Crystal Barrel data at rest for the reaction p̄p → ωπ+π−π0 was carried by some
members of the collaboration [149]. They reported evidence for the π1(1600) decaying to b1π from
both the 1S0 and 3S1 initial states, with the signal being stronger from the former. The total signal
including both initial states, as well as decays with 0 and 2 units of angular momentum accounted
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for less than 10% of the total reaction channel. The mass and width were found consistent (within
large errors) of the PDG value, and only results with the mass and width fixed to the PDG values
were reported. Accounting for the large rate of annihilation to ωπ+π−π0 of 13%, this would imply
that p̄p→ π1(1600)π accounts for several percent of all p̄p annihilations.

5.3.4 CLEO-c results on the π1(1600)

In CLEO-c, the decays of the χc1 to both ηπ+π− and η′ππ were studied. An amplitude analysis of
the η′ππ final state showed a 4σ signal for an exotic p-wave in the η′π system. Results from this
analysis are shown in Fig. 25. While the analysis could not conclude if the P-wave is resonant, if
it is fit by a Breit-Wigner amplitude, the data can be well described by a π1(1600) with a mass of
1670 ± 30 ± 20 MeV/c2 and a width of 240 ± 50 ± 60 MeV/c2 [150].

Figure 25: (Color on line.) Results from CLEO-c for the decay of the χc1 to η′π+π−. The figure
shows the fit intensity in η′π system. The solid (red) fit curve shows the intensity in the exotic
1−+ partial wave. There is clear peaking near the mass of the π1(1600). (Figure reproduced with
permission from reference [150].)

5.3.5 CLAS results on the π1(1600)

The CLAS experiment at Jefferson Lab studied the reaction γp→ π+π+π−(n)miss to look for the
production of the π1(1600) [151]. The photons were produced by bremsstrahlung from a 5.7 GeV
electron beam. While there were significant contributions from baryon resonances in their data,
they attempted to remove this by selective cuts on various kinematic regions. The results of their
partial-wave analysis show clear signals for the a1(1270), the a2(1320) and the π2(1670), but show
no evidence for the π1(1600) decaying into three pions. They place an upper limit of the production
and subsequent decay of the π1(1600) to be less than 2% of the a2(1320). Their results imply (i)
the π1(1600) is not strongly produced in photoproduction, (ii) the π1(1600) does not decay to 3π,
or (iii) both. Using a much larger data sample, CLAS has continued to search for the π1(1600) in
photoproduction through the 3π decay mode, however the preliminary results are still consistent
with the earlier work [152]. They propose that either there is a preference for production through
mechanisms other than pion exchange, or that the π1(1600) does not decay to 3π.
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reference [151].)

5.3.6 COMPASS results on the π1(1600)

The COMPASS experiment has reported their first study of the diffractively produced 3π final
state [153,154]. They used a 190 GeV/c beam of pions to study the reaction π−Pb→ π−π−π+X.
In their partial-wave analysis of the 3π final state, they observed the π1(1600) with a mass of
1.660 ± 0.010+0

−0.064 GeV and a width of 0.269 ± 0.021+0.042
−0.064 GeV. The π1(1600) was produced

dominantly in natural parity exchange (M ǫ = 1+) although unnatural parity exchange also seemed
to be required. However, the level was not reported. The wave set (in reference [154]) used appears
to be somewhat larger than that used in the high-statistics study of E852-IU [148]. Thus, in the
COMPASS analysis, the ρπ decay of the π2(1670) does not appear to absorb the exotic intensity in
their analysis. They also report on varying the rank of the fit with the π1(1600), with the results
being robust against these changes. One point of small concern is that the mass and width that
they extract for the π1(1600) are essentially identical to those for the π2(1670). For the latter, they
observed a mass of 1.658 ± 0.002+0.024

−0.008 GeV and a width of 0.271 ± 0.009+0.022
−0.024 GeV. However, the

strength of the exotic wave appears to be about 20% of the π2, thus feed through seems unlikely.
Results from their partial-wave analysis are shown in Figs. 27 and 28. These show the 1−+ partial
wave and the phase difference between the 1−+ and 2−+ waves. The solid curves are the results of
mass-dependent fits to the π1(1600) and π2(1670).

In follow-up studies, COMPASS has looked at three-pion final states produced from a liquid
hydrogen target. They have presented results on both π−p→ pπ−π+π− and π−p→ π−π0π0 [158].
These studies confirmed the 1−+ exotic signal found in the Pb running, but the production rates
on Pb were found to be much higher than on hydrogen. Amplitude analysis showed that the exotic
wave was produced with an M ǫ = 1+ exchange in both reactions, but that the M = 1 in hydrogen
is suppressed relative to the M = 0. Fig. 29 show the intensity of the 1−+ wave in both the
π−π+π− and π−π0π0 systems. Essentially the same information on the 1−+ exotic signal in the
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(3π)− system can be found in references [160,162,163].
In order to more fully understand the three-pion system, COMPASS has studied their very

large data set on three pions. In particular, the non-exotic 1++ partial wave which has historically
been modeled using both the broad a1(1260) as well as non-resonant Deck-effect terms. They have
reported on a new, narrow structure in this partial wave, the a1(1420), which decays dominantly
to f0(980)π [164], [165], [166], [167], [168]. They report a mass of 1414+15

−13 MeV and a width of

153+8
−23 MeV [170]. Since their discovery of this new state, results of the exotic π1(1600) have been

limited until a more detailed analysis can be completed. They report that an exotic signal in the
1+ partial wave at 1.6 GeV/c2 is observed and that it shows a clean phase motion with respect to
well-known resonances. Their results are consistent for both the π−π0π0 and π+π−π− final states.
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The state is observed in the ρπ decay mode for both charged and neutral ρs. However they exclude
that a narrow (150 MeV to 200 MeV width) state exists [166], [169], [170].

The COMPASS Collaboration has also examined the π−p → ηπ−p and π−p → η′π−p reac-
tions [134, 159]. Amplitude analyses of both systems shows that the even partial waves are pro-
duced with similar strengths in both system, while the odd partial waves are suppressed in the ηπ
system relative to the η′π system. The a2(1320) and a4(2040) are produced in both systems with
a relative ratio given by phase-space factor and the pseudoscalar mixing angle. The odd partial
waves, JPC = (1, 3, 5)−+ all correspond to exotic quantum numbers, and are produced much more
strongly in the η′ system. This is shown for the spin 1 and 3 partial waves in Fig. 30. In terms
of quark structure, the η is predominantly an octet state, while the η′ is predominantly a singlet
state. Both VES and E852 reported that the 1−+ exotic wave is the dominant feature in the η′π
final state, while it is strongly suppressed in the η channel. In addition, the relative phase motion
between the exotic wave and the a2 wave are different between the η and η′ channels. Even though
COMPASS saw the exotic 1−+ wave in η′π as the dominant wave, they were unable to confirm the
resonant nature of the signal. Large non-resonant contributions appear to be required to describe
both the intensity and the phase simultaneously. Essentially the same information on the 1−+

exotic signal in the η′π− system can be found in references [160–162].

5.3.7 Summary of π1(1600) results

Table 21 summarizes the masses and widths found for the π1(1600) in the four decay modes and
from the experiments which have seen a positive result. While the η′π, f1π and b1π decay modes
appear to be robust in the observation of a resonant π1(1600), there are concerns about the 3π
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Figure 30: (Color on line) The intensity of the η′π− (black) and ηπ− (red) signals in the JPC = 1−+

partial wave (a) and the 3−+ partial wave (b). The signal for the ηπ− is much smaller than that
for the η′π− for all odd partial waves. (Figure reproduced with permission from reference [134].)

final states. While we report these in the table, the results should be taken with some caution.

Mode Mass (GeV) Width (GeV) Experiment Reference

b1π 1.58 ± 0.03 0.30 ± 0.03 VES [171]
b1π 1.61 ± 0.02 0.290 ± 0.03 VES [141]
b1π ∼ 1.6 ∼ 0.33 VES [125]
b1π 1.56 ± 0.06 0.34 ± 0.06 VES [126]
f1π 1.64 ± 0.03 0.24 ± 0.06 VES [126]
η′π 1.58 ± 0.03 0.30 ± 0.03 VES [171]
η′π 1.61 ± 0.02 0.290 ± 0.03 VES [141]
η′π 1.56 ± 0.06 0.34 ± 0.06 VES [126]
ρπ 1.593 ± 0.08 0.168 ± 0.020 E852 [143]
η′π 1.597 ± 0.010 0.340 ± 0.040 E852 [145]
f1π 1.709 ± 0.024 0.403 ± 0.080 E852 [146]
b1π 1.664 ± 0.008 0.185 ± 0.025 E852 [147]
b1π ∼ 1.6 ∼ 0.23 CBAR [149]
ρπ 1.660 ± 0.010 0.269 ± 0.021 COMPASS [153]
η′π 1.670 ± 0.030 0.240 ± 0.050 CLEO-c [150]

all 1.662+0.008
−0.009 0.241 ± 0.040 PDG [118]

Table 21: Reported masses and widths of the π1(1600) along with the 2014 PDG average.

Models for hybrid decays predict rates for the decay of the π1. Equation 48 gives the predictions
from reference [172].

πb1 : πf1 : πρ : ηπ : πη′

=

170 : 60 : 5 − 20 : 0 − 10 : 0 − 10 (48)

A second model from reference [110] predicted the following rates for a π1(1600).
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πb1 ρπ πf1 η(1295)π K∗K
PSS 24 9 5 2 0.8
IKP 59 8 14 1 0.4

These can be compared to the results from VES in equation 47, which are in moderate agreement.
The real identification of the π1(1600) as a hybrid will almost certainly involve the identification
of other members of the nonet: the η1 and/or the η′1, both of which are expected to have widths
that are similar to the π1. For the case of the η1, the most promising decay mode may be the f1η
as it involves reasonably narrow daughters.

We believe that the current data support the existence of a resonant π1(1600) which decays
into b1π, f1π and η′π, however, confirmation of the b1π and f1π modes by COMPASS would be
useful. For the ρπ decay, things are somewhat uncertain. As noted earlier, the phase motion results
observed by both E852 and E852-IU are can be interpreted as either the π2(1670) absorbing the
π1(1600), or leakage from the π2(1670) generating a spurious signal in the 1−+ channel. While
COMPASS does not yet have final results, they seem to confirm that the exotic partial wave near
1600 MeV does couple to the ρπ decay mode and they exclude a narrow-resonance interpretation
of the π1(1600). The careful follow-on studies from COMPASS to more broadly explore the model
space and production mechanisms have started to yield very interesting new results and we look
forward to new information in the near future.

5.4 The π1(2015)

5.4.1 E852 Results on the π1(2015)

The E852 experiment has also reported a third π1 state seen decaying to both f1π [146] and to
b1π [147]. In the f1π final state, the π1(2015) is produced with M ǫ = 1+ in conjunction with
the π1(1600). The description of the 1−+ partial wave requires two poles. They report a mass
of 2.001 ± 0.030 ± 0.092 GeV and a width of 0.333 ± 0.052 ± 0.049 GeV. Fig. 31 shows the E852
data from this final state. Parts e and f of this show the need for the two-pole solution. VES
also examined the f1π final state, and their intensity of the 1−+ partial wave above 1.9 GeV (see
Fig. 18) is not inconsistent with that of E852 [126]. However, VES made no comment on this, nor
have they claimed the existence of the π1(2015).

In the b1π final state, the π1(2015) is produced dominantly through natural parity exchange
(M ǫ = 1+) while the π1(1600) was reported in both natural and unnatural parity exchange, where
the unnatural exchange dominated. They observe a mass of 2.014±0.020±0.016 GeV and a width
of 0.230±0.032±0.073 GeV, which are consistent with that observed in the f1π final state. Fig. 32
shows the intensity distributions for several partial waves in this final states. The need for two
states is most clearly seen in panel (b). VES also looked at the b1π final state, but did not observe
1−+ intensity above 1.9 GeV [126]. However, the intensity shown in Fig 17 may be consistent with
that observed by E852. The reported masses and widths are summarized in Table 22. We note
that this state does not appear in the summary tables of the PDG [118].

5.4.2 Interpretation of the π1(2015)

With so little experimental evidence for this high-mass state, it is difficult to say much. We note
that the observed decays, f1π and b1π are those expected for a hybrid meson. We also note
that the production of this state is consistent (natural parity exchange) for both of the observed
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final states. In the case that the π1(1600) is associated with the lowest-mass hybrid state, one
possible interpretation of the π1(2015) would be an excited state (as suggested by recent LQCD
calculations [37]). The mass splitting is typical of radial excitations observed in the normal mesons.
In the case that the π1(1600) is identified as something else, the π1(2015) would be a prime candidate
for the lightest mass hybrid.

52



Mode Mass (GeV) Width (GeV) Experiment Reference

f1π 2.001 ± 0.030 0.333 ± 0.052 E852 [146]
b1π 2.014 ± 0.020 0.230 ± 0.032 E852 [147]

Table 22: Reported masses and widths of the π1(2015) as observed in the E852 experiment. The
PDG does not report an average for this state.

6 Outlook

Hybrid mesons should be observed in nonets, and lattice QCD has recently made quite clear predic-
tions that several of these nonets should have exotic quantum numbers. The lightest supermultiplet
of hybrids, 0−+, 1−+, 1−−, 2−+, contains one exotic quantum number nonet (1−+). Excitations of
these should contain another 1−+ nonet, in addition to a single spin-0 (0+−) and two spin-2 (2+−)
nonets. Experimentally, we have seen evidence for up to three isospin-1, spin-1 exotic states:
π1(1400), π1(1600) and π1(2105). As we noted it seems unlikely that the lightest of these is a
hybrid, while the heavier two states could map onto the isospin-1 members of the two 1−+ nonets
predicted by lattice QCD. Unfortunately, lacking experimental evidence for other members of these
nonets, it is difficult to draw solid conclusions. In particular, observation of one or both isospin-0
members of either nonet is needed. Beyond the spin-1 exotic hybrids, observation of states with
quantum numbers 2+− and or 0+− is needed.

As we move forward over the next several years, new experimental efforts will join COMPASS in
searching for these states. At Jefferson Lab, the GlueX experiment expects to take first physics data
in late 2015. GlueX will use linearly polarized photons incident on a hydrogen target to produce
these states. In the next five years or so, PANDA at FAIR will join these efforts with antiproton
beams – hopefully dramatically new information will be gleaned from these experimental efforts.

Keeping pace with experiment will require a number improvements in theory. It is hoped, for
example, that lattice gauge theory will be able to provide predictions for light and charmonium
hybrid masses on unquenched lattices with physical pion masses and multihadron operators rela-
tively soon. Conclusive and comprehensive computations of strong and electromagnetic transitions
of light and charmonium hybrids would also be most welcome.

A new breed of models that is capable of reproducing central lattice results is also required.
Ideally these models will reproduce the gluonic adiabatic potentials and the spectrum of heavy and
light hybrids reasonably well. Presumably this will require a formalism that captures short range
and long range dynamics in an approximate fashion without double counting or other conceptual
issues. Perhaps a promising approach would be a model based on Coulomb gauge QCD with a vari-
able number of constituent gluons and many-body interactions. Such a model should also be able
to describe strong and electromagnetic decays reasonably accurately. These are demanding criteria,
but new experimental and lattice data should provide many valuable clues, which will hopefully
lead to a quantitative and qualitative understanding of this enigmatic sector of the Standard Model.
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[53] P. Hasenfratz, R.R. Horgan, J. Kuti, and J.-M. Richard, Phys. Lett. 95B, 299 (1980).

[54] I. T. Drummond, N. A. Goodman, R. R. Horgan, H. P. Shanahan and L. C. Storoni, Phys.
Lett. B 478, 151 (2000).

[55] T. Barnes and F. Close, Phys. Lett. B123, 89 (1983).

[56] R.L. Jaffe and K. Johnson, Phys. Lett. 60B, 201, (1976).

[57] K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 543 (1998).

[58] G. Karl and J. E. Paton, Phys. Rev. D 60, 034015 (1999).

[59] R. Andreo and F. Rohrlich, Nucl. Phys. B115, 521 (1976).

[60] R. Giles and S.-H H. Tye, Phys. Rev. Lett. 37, 1175 (1976).

[61] W. Buchmüller and S.-H. H. Tye, Phys. Rev. Lett. 44, 850 (1980).

[62] J. Carlson, J. Kogut, and V.R. Pandharipande, Phys. Rev. D 27, 233 (1983).

[63] T. J. Allen, M. G. Olsson and S. Veseli, Phys. Lett. B 434, 110 (1998).

[64] N. Brambilla, M. Groher, H. E. Martinez and A. Vairo, Phys. Rev. D 90, no. 11, 114032
(2014). See also J. B. Kogut and G. Parisi, Phys. Rev. Lett. 47, 1089 (1981); G. Perez-Nadal
and J. Soto, Phys. Rev. D 79, 114002 (2009).

[65] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

[66] See for example, C. D. White, Phys. Lett. B 652, 79 (2007); F. Giannuzzi, PoS CONFINE-
MENT 8, 135 (2008).

[67] O. Andreev, Phys. Rev. D 86, 065013 (2012).

[68] Jack Paton, private communication, 2015.

[69] N. Isgur and J. Paton, Phys. Lett. 124B, 247 (1983)

[70] N. Isgur and J. Paton, Phys. Rev. D 31, 2910 (1985).

56
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