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Abstract Large-scale unconditional and conditional vertex p-centre problems are solved 

using two meta-heuristics. One is based on a three-stage approach whereas the other relies on 

a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search, 

exact method, and aggregation techniques. The methods are assessed on the TSP dataset 

which consist of up to 71,009 demand points with p varying from 5 to 100. To the best of our 

knowledge, these are the largest instances solved for unconditional and conditional vertex p-

centre problems. The two proposed meta-heuristics yield competitive results for both classes 

of problems.   

Keywords Large unconditional and conditional vertex p-centre problems, aggregation, 

variable neighbourhood search, exact method. 

 

1 Introduction 

The vertex p-centre problem, also known as the minimax location problem, aims to 

optimally locate p facilities among n potential sites and to assign demand points to these 

facilities in order to minimise the maximum distance between demand points and their 

nearest facility. Applications include the location of facilities in emergency services such as 

police, fire, and ambulance stations. In the conditional p-centre problem some (say q) 

facilities already exist and the objective is to locate p new facilities in addition to the existing 

q facilities. A demand point can be served by the nearest facility whether it is new or existing. 

                                                           
* Corresponding author : Chandra Ade Irawan (chandra.irawan@port.ac.uk) 
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This problem is known as the (p, q) centre problem (see Drezner 1995). When q = 0, the 

problem becomes the unconditional p-centre problem (the p-centre problem for short) whose 

formulation is given as follows: 

Minimise r (1) 

Subject to 
 IiY

Jj
ij 



1  (2) 

 



Jj

j pX  (3) 

 JjIiXY jij  ,,0  (4) 

 IiYjidr
Jj

ij  


),(  (5) 

 JjX j  }1,0{  (6) 

 JjIiYij  ,}1,0{  (7) 

Where 

(I,J) : set of demand points/customers }),...,1{( nIi  and set of potential sites 

}),...,1{( MJj    (i.e. : In   and JM  ), respectively 

r  : the maximum distance between a customer and its closest facility 

),( jid  :  the distance between customer i and potential site j (Euclidian distance is used in 

our study); 

p : the required number of facilities; 

ijY  = 1, if customer i is served by a facility at site j and = 0 otherwise; 

jX  = 1, if a facility is opened at potential site j and = 0 otherwise; 

The objective function (1) is to minimise the maximum distance between a customer and 

its nearest facility. Constraints (2) guarantee that each customer i is assigned to exactly one 

open facility whereas constraint (3) restricts the number of open facilities to be exactly p. 

Constraints (4) ensure that customer i can only be allocated to an open facility (i.e., Xj = 1). 

Constraints (5) define the maximum distance between customer i and its closest facility. 

Constraints (6) and (7) refer to the binary nature of the decision variables.  

The p-centre problem is known to be NP-hard problem (Kariv and Hakimi 1979). Though 

this problem can be optimally solved for medium size instances (n  4,000, p  100), as will 

be shown in the computational result section (subsection 5.2), this problem is hard to solve 

when the size is relatively large. The p-centre problem may consist of a large number of 
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customers as well as potential facility sites. For example, a problem which includes 

individual private residences as customers may involve several thousands of demand points. 

One way to model such a problem is to aggregate customers from n to m points (m << n) so 

the reduced (approximated) problem becomes easier to solve. However, aggregation reduces 

the accuracy of the solution. In this paper, we propose two meta-heuristics. The first one 

consists of a three-stage approach, for solving large unconditional and conditional p-centre 

problems. The first stage uses aggregation and an exact method whereas the second utilises 

the information obtained in the first stage to define a problem which is then solved by a 

Variable Neighbourhood Search (VNS). The third and last stage utilises also a VNS to solve 

the original (disaggregated) problem using the best solution obtained so far as an initial 

solution. The second approach is based on a guided muti-start where VNS and exact method 

are incorporated. To the best of our knowledge, there is no published work for solving large 

p-centre problems though a few studies were conducted for its counterpart the p-median 

problem (see Hansen et al. 2009; Avella et al. 2012; Irawan and Salhi 2013; Irawan et al. 

2013) 

The contributions of this study include: (i) two powerful meta-heuristics that incorporate 

aggregation technique, a VNS, and an exact method for solving, for the first time, large 

unconditional and conditional p-centre problems, (ii) a new scheme for aggregating demand 

points for the unconditional and conditional p-centre problems, and (iii) a new distance 

calculation method for aggregated p-centre problems, and (iv) new best and optimal solutions 

for large instances for benchmarking purposes. 

The paper is organized as follows. A brief review of the related literature is presented in 

Section 2. The ingredients that make up the two meta-heuristics as well as the overall 

respective algorithms are described in Section 3. This is followed by the detailed explanations 

of the main steps in Section 4. The computational results are presented and analysed in 

Section 5. The last section provides a summary of our findings and highlights some 

suggestions for future research. 

 

2 Literature Review 

A review on the unconditional and conditional discrete p-centre problems is first presented 

followed by highlights focussing on aggregation techniques for the p-centre problem in 

particular.  
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2.1 Related work on the p-centre problem 

The p-centre problem was first proposed by Hakimi (1964) who investigated an absolute 

1-centre problem on a graph. Minieka (1970) presented a method to solve the problem when 

p > 1. He suggested a basic algorithm based on solving a finite sequence of set covering 

problems.  The weighted case of the p-centre problem was initially studied by Kariv and 

Hakimi (1979) who proved that the p-centre problem is NP-hard.  

Tansel et al. (1982) proposed polynomially bounded procedures for solving p-centre and 

covering problems on a tree network.  A review of network location problems including the 

p-centre problem is provided by Tansel et al. (1983a; 1983b). Drezner (1984) designed two 

heuristics and an optimal algorithm to solve the p-centre problem for a given value of p in 

polynomial time in n. For relatively small p, Jaeger and Kariv (1985) introduced algorithms 

for finding p-centres on a weighted tree.   

Daskin (1995) suggested a useful and interesting recursive type algorithm using the Set 

Covering Problem (SCP) for obtaining an optimal solution for the problem. The algorithm is 

based on Minieka’s method and uses the bisection technique that decreases the gap between 

upper and lower bounds. Bozkaya and Tansel (1998) proposed a spanning tree approach on 

cyclic networks. A unified limited column generation approach for facility problems 

including the p-centre problem on trees was presented by Shaw (1999).  

Efficient exact algorithms for the vertex p-centre problem were later proposed by Daskin 

(2000) and Ilhan and Pinar (2001). The former formulated the problem as a maximum set 

covering sub-problem and then Lagrangean Relaxation is used to solve the problem. The 

latter proposed a method which consists of two phases namely the LP-Phase and the IP-Phase 

where in Phase 1 sub-problems with a certain covering distance are systematically discarded. 

Caruso et al. (2003) proposed an algorithm called Dominant whereas Mladenovic et al. 

(2003) implemented efficient meta-heuristics (tabu search and variable neighbourhood 

search) with excellent results. Elloumi et al. (2004) used Minieka’s technique incorporating a 

greedy heuristic and the IP formulation of the sub-problem for solving the problem optimally. 

Al -Khedhairi and Salhi (2005) introduced enhancements to the Daskin’s method (1995) 

and Ilhan and Pinar (2001) with the aim in reducing the number of ILP iterations (calls to the 

SCPs). In the first approach, the gaps in the distance matrix are sorted and efficiently 

recorded whereas in the second approach, appropriate jumps in the covering distance are 

explored. Cheng et al. (2007) suggested an efficient algorithm by modelling the network as 
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an interval graph. Chen and Chen (2009) introduced relaxation algorithms for both the 

continuous and discrete p-centre problems by solving optimally smaller reduced problems 

which are then augmented gradually by adding ‘k’ customers at a time where k is a parameter 

that needs to be defined.  

Salhi and Al-Khedhairi (2010) improved Daskin’s approach (1995) even further by 

integrating heuristic information into exact methods. Tight upper bounds are obtained by a 

multilevel type meta-heuristic (Salhi and Sari, 1997) which are then used to derive promising 

lower bounds. Davidovic et al. (2011) introduced a bee colony optimization heuristic 

algorithm and a non-deterministic Voronoi diagram algorithm for the unconstrained and 

constrained p-centre problem respectively.  

Calik and Tansel (2013) proposed a double bounded method based on two-element 

restrictions that obtain the optimal solution by solving a series of simple structured integer 

programs. Lu and Sheu (2013) recently introduced a robust vertex p-centre model for locating 

urgent relief distribution centres whereas Lu (2013) studied a generalized weighted vertex p-

centre model that represents uncertain nodal weights and edge lengths. 

Other studies related to the p-centre problem include Liu et al. (2010) who proposed a 

non-density-based approach related to spatial data analysis, Barua and Sander (2014) who 

devised a method to find dense co-located points, and Qu et al. (2014 who recently provided 

exact/approximate solutions to find a set of allied or alienated points.  

 

2.2 Related work on the conditional (p, q)-centre problem 

Minieka (1980) introduced the conditional location problem where conditional centres and 

medians on a graph were investigated. Drezner (1989) showed that conditional p-centre 

problems can be solved by solving O(log n) p-center problems, meaning that an effective 

algorithm for the p-centre problem can be adapted for the conditional problem. Berman and 

Simchi-Levi (1990) proposed an algorithm that requires the one-time solution of an 

unconditional (p+1) center or (p+1) median for solving the conditional (p+1) center or (p+1) 

median on networks. A method for solving minisum and minimax conditional location-

allocation problems with p  1 was developed by Chen (1990). Drezner (1995) introduced the 

term “(p, q) location problem”.  
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A method for solving both the conditional p-median and p-center problems was studied by 

Berman and Drezner (2008). One-time solution of an unconditional p-median and p-center 

problem using the shortest distance matrix is used. Chen and Chen (2010) proposed a 

relaxation-based algorithm for solving the conditional discrete and continuous p-centre 

problem. Kaveh and Nasr (2011) investigated the conditional and unconditional p-centre 

problem using a modified harmony search algorithm. 

 

2.3 Aggregation techniques for the p-centre problem 

This subsection provides an overview of aggregation techniques focusing on p-centre 

problems. Hillsman and Rhoda (1978) classified aggregation errors into three types namely 

source A, B, and C errors. The use of the approximate distance between an Aggregate Spatial 

Unit (ASU) and a facility, instead of the true distance between a Basic Spatial Unit (BSU) 

and a facility, leads to the existence of those errors. Casillas (1987) introduced two measures 

to assess the accuracy of aggregated models namely the cost error and the optimality error. 

Francis and Rayco (1996) and Rayco and Francis (1997) suggested aggregation schemes 

for the p-centre in the plane with rectilinear distances. Rayco et al. (1999) studied a grid-

positioning aggregation procedure for the centre problem with rectilinear distance. Their 

procedure which consists of identical ‘diamonds’ of user-specified dimensions can also be 

utilised to estimate the maximum error, so letting the aggregation error to be kept within 

tolerable limits. Fortney et al. (2000) compared alternative measures of geographic access to 

health care providers using different levels of spatial aggregation and different cost 

calculations. 

Francis et al. (2004a) investigated a demand point aggregation analysis for a class of 

constrained location models. Aggregation decomposition and aggregation guidelines for a 

class of minimax and covering location problems were studied by Francis et al. (2004b). 

They proposed a method to find an aggregation to attain a small error bound value. Later on, 

Francis et al. (2009) provided an excellent review of aggregation methods for location 

problems in general including the p-centre problem.  
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3 Methods for solving large p-centre problems 

We propose two meta-heuristics for solving large p-centre problems namely a three-stage 

approach (TSA) and a guided multi-start based approach (GMA). Both methods incorporate 

Variable Neighbourhood Search (VNS), exact method and aggregation techniques. The 

former is an adaptation of the methods proposed by Irawan et al. (2014) and Irawan and Salhi 

(2014) initially designed for solving large-scale p-median problems whereas the latter is a 

new one. 

 

3.1 A Three-stage Approach (TSA) 

This method consists of three stages where the first stage is a learning process based on 

the aggregated problem. The second stage uses the information obtained from the previous 

stage namely the facility locations that act as the potential sites to solve aggregated problem 

by VNS. The last stage is a post-optimisation procedure where VNS is used to solve the 

original p-centre problem starting from the best solution obtained in the previous stage. In 

each stage, the problems are solved by either CPLEX (g, s, p) or VNS (g, s, p) where Method 

(g, s, p) refers to the procedure ‘Method’ for locating ‘p’ facilities, serving ‘g’ customers, and 

using ‘s’ potential sites. Figure 1 presents the main stages of the Three-stage Approach 

(TSA). In this study, for the original problem, customer sites are used as potential facility 

sites (i.e. M=n).  

The first stage is similar to Phase 1 of Irawan et al. (2013) except that a more efficient 

aggregation technique is used and an exact method is embedded into the search instead of 

VNS. In this stage, a number of aggregated problems are constructed. We aggregate n BSUs 

into m ASUs, with m << n. We define ),(ˆ jkd  as the distance between the representative 

point of the kth ASU and the jth facility site. Consequently, each aggregated problem has m 

customers and m potential facility sites. Each aggregated problem is then solved by an exact 

method (m, m, p). The best way of solving the p-centre problem optimally is to utilise an 

auxiliary problem such as the Set Covering Problem which will be revisited in Subsection 

4.3. As this approach requires initial upper and lower bounds, we incorporate VNS to 

generate such an input. The locations found by solving the aggregated problems are then 

stored in a list L.  
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Fig. 1 The main steps of the Three-stage Approach (TSA)  

 

In Stage 2, the points in L are considered as the “promising” facility sites. This defines a p-

centre problem which consists of n customers and |L| potential facility sites. This problem is 

solved with a VNS (n, |L|, p) using the best solution found in Stage 1 as the initial solution. 

The solution obtained in this stage is then used in Stage 3 as a starting solution. 

In the final stage, the original (disaggregated) p-centre problem is solved by a VNS (n,n,p) 

starting from the solution obtained from the previous stage. At this point, the VNS is used as 

a post optimiser that is not expected to consume much extra computing time to solve the 

problem given its initial solution is of good quality.  

 

Initialization 

Determine the values of m and T. Set L = {Ø} where L denote a list of distinct facility 

locations obtained from the solutions of the aggregated problems. 

Stage 1 

Repeat the following steps T times (t = 1, …, T) 

(i) Aggregate n BSUs into m ASUs and construct m clusters by allocating all BSUs to their 

nearest ASUs. 

(ii)  Calculate the distance between the kth ASU and the jth potential facility, ),(ˆ jkd , k=1,..,m; 

j=1,…,m.  

(iii) Solve the tth aggregated p-centre problem using an exact method (m,m,p). Let 

),...,,( 21
t
p

tt
tX   be the obtained facility locations with t

i  denoting the ith facility 

at iteration t and set tXLL  . 

Stage 2 

(i) Construct |L| clusters by allocating all BSUs to the closest point in L. 

(ii) Compute the distance ),(ˆ jkd , k=1,..,|L|; j=1,…,|L|.  

(iii) Solve the aggregated p-centre problem  by VNS (n, |L|, p) using the best obtained facility 

configuration from the previous stage as the initial solution.  

Stage 3 

Solve the disaggregated p-centre problem (i.e. the original problem) by VNS (n,n,p) using the 

solution obtained from Stage 2 as the initial solution. 
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3.2 A Guided Multi-start Approach (GMA) 

The main idea behind this method is to provide flexibility in revisiting the aggregated 

problem so to produce a new solution configuration which is fed into a VNS. Similar to Stage 

1 of TSA, n BSUs are aggregated into m ASUs, with m << n. The aggregated problem is 

solved by an exact method (m, m, p) producing an optimal facility configuration for the 

aggregated problem. This set of facility locations is then used as an initial solution for the 

original problem when applying the VNS. Figure 2 presents the main steps of GMA.  

 

Fig. 2 The main steps of the Guided Multi-start Approach (GMA) 

Firstly, the aggregated problem is constructed and solved by CPLEX (m, m, p). The obtained 

facility configuration is then used as an initial solution for the disaggregated problem when 

Initialization 

Determine the values of m and Nmax. Set f* = MAX_INT and X* = {Ø} where f* is the 

best objective function value and X* denote a list of the best facility configuration. 

Main Steps 

1. Set i = 1. 

2. Generate the solution by solving the (m, m, p) aggregated problems  

(i) Aggregate n BSUs into m ASUs. 

(ii)  Calculate the distance between the kth ASU and the jth potential facility, ),(ˆ jkd , 

k=1,..,m; j=1,…,m.  

(iii) Solve the aggregated p-centre problem using an exact method (m,m,p). Let f0 and 

X0 be the objective function value and the solution configuration respectively. 

(iv) If  f0 < f* then set f*= f0 and X* = X0. 

3. Apply VNS for the disaggregated (original) p-centre problem using X0 as the initial 

solution. Let f1 and X1 be the objective function value and the solution configuration 

respectively. 

4. Set i = i + 1 and set flag = false. 

5. If (f1 < f*) then  

Set f*= f1, X* = X1, and  X0 = X1.  

Set flag = true.  

End If 

6. If (i > Nmax) then stop. 

7. If (flag = true) then go to Step 3. 

Else go to Step 2. 
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using VNS. In our implementation of VNS, we call a number of times the VNS procedure 

(cmax in our study) where in each run VNS is performed until the kmax
th neighbourhood is 

explored without improvement. Once the process is completed, if there is an improvement we 

continue with the VNS, otherwise we diversify by solving again the aggregated problem 

leading to a new solution. This kind of multi-start is performed so to reduce the risk for the 

search from getting stuck. This process continues until a prescribed number of iterations 

(Nmax) is performed. 

Steps 2(i) to 2(iii) of GMA are similar to Stage 1(i) to 1(iii) of TSA whereas Step 3 of GMA 

is relatively similar to Stage 3 of TSA though the values of the parameters used are different. 

This will be presented in the computational results section. 

 

4 Description of the Main Steps of both Approaches 

In the next subsections, we explain our aggregation and the distance calculation methods. 

These are followed by the description of the exact method and the VNS. In the last subsection 

the adaptation of our approaches for the conditional (p, q) centre problem is presented.   

 

4.1 The aggregation method 

The procedure to aggregate n BSUs into m ASUs, used in Stage 1(i) of TSA and Step 2(i) 

of GMA, is described in this subsection. The procedure is an adaptation of the methods 

proposed by Irawan et al. (2014) and Irawan and Salhi (2014). The set of the m ASUs is 

obtained as follows: (i) と points are selected pseudo randomly where と will be set accordingly 

as it will be shown later; (ii) the remaining (m-と) are randomly chosen. This pseudo random 

scheme is based on the construction of the cells which is presented in Figure 3.  

In the first step, we construct square cells that will cover all demand points with a side  

where we then delete empty cells. If the number of non-empty cells is not in the range of a 

prescribed number of ASUs then the value of  is revised and the first step is repeated again. 

Once the specified number of the non-empty cells, と, is reached, a point is chosen randomly 

from each cell to represent the aggregated point (ASU) within that cell. Finally, to increase 

the diversity of the solutions, the remaining (m – と) ASUs are randomly generated. The main 

steps of the pseudo random scheme are given in Figure 4. 

 



11 

 

 

                                 

 

                                                                               

Fig. 3 The illustration of the pseudo random method (adapted from Irawan et al., 2014) 

 

Fig. 4 The main steps of our aggregation method (Adapted from Irawan et al., 2014) 

 

Step 1 Determine the values of m, け, and . 

Step 2 Initialise the length of the side of the cell  as follows: 

 











minmax

minmax
minmax /)(

yy

xx
mxx  

 where xmax and xmin refer to the maximum and the minimum x coordinate of the points, 
respectively. Similarly, ymax and ymin refer to the maximum and the minimum y 
coordinates, respectively. 

Step 2 Let と denote the number of non-empty cells, where と  [mけ(1-), mけ]. 

Step 3 Construct square cells of length  which will cover all demand points where cell 1 has its 
bottom-left corner at (xmin , ymin). If (と  [mけ(1-), mけ] then go to Step 8. 

Step 4 Let L and U be lower and upper bounds of the length of the side of the cell. Set U =  
and L = U / 2. 

Step 5 Construct square cells of length L. If と< mけ(1-) then set U = L , L = U / 2 and repeat 
this step again, otherwise conduct the bisection method as follows.  

Step 6 Calculate 2/)( LU   . 

Step 7 Construct square cells of length  . If と mけ(1-) and  と mけ then go to Step 8, 
otherwise, if  と< mけ(1-) then U =   else L = . Go to Step 6. 

Step 8 Allocate all demand points to their cells. Choose randomly a demand point in each cell 
which makes up と aggregated points. 

Step 9 To complement m aggregated points, the remaining (m-と) demand points are chosen 
randomly. 

Basic Spatial Unit (BSU) 

Aggregated Spatial Unit 
(ASU) chosen randomly 
in each cell 
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Another way of aggregating the demand points would be to first define initially n subsets 

of one demand point each, then combine the closest pair of subsets into one bigger subset and 

continue this way until the number of aggregated subsets is reduced to m. The 1-median point 

for each of the m clusters could then be used to represent the ASU for that cluster. This 

scheme, though interesting, took extremely long when tested on the large instances. For 

example, the determination of the closest pair of subset on its own consumed more than 170 

seconds for n = 71,009 instead of around 10 seconds for our method to aggregate the same 

demand points. This new subset, if found in moderate time, could have been added to our 

random-based cells subsets which we generated. 

Observation 

In the p-centre problem, the optimal solution can be obtained by solving the aggregated 

problem. This occurs when all the ‘critical’ demand points are included in the aggregated 

points (ASUs). Figure 5 illustrates how the aggregated problem yields the optimal solution 

where the original (disaggregated) problem consists of 16 demand points and the number of 

facilities to be located is 2 (p=2). By solving it visually, it is clear that the facility locations 

will be in the middle and the objective function value is rm.  We aggregate these 16 points 

(n=16) to 8 points (m=8) where all the critical points are included in the aggregated problem. 

Figure 5 also displays that the facility locations and the objective function value for the 

aggregated problem are the same as the ones of the original problem. However, designing a 

method that identifies these ‘critical’ points is in itself a hard problem to solve. 

 

Fig. 5 Illustration of the aggregated problem yielding the optimal solution (p = 2) 

 

rm rm 

The disaggregated p-centre problem (n=16) The aggregated p-centre problem (m=8) 

The facility locations The demand points 
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4.2 A new distance calculation method for aggregated p-centre problems 

Let C’ denote the list of ASUs. To solve the aggregated p-centre problem with an exact 

method or a VNS, the distance matrix between points in C’ needs to be calculated. For the p-

median problem, Current and Schilling (1987) introduced a method for eliminating source A 

and source B errors. A distance between the kth ASU and the jth facility is set as              

),(ˆ jkd  =  kNi jid ),(  with Nk being the set of aggregated BSUs in the kth ASU. We do not 

use their method as the objective function is the minimax instead of the minisum. 

We propose another way which is more informative for the distance calculation. First, as 

in Current and Schilling’s method, BSUs are aggregated into their nearest ASUs. The 

maximum distances (rk , k=1,…,|C’|) between ASUs and their aggregated BSUs are then 

determined. Let ),(
~

jkd  denote the true (real) distance between the kth ASU and the jth 

facility. The distance ),(ˆ jkd  is set as krjkdjkd  ),(
~

),(ˆ . Figure 6 presents the illustration 

of our distance calculation method where it is assumed that the demand at BSU k, i, i+1 and 

i+2 has been aggregated as ASU k.  

The reasoning behind this distance representation is to compute rk once only and ),(
~

jkd  

when the location of facility j changes. This is much quicker than simply taking the 

maximum distance between the facility and all members of the ASU as this will need to be 

carried out every time the location of facility is changed which can be computationally 

excessive. 

 

Fig. 6 The distance calculation method for the p-centre problem 

A preliminary study was also carried out to compare these two calculation methods. The 

results showed that for the aggregated p-centre problem, the use of our proposed calculation 

method provides much better solutions than the average distance based on Current and 

j 

i 

i+1 

i+2 

k 
),(

~
jkd  

Potential facility site 

Basic Spatial Unit (BSU) 

Aggregated Spatial Unit (ASU) rk 

krjkdjkd  ),(
~

),(ˆ  



14 

 

Schilling’s method. In addition, the latter requires an excessive computational time due to the 

issues mentioned above.  

 

4.3 An exact method for solving the aggregated vertex p-centre problem 

The size of the aggregated problem is small enough to be solved optimally using the Set 

Covering Problem (SCP)-based approach as will be shown here. SCP aims to find the 

minimum number of facilities and their locations so that each customer is served by a facility 

within a given distance (or response time). Let D denote the given distance (covering 

distance), the matrix A = (aij) can be defined as follows: 



 


                                                                 otherwise

) (ie. facility by  covered is customer  if   

0

1 DdjIi
a ij

ij  

The SCP can be formulated as follows: 

Minimise 
Jj

jX  (8) 

Subject to 
 IiXa

Jj
jij 


1  (9) 

 JjX j  }1,0{  (10) 

The objective function (8) is to minimise the number of facilities. Constraints (9) ensure that 

each customer is served by at least one facility located within D whereas constraints (10) 

refer to the binary variables.  

To solve the p-centre problem, the SPC is solved recursively using a binary search. 

Efficient exact algorithms for solving the p-centre problem include, for example, Daskin 

(1995; 2000), Ilhan and Pinar (2001), Elloumi et al. (2004), Al -Khedairi and Salhi (2005), 

and Salhi and Al-Khedairi (2010). Our algorithm is a hybrid of the last two where (i) a VNS 

is used to obtain tight upper bound and its corresponding lower bound, (ii) an ordered list of 

the distance matrix elements is constructed, (iii) a scheme that efficiently identifies the 

nearest value in the distance matrix to the new coverage value found by the binary search 

(i.e., value = (lower bound + upper bound)/2) is proposed, and (iv) a more effective stopping 

criterion is adopted. The latter is based on detecting the empty gap between the final lower 

and upper bounds. Figure 7 presents our SCP-based algorithm to solve the p-centre problem 

optimally. 
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In Step 1, to obtain a tight upper bound, a VNS is applied as it is also used in other phases 

of this study and its description will be given in Section 4.4. The idea of sorting the distance 

matrix in the vector G, containing distinct elements only, is quite simple but very effective in 

reducing the number of iterations needed to find the optimal solution as values of D in Step 6 

that do not exist in G are not tried but their closest element in G is used instead. In addition, 

when there is no element in the vector G with distance value between L and U, there is no 

need to continue the binary search unnecessarily. In such a case (i.e., gap is empty), the 

optimal solution is exactly the upper bound value (U). Note that in other implementations, 

redundant iterations (i.e. solving more SCPs) could have been used till U – L  1 if integer 

values were required and U = L otherwise.  

 

Fig. 7 Our proposed optimal method for solving the p-centre problem  

The upper bound produced by the VNS in Step 1 can be a good solution as this may not be 

too far from the optimal in most cases. Steps 2-5 of Figure 7 aim to get a tight lower bound 

which can be obtained by setting the value of g close to 1 (for example, 0.8 – 0.9). Note that 

Step 1 Apply VNS to obtain the initial upper bound (U) 

Step 2 Sort the distance matrix in ascending order in a vector G. Convert the distance values 

into integers (e.g. by multiplying by 1000 and then rounding the values) and remove any 

duplicates. Convert the value of the upper bound to an integer value in a similar way. 

Step 3 Set the lower bound (L) to gU, where g is a parameter. Find a distance value in the 

vector G which is the closest to L and then update the value of L with the value found. 

Step 4 Solve the SCP for the coverage distance L and let z be the number of facilities found. 

 If (z ≤ p) then set U = L, L = gU and repeat this step again. 

Step 5 If there is element in G between L and U then the optimal solution is U and the number 

of facilities found is z and then stop. 

Step 6 Calculate D = (U + L)/2. Find a distance value in the vector G which is the closest to D 

and then update the value of D with the value found. Let zu denote the number of 

facilities found for the upper bound. 

Step 7 Solve the SCP for the coverage distance D. 

  If (z >  p) then set L = D, otherwise set U=D and zu =  z. 

Step 8 If there is no element in G between L and U then  

  the optimal solution is U and the number of facilities found is zu and then stop. 

  Else go to Step 6. 
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the lower bound must also exist in the distance matrix, which is the closest value to gU. In 

other words, the more powerful the VNS is, the higher is g. If L= gU happens to generate a 

feasible solution when solving SCP, set U=L and L= gU again, and the process continues 

until we have a proper range [L,U] from which the binary search starts. Steps 6-8 of Figure 7 

are the usual steps of the bisection (binary search) method. Similar to the lower bound 

generator, the coverage distance (D) has to be in the vector G, which is the closest to the 

average of L and U. This process stops when there is element in G between [L, U]. The 

optimal solution is then taken to be U and the number of facilities found is uz  ( uz p ). 

Solving the p-centre problem with the above method yields interesting results. It runs 

relatively much faster than the one using the classical p-centre formulation ((1)-(7)).  

Observation 

In special cases, it is worth noting that the optimal solution, U, might be obtained by 

locating a number of facilities zu < p, though yielding the same objective function values as 

locating p facilities. This could occur in the following two cases.  

(i) A facility with the largest radius (rm) happens to serve all its customers with the same 

radius as presented in Figure 8. Besides serving customer i, the facility located at customer i 

serves the other three customers namely customer i+1, i+2, and i+3. The distance between 

this facility and those three customers is the same which is rm.  Figure 8 shows the p-centre 

problem with p = 2 and 3 which give the same optimal solution (rm).   In the case p = 3, we 

try to split the largest circle obtained by solving the p = 2 problem. A facility is inserted at 

customer i+1 and the facility located at customer i is moved to customer i+3. However, this 

failed to reduce the maximum distance (rm) between a customer and its nearest facility. 

Therefore, the optimal solutions for p =  2 and 3 are the same. Note that this reasoning is not 

valid in the continuous space. 

 

Fig. 8 The case where the distance between a facility and all its customers is the same  

 (ii) Let zu = p – s, where s is the number of redundant (unneeded) facilities. If s  ≥ (s+1) 

facilities have the same maximum distance (rm) (i.e. there are s  alternate optimal solutions). 

Demand point 

Facility location 

i 
i+1 

i+2 

i+3 

rm 

p=2 

i i+1 

i+2 rm 

p=3 
i+3 
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Here, the optimal solution is obtained from those (s ) facilities which is given in Figure 9 

where s= 3 for p = 7 and zu = 5. 

 

Fig. 9 The case where (s+1) facilities have the same maximum distance (rm) 

There are three facilities whose biggest radius (rm) is the same which include facility j, j+2, 

and j+ 4. Inserting up to 2 facilities (s = 2) does not necessarily reduce the optimal solution 

when at least one furthest customer (from its facility) is still allocated to the same facility. In 

this case, the optimal solution for p = 5 and 7 is the same resulting in two redundant 

facilities.  

 

4.4 The VNS algorithm 

Variable Neighbourhood Search (VNS) was formally proposed by Hansen and 

Mladenovic (1997) for the solution of the p-median problem. VNS incorporates a local search 

which seeks local optima (intensification) and a systematic change of neighbourhood search 

(diversification) which intends to escape from local optima. VNS was implemented for the 

solution of the p-centre problem by Mladenovic et al. (2003) with good results. For more 

information and applications of VNS, see Hansen et al. (2010). 

In this study, VNS is used to solve the (m, m, p), the (n, |L|, p), and the (n, n, p) centre 

problems in the TSA. In Stage 1 of TSA and Step 2 of GMA, VNS is utilised to solve the (m, 

m, p) centre problem to obtain the upper bound (UB) for the exact method. The (n, |L|, p) 

centre problem is solved by VNS in Stage 2 of TSA where the promising facilities found in 

the previous stage are considered as the potential sites. In the last stage (Stage 3) of TSA and 

Step 3 of GMA, VNS is applied on the original (disaggregated) p-centre problem (n, n, p).  

 

Initial VNS implementation 

Our VNS is based on the implementation proposed by Mladenovic et al. (2003) which is 

summarised in Figure 10. Let im refer to the customer whose largest distance to its nearest 

p=5 

Demand point 

Facility location 

j+2 j 
j+1 

j+3 

rm 
rm 

j+4 

rm 
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facility while B denotes the list of customers which are located within rm from customer im 

(d(i, im) < rm). The set of neighbourhood structures (Nk), k = 1, 2, …, kmax is defined by 

swapping k times a randomly chosen facility location (say at customer in, where in  B) with 

one facility chosen randomly in the current solution.  

In the local search, the vertex substitution heuristic was implemented. For each facility 

(j=1,…,p), its best substitution point (the point in B) is obtained by the procedure “Move” 

(see  Mladenovic et al. 2003) using the best improvement strategy. Customers are then 

allocated to their nearest facility. This process is repeated until there is no improvement.  

 

 

Fig. 10 A VNS implementation for the p-centre problem 

 

An enhanced VNS implementation 

We enhance the shaking process of the algorithm with the aim in reducing the computing 

time while enhancing the quality of the solution. Instead of choosing a facility randomly from 

the current solution (xnow), we choose a facility (say facility j) whose radius (the maximum 

distance between a facility and its customer) is the largest (rm). We then move this facility to 

a customer site (customer in) served by facility j where d(im, in) < rm. We also restrict the 

location of customer in not to be too close to customer im. This concept of using forbidden 

regions is shown to be effective when solving the multi-source Weber problem, see Gamal 

and Salhi (2001). Here, we set d(im, in) > rm/2. Figure 11 illustrates our neighbourhood 

structure. 

1. Choose randomly an initial solution (xbest), calculate rm, determine im, and set k = 1, 

xnow=xbest, rnow = rm and inow = im. 

2. Repeat the following steps until k = kmax 

(i) Shaking process 

For j =  1 to k  

Choose randomly a facility (in) in B (i.e., d(inow, in) < fnow), and swap it with a 

random one in xnow . Calculate rnow and determine inow. 

(ii)  Local search 

Apply the vertex substitution heuristic with xnow as an input. The heuristic returns 

the solution xnow2, rnow2, and inow2. Set xnow=xnow2, rnow= rnow2 and inow= inow2. 

(iii)  Move or Not 

If (r now<rm) set xbest = xnow, rm  = rnow, im  = inow and k = 1 

Else set xnow = xbest, rnow = rm, inow = im and k = k+1. 
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Fig. 11 The restricted but guided neighbourhood 

In case there is no customer in the neighbourhood area, the shaking process is conducted by 

using the procedure of Step 2(i) of Figure 10. A preliminary study showed that our 

neighbourhood structure reduces the computing time and improves the quality of the solution. 

Figure 12 presents the enhancement of the VNS algorithm.  

 

Fig. 12 The enhanced VNS for solving the p-centre problem 

Let cmax denote the number of cycles (times) the VNS is executed. The value of cmax and 

kmax are set depending on the problem to be solved (i.e., the (m,m,p), the (n,|L|,p), or the 

(n,n,p) centre problem). The setting of the parameters will be presented in the computational 

Initialization  

Set the initial solution. Choose p points randomly for Stage 1, while for Stages 2 and 3 take the 
best solution from the previous steps.  

Repeat cmax times the following steps: 

Step 1 Set k = 1 

Step 2 Shaking 

Do the following step k times 
 Move the facility which serves customer im to a customer site randomly in the 

neighbourhood. If there is no customer site in the neighbourhood apply Step 2(i) of 
Figure 10. Determine the objective function and identify the corresponding furthest 
customer.  

Step 3 Local Search 

Apply the vertex substitution heuristic using the best improvement strategy.  

Step 4 Move or Not 

If there is an improvement, update the solutions and set k = 1 else k = k+1. 

Step 5 If k  kmax then go to Step 2. 

The area of the set B 

rm 

Neighbourhood area 

Customer im (the furthest customer) 

The facility which serves Customer im 0.5rm 

rm 
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results section. The shaking process uses the neighbourhood structure described above while 

the local search remains the vertex substitution heuristic. 

 

4.5 Adaptation of the methods for the (p, q) centre problem 

Both TSA and GMA, which are developed for the p-centre problem, are easily adapted to 

solve the (p, q) centre problem (i.e., the conditional p-centre problem). The revised 

approaches which we refer to TSAq and GMAq consist of the following modifications. 

a) The aggregation method (subsection 4.1) 

The q existing facility locations are considered as the aggregated points (C’). The と 

aggregated points are added pseudo randomly to C’ as described earlier while the 

remaining (m-と-q) points are chosen randomly.  

b) The exact method (subsection 4.3) 

Let Q be the set of existing facilities (Q  J).  

To solve the (p, q) centre problem optimally, we add constraints (11) to equations (8) – 

(10) to ensure that the q existing facilities are always in the solution. 

 QjX j 1  (11) 

The addition of constraints (11) into the p-centre formulation makes the problem 

relatively much easier to solve.  

c) The VNS (subsection 4.4) 

We fix the existing facilities in the solutions in both the shaking and the local search. In 

other words, the existing facilities cannot be removed from the solution.  

o The shaking 

If customer im (the furthest customer) is not served by one of the existing facilities, we 

then use the enhancement procedure in the shaking process. Otherwise the shaking 

process is performed by the procedure of Step 2(i) of Figure 10 with the following 

additional rule: when a facility is randomly chosen from the current solution (say 

facility j), facility j cannot be one of the existing facilities (i.e., j  Q).  

o The local search 

Because the existing facility locations are always part of the solution, the 

implementation of the best improvement strategy does not include these facilities.  
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5 Computational Results 

We carried out a computational study to assess empirically the performance of our 

solution methods when solving both the unconditional and the conditional p-centre problems. 

The code was written in C++.Net 2010 and used the IBM ILOG CPLEX version 12.5 

Concert Library.  The code was executed on a PC with an Intel Core i5 CPU 650@ 3.20GHz 

processor, 4.00 GB of RAM and under Windows 7 (32bit).  

The TSP dataset is used in our testing. These can be downloaded from 

http://www.tsp.gatech.edu/world/countries.html or http://www.kent.ac.uk/kbs/research/ 

research-centres/clho/datasets.html. We classify this dataset into two types: small and large 

datasets. The small dataset consists of Oman Data (n = 1,979), Canada Data (n = 4,663), and 

Tanzania Data (n = 6,117) whereas the large one comprises Sweden Data (n = 24,978), 

Burma Data (n = 33,708), and China Data (n = 71,009). For most instances of the small 

dataset, the optimal solutions can be obtained for both the unconditional and conditional p-

centre problems using the exact method described in Section 4.3. In other words, for these 

small instances we compare the performance of our methods against the optimal solution.  

 

5.1 Parameter settings and notations 

Following a preliminary study, the following parameters are selected as follows: m = 500 

and 400 for TSA and m = 1,000 and 800 for GMA for small and large datasets respectively. 

The number of aggregated points was made dependent on the size of the original problem as 

it influences the quality of the solution. The higher this value is, the higher the chance of 

obtaining a better solution. However, the computing time required also increases with m.  

We also set  = 0.05 meaning that the number of aggregated points generated by the 

pseudo random method to be in the range [70, 75]% with け = 0.75 for the large dataset and 

[95, 100]% with け = 1 for the small dataset. The remaining points are generated randomly. In 

this study, the value of け is the same for both TSA and GMA. 

In Stage 1 of TSA, the number of iterations (T) affects the number of promising facilities 

which also affects the quality of the solution. The possibility of obtaining a good solution 

increases when T is high, but this requires a relatively longer computing time. Here, we set 

T=10. When solving the aggregated problem by the exact method, the parameter  needs to 

be determined for getting the lower bound which is based on the upper bound obtained by the 

VNS (L = U) as suggested by Salhi and Al -Khedhairi (2010). We set  = 0.5 and 0.8 for the 

http://www.tsp.gatech.edu/world/countries.html
http://www.kent.ac.uk/kbs/research/%20research-centres/clho/datasets.html
http://www.kent.ac.uk/kbs/research/%20research-centres/clho/datasets.html
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unconditional and conditional problems, respectively. This means that the gap between the 

upper and lower bounds of the conditional problem is tighter than the one of the 

unconditional case. In the GMA, the value of Nmax is set to 5. 

In the VNS, we set kmax = min{max{p,10},20} whereas the parameter setting of cmax is given 

in Table 1.  

Table 1 Parameter setting of cmax  for the VNS method 

The type of the problem TSA GMA 

(m,m,p) problem    

 

Small and large datasets 1 1 

(n,|L|,p) problem    

 

Small and large datasets 5 - 

(n,n,p) problem (Stage 3)   

 
Small dataset min{max{p,10},20} 5 

 Large dataset 5 1 

 
The results of our experiments are presented in several tables using the following notations: 

 n: number of demand points  

 p: number of new facilities to be located  

 Z: objective function value with Z* and Z** being the optimal solution for the 

unconditional and conditional problems respectively. 

 EM : Exact Method. 

 Time: computational time in seconds. 

 Deviation(%): this is the percent gap from the best known solution (or optimal if it 

exists) and is computed as: 








 


b

bc

Z

ZZ
Deviation 100 , where Zc and Zb correspond to the Z value obtained with method 

’c’ and the best Z (or optimal Z) value respectively.  

The next two subsections present experiments on the unconditional and the conditional p-

centre problems respectively. 

 

5.2 Computational results on the unconditional vertex p-centre problems 

For the small dataset, each instance is solved with p varying from 5 to 100 with a step of 5 

totalling 24 instances whereas we vary the value of p from 25 to 100 for the large dataset with 

an increment of 25 totalling 12 instances. For small dataset, we also give the average results 

with their respective standard deviations based on 10 runs.  
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Small dataset 

The performance of our methods (TSA and GMA) on the small dataset is compared 

against the optimal solution (Z*) obtained by the exact method which is described in Figure 

6, see Table 2.  

Table 2 Statistical Results for the small unconditional p-centre problems (based on 10 runs) 

p 
Exact 

Method 
Z* 

Deviation from Z* 
(best) (%) 

Z value 
TSA 

Z value 
GMA 

Avg Time (Seconds) 

TSA GMA Avg Std Avg Std EM (Z* ) TSA GMA 

Oman Data (n = 1,979) 
        

5 1,876.83 0.000 0.000 1,876.83 0.000 1,876.83 0.000 67.50 36.49 78.46 
 

10 1,160.70 0.000 0.000 1,160.70 0.000 1,160.70 0.000 52.53 30.29 59.57 
 

15 867.52 0.000 0.000 867.52 0.000 867.52 0.000 36.65 38.92 63.29 
 

20 750.53 0.000 0.000 762.97 8.582 764.74 7.491 38.90 70.12 66.36 
 

25 638.79 0.000 0.000 642.83 3.852 641.69 1.020 30.31 81.10 62.22 
 

50 380.90 1.798 0.000 395.31 6.507 382.21 2.331 30.47 127.45 127.59 
 

75 284.80 1.926 0.000 303.29 6.589 289.74 1.735 27.64 147.60 103.67 
 

100 220.32 6.176 1.773 237.69 1.983 225.48 3.019 45.09 181.67 152.42 
 

Canada Data (n = 4,663) 
        

5 16,836.61 0.000 0.000 16,842.78 5.315 16,845.87 3.255 1,031.14 124.71 310.73 
 

10 10,498.81 0.000 0.000 10,498.81 0.000 10,504.32 17.424 630.57 129.47 288.37 
 

15 8,295.93 0.000 0.000 8,299.87 12.459 8,358.78 71.781 465.87 226.95 367.17 
 

20 7,023.87 0.000 0.000 7,030.85 22.082 7,088.87 66.990 417.31 365.00 477.64 
 

25 5,965.76 0.745 0.000 6,090.21 47.605 6,073.15 71.381 409.11 363.72 426.21 
 

50 3,955.06 0.439 0.000 4,086.80 83.779 3,978.48 17.069 508.30 342.38 333.58 
 

75 3,069.32 2.765 2.765 3,208.67 84.152 3,168.54 14.488 575.54 325.61 279.10 
 

100 2,543.89 1.635 1.635 2,685.69 78.784 2,589.17 7.108 471.85 378.03 276.70 
 

Tanzania Data (n = 6,117) 
        

5 2,917.86 0.000 0.000 2,918.43 1.805 2,918.43 1.805 3,725 543.74 1,324.64 
 

10 1,902.12 0.000 0.000 1,915.88 12.293 1,929.79 33.982 11,366 366.25 883.26 
 

15 1,527.98 1.400 0.475 1,558.23 8.919 1,564.66 21.517 35,875 727.24 1,142.96 
 

20 1,278.30 0.318 1.002 1,293.42 11.538 1,309.82 12.965 25,375 1,120.98 1,398.05 
 

25 1,152.05 1.114 1.114 1,178.33 9.692 1,184.32 10.021 362,943 934.22 1,152.35 
 

  
Z(TSA) Z(GMA) 

 
   

    
50 N/A 806.23 806.23 820.18 11.051 824.71 820.74 N/A 637.26 903.44 

 
75 N/A 663.53 663.74 679.38 9.903 676.17 671.85 N/A 585.96 719.04 

 
100 N/A 579.75 566.18 596.81 12.974 588.02 589.02 N/A 618.42 686.61 

 

 
Average 0.872 0.417  

19.330 
 

17.399 21,148 317.24 446.40 
 

 

The specification of the computer used to obtain the optimal solution for Tanzania Data 

(n=6,117) is slightly different as we need a greater capacity of memory (RAM). Here, we 

used a PC Intel Core 2Duo 2.6GHz, 8 GB of RAM to solve these problems optimally. 

According to Dongarra’s (2013) transformation, this computer is approximately 80% faster 
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than the one that we used to execute other instances. In Table 2, for Tanzania data, the 

computing time required to obtain the optimal solution has been adjusted accordingly. The 

optimal solutions of this instance for p = 100 could not be obtained due to memory issue. 

Table 2 shows that both TSA and GMA are able to find the optimal solutions when p  50. 

In general, GMA performs slightly better than TSA as it found the optimal solutions in 15 out 

of 21 instances while TSA produces 11. Regarding the deviation from the optimal solution, 

GMA also yields a relatively smaller average deviation (0.417%) compared to the one of 

TSA (0.872%). This deviation increases with p and n. The effect of the increase of p appears 

to be more significant than the one of n. For both methods, the average computing time is 

found to be relatively much smaller than that of the exact method.  

 

Large dataset 

The computational results of our methods on large p-centre problems are given in Table 3. 

For these problems we do not have the optimal solutions or other results that we can compare 

with. We just analyse the deviation (%) and the computing time between TSA and GMA.  

Table 3 Computational Results for the large unconditional p-centre problems 

p 
Best 

known (Zb) 

Deviation (%) Time (Seconds) 

TSA GMA TSA GMA 

Sweden Data (n = 24,978) 
   

25 1,329.37 6.6185 0.0000 10.80 1,300.90   
50 925.71 3.8950 0.0000 621.42 1,499.67   
75 759.02 0.1445 0.0000 919.13 1,080.59   
100 685.77 0.7063 0.0000 652.09 897.27   

Burma Data (n = 33,708) 
   

25 1,183.80 0.0000 0.0000 725.08 839.85   
50 823.27 0.0000 0.5110 1,164.58 1,072.08   
75 683.94 2.8109 0.0000 769.46 1,105.56   
100 593.48 1.2540 0.0000 552.04 1,823.30   

China Data (n = 71,009) 
   

25 4,428.72 1.4251 0.0000 7,837.74 7,543.40   
50 3,107.56 2.1134 0.0000 7,603.29 7,536.78   
75 2,554.32 0.0000 0.3072 7,538.15 7,524.98   
100 2,168.97 1.7211 0.0000 7,499.61 6,818.05   

 
Average 1.9286 0.0639 2,991.12 3,253.53   

 

When solving large p-centre problem, the local search (vertex substitution heuristic) of the 

VNS used to solve the original (disaggregated) problem is slightly modified to reduce the 
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computing time. Here, the substitution points are in the area B (see Figure 11) and their 

distance to customer im is less than rm∙(1-p/100). For the large dataset, we also limit the 

computing time of the VNS in Stage 3 of TSA to 1.5 hours and in Step 3 of GMA to 0.5 

hours. In general, the methods run relatively fast (more or less 3,000 seconds on average). 

Similar to the results of the small dataset, GMA is found to be superior to TSA as it produces 

a smaller average deviation (0.0639).  

 

5.3 Computational results on the conditional (p, q) centre problems 

Our modified approaches for solving the conditional p-centre problem are also assessed on 

the TSP dataset that was tested on the unconditional p-centre problem. The existing q 

facilities in the (p, q) centre problem are taken from the solutions (the optimal solution for 

small instances) produced by solving the p-centre problem in the previous subsection. For 

instance, for the (p=10, q=5) centre problem, the existing 5 facility locations are the solution 

of the (p=5) centre problem. We compare the objective function of the (p=10, q=5) centre 

problem to the unconditional (p=15) centre problem. When the exact method is used, the 

value of the objective function of the (p=10, q=5) centre problem is obviously worse than or 

equal to the one of the (p=15) centre problem.  

The above setting will demonstrate how much loss was produced by restricting some of 

the facilities when solving the new p-centre problem. In other words, with such a setting the 

solution of the latter acts as a lower bound for the conditional problem. From a managerial 

view point, this could also be used to evaluate whether or not to close some of these already 

opened facilities and replacing them by the new optimal (or best) ones if necessary. Another 

experiment, which can also be performed, would be to take q locations randomly from the 

optimal locations of the p-centre problem and solve the (p-q,q) conditional problem. This will 

enable us to see the effect of the subset of the optimal facilities within the p-centre problem 

and how much the additive property in the p-centre is violated.  

 

Small dataset 

The computational results of TSAq and GMAq on the small TSP dataset are presented in 

Tables 4 and 5 where the deviation (%) between the optimal solution found by the exact 

method (EM) for the (p, q) problems is presented. The tables also show the performance of 

TSAq and GMAq based on the deviation (%) and the computing time (in seconds). Tables 4 
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and 5 present the computational results on the small (p, q) problems for the small and the 

large values of p respectively. 

Table 4 Computational Results on small (p, q)-centre problems for small p (10 runs) 

p q Z** 

Deviation from 
Z** (best) (%) 

Z value TSAq Z value GMAq Avg Time (seconds) 

TSAq GMAq Avg Std Avg Std EM TSAq GMAq 

Oman Data (n=1,979)           

5 5 1,455.35 0.000 0.000 1,455.354 0.000 1,455.354 0.000 15 26 69 
   

10 5 1,019.08 0.000 0.000 1,019.077 0.000 1,019.077 0.000 29 64 102 
   

5 10 1,109.55 0.000 0.000 1,109.554 0.000 1,109.554 0.000 9 22 41 
   

15 5 779.70 0.000 0.000 779.698 0.000 779.698 0.000 26 110 120 
   

10 10 883.33 0.000 0.000 883.333 0.000 883.333 0.000 8 65 86 
   

5 15 827.65 0.000 0.000 827.647 0.000 827.647 0.000 8 66 82 
   

20 5 676.13 0.000 0.000 683.841 4.062 680.186 4.819 23 103 134 
   

15 10 759.58 0.000 0.000 759.580 0.000 759.580 0.000 7 102 115 
   

10 15 817.35 0.000 0.000 817.347 0.000 817.347 0.000 7 55 65 
   

5 20 736.71 0.000 0.000 736.711 0.000 736.711 0.000 6 53 64 
   

Canada Data (n=4,663)    

5 5 13,622.13 0.000 0.000 13,622.133 0.000 13,622.133 0.000 66 76 179 
   

10 5 9,661.06 0.000 0.000 9,661.062 0.000 9,675.167 44.604 85 425 779 
   

5 10 10,250.66 0.000 0.000 10,250.664 0.000 10,250.664 0.000 49 87 140 
   

15 5 7,254.92 0.000 0.000 7,254.922 0.000 7,254.922 0.000 83 720 1,023 
   

10 10 8,968.54 0.000 0.000 8,968.541 0.000 8,968.541 0.000 48 397 499 
   

5 15 8,130.41 0.000 0.000 8,130.413 0.000 8,130.413 0.000 34 209 263 
   

20 5 6,447.44 1.344 1.344 6,549.629 49.110 6,560.537 49.944 93 538 697 
   

15 10 7,244.33 0.000 0.000 7,244.327 0.000 7,244.327 0.000 70 558 800 
   

10 15 7,262.08 0.000 0.000 7,262.078 0.000 7,293.942 100.761 36 323 403 
   

5 20 6,892.35 0.000 0.000 6,892.347 0.000 6,892.347 0.000 29 274 338 
   

Tanzania Data (n=6,117)    

5 5 2,540.56 0.000 0.000 2,540.560 0.000 2,540.560 0.000 80 417 995 
   

10 5 1,705.95 0.000 0.000 1,705.954 0.000 1,711.037 10.728 181 1,037 1,853 
   

5 10 1,874.17 0.000 0.000 1,874.166 0.000 1,874.166 0.000 49 158 271 
   

15 5 1,454.94 0.000 0.000 1,461.835 12.609 1,474.225 25.146 797 1,228 1,663 
   

10 10 1,625.24 0.000 0.000 1,625.235 0.000 1,625.235 0.000 52 1,250 1,608 
   

5 15 1,512.63 0.000 0.000 1,512.632 0.000 1,512.632 0.000 35 219 275 
   

20 5 1,206.12 1.026 1.563 1,228.947 10.871 1,233.200 9.367 922 996 1,245 
   

15 10 1,397.82 0.567 0.000 1,406.245 1.591 1,427.460 21.422 56 1,015 1,287 
   

10 15 1,460.69 0.000 0.000 1,460.974 0.601 1,461.686 0.689 37 439 542 
   

5 20 1,274.38 0.000 0.000 1,274.380 0.000 1,274.380 0.000 23 189 223 
   

Average 
 

0.10 0.10 
 

2.63 
 

8.92 99 374 532 
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Table 5 Computational Results on small (p, q)-centre problems for large p (10 runs) 

p q Z** 
Deviation from 
Z** (best) (%) 

Z Value TSAq Z Value GMAq Avg Time (seconds) 

TSAq GMAq Avg Std Avg Std EM TSAq GMAq 

Oman Data (n=1,979) 

40 10 412.56 6.653 0.000 440.013 0.000 418.733 3.251 9.19 67.88 109.99 
   

35 15 426.34 0.000 0.000 436.571 4.467 431.179 6.242 6.17 94.86 112.91 
   

30 20 449.47 0.000 0.000 449.679 0.276 449.572 0.225 6.58 125.11 124.25 
   

25 25 482.74 0.000 0.000 486.274 3.670 486.299 3.644 6.80 101.09 120.00 
   

65 10 293.27 4.483 0.000 311.051 6.006 296.722 4.482 10.47 86.57 116.67 
   

60 15 303.12 1.086 0.820 306.413 0.000 305.702 0.254 6.73 80.08 109.39 
   

55 20 313.93 0.731 0.731 317.261 1.090 316.339 0.234 6.82 123.77 94.52 
   

50 25 305.61 0.264 0.264 308.228 4.068 306.503 0.286 8.43 113.88 117.44 
   

90 10 223.44 4.693 0.351 238.160 1.487 227.137 4.686 15.27 109.19 117.39 
   

85 15 233.93 1.493 0.000 242.234 4.070 236.037 2.267 13.62 109.34 123.15 
   

80 20 236.16 1.915 1.045 244.025 2.670 418.733 3.251 7.37 114.11 127.89 
   

75 25 233.93 2.011 2.011 238.832 0.324 418.733 3.251 9.67 127.14 148.66 
   

Canada Data (n=4,663) 

40 10 4,166.60 1.076 2.086 4,245.347 16.830 4,364.470 147.235 86.38 381.89 403.28 
   

35 15 4,537.65 0.000 0.000 4,612.338 26.242 4,691.431 181.905 56.61 184.17 267.66 
   

30 20 4,481.35 2.475 2.649 4,620.685 35.394 4,665.977 50.814 48.97 709.84 904.47 
   

25 25 4,787.28 0.000 0.000 4,838.133 80.308 4,876.919 95.221 26.14 405.14 479.97 
   

65 10 3,175.65 3.066 1.850 3,478.710 145.154 3,390.607 125.136 71.80 206.95 271.91 
   

60 15 3,175.65 3.066 0.905 3,281.104 22.046 3,286.649 42.958 91.66 385.89 483.67 
   

55 20 3,355.26 1.466 1.466 3,430.062 11.616 3,432.061 17.933 47.82 492.61 585.90 
   

50 25 3,452.86 0.847 1.123 3,500.850 14.357 3,531.332 27.200 31.04 540.14 622.60 
   

90 10 2,557.45 1.096 1.147 2,654.247 76.372 2,636.070 61.829 174.01 309.73 365.07 
   

85 15 2,583.06 6.259 0.757 2,744.742 0.000 2,718.696 55.554 63.57 189.07 284.73 
   

80 20 2,584.68 0.081 0.694 2,630.598 52.800 4,364.470 147.235 62.51 465.36 607.59 
   

75 25 2,664.01 0.336 0.041 2,699.424 25.465 4,364.470 147.235 57.87 446.00 572.93 
   

Tanzania Data (n=6,117) 

40 10 833.33 2.801 2.000 871.031 11.051 874.852 16.509 2,439.99 620.53 731.33 
   

35 15 863.13 1.241 2.249 887.311 8.686 891.758 11.926 95.10 672.39 901.48 
   

30 20 912.41 2.358 2.846 944.417 7.347 962.771 22.630 36.31 638.70 813.21 
   

25 25 988.41 0.906 1.173 1,006.810 7.655 1,010.999 7.234 25.47 480.35 606.26 
   

65 10 641.18 7.175 5.843 708.005 10.008 695.142 11.099 13,577.62 486.29 606.89 
   

60 15 655.96 6.138 5.038 708.544 4.873 704.362 10.321 761.81 533.03 713.81 
   

55 20 674.33 3.512 5.151 719.904 11.877 737.759 19.913 166.13 559.98 709.87 
   

50 25 687.18 3.611 3.128 724.688 12.124 732.942 17.266 51.53 599.97 747.71 
   

90 10 542.88 7.846 7.846 603.568 8.626 596.950 6.632 55,460.22 506.06 671.65 
   

85 15 551.01 7.411 8.428 608.369 11.037 608.965 9.354 4,391.66 538.73 714.99 
   

80 20 560.26 7.135 7.465 611.578 11.730 874.852 16.509 1,144.41 546.73 709.92 
   

75 25 577.83 6.760 7.032 625.573 4.702 874.852 16.509 88.72 532.25 675.18 
   

   
2.78 0.80 

 
17.90 

 
36.06 2,199.01 352.36 440.95 
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The results show that solving p-centre problems using the exact method (EM) requires 

more than twice the computing time than solving (p, q) problems. One of the reasons is that 

when solving the SCP the (p, q) problems constraints (11) make the problem easier to solve 

by restricting the number of combinations (feasible set).  

Table 4 shows that both TSAq and GMAq are able to find the optimal solutions for most 

instances. In general, GMAq performs better than TSAq as it produces a smaller average 

deviation from the optimal solutions. Table 5 shows that our methods run much faster than 

the exact method especially with large n and small q. Similar to the previous results, GMAq 

also performs better than TSAq. It is observed that it is quite hard to find the optimal 

solutions when p is relatively large. 

 

Some observations 

The comparison between the optimal results of the p-centre and (p, q) centre problems 

using the exact method are also shown in Table 4. The objective function value (Z) of a more 

restricted and less restricted problems appears to be smaller than the one in the middle. For 

instance, the Z value for (p=20, q=5) and (p=5, q=20) centre problems are smaller than that 

of (p=10, q=15) problem for all instances. Figure 13(a) shows the bell-shape pattern of the 

deviation (%) from the (p, q) problems to the (p = 25) centre problem. To get more detailed 

results reflecting the effect of the q value on the objective function value of the (p, q) centre 

problem, we solved the (p, q) problems on the Oman data optimally varying q = 0 to 24 in 

increments of 1 keeping p+q=25. The q existing facilities are set to the optimal solution of 

(p=q) centre problem. Figure 13(b) presents the pattern of the Z value on the (p, q) problems 

which confirms the statement that a more restricted or less restricted problems yield a smaller 

Z value. 

 

Large dataset 

Tables 6 presents the computational results of TSAq and GMAq on large (p, q)-centre 

problems. There is no known optimal solution for these problems. Due to their large sizes, as 

in the unconditional problems experiments, we also limit the computing time of the VNS in 

Stage 3 (the post-optimisation) of TSAq to 1.5 hours and in Step 3 of GMAq to 0.5 hours.  
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  (a)       (b) 

Fig. 13 The pattern of the objective function of (p, q) centre problem 

 

Table 6 Computational Results for the large (p, q)-centre problems  

p q 
Best Kwown 

(Zb) 
Deviation (%)  Time (seconds) 

TSAq GMAq TSAq GMAq 

Sweden Data (n = 24,978) 

25 25 1,101.14 0.00 0.00 680.50 954.14 

50 25 819.89 0.00 1.883 874.99 908.75 

25 50 874.48 0.00 0.308 495.61 847.36 

75 25 706.32 0.00 2.448 768.94 1,233.95 

50 50 763.40 0.00 1.279 554.22 667.55 

25 75 726.10 0.00 0.000 445.62 660.98 

Burma Data (n = 33,708) 

25 25 970.82 1.29 0.000 960.33 1,299.26 

50 25 704.94 0.00 4.510 1,036.94 987.60 

25 50 755.17 0.00 2.406 607.95 1,200.04 

75 25 619.36 0.00 2.996 1,390.19 1,119.48 

50 50 641.18 0.00 1.941 670.27 854.59 

25 75 647.22 0.00 0.166 461.88 766.13 

China Data (n = 71,009) 

25 25 3,637.15 1.74 0.000 7,313.58 7,512.75 

50 25 2,752.35 0.00 0.278 7,288.20 7,515.19 

25 50 2,937.21 0.00 0.891 7,279.92 7,297.55 

75 25 2,310.13 5.54 0.000 7,328.08 7,511.97 

50 50 2,539.07 2.72 0.000 7,283.31 7,514.36 

25 75 2,504.44 0.00 0.011 7,264.37 7,363.80 

Average 
  

0.63 1.06 2,928.05 3,123.08 
 

 Contrarily to the previous results, TSAq generally performs better than GMAq when 

solving large (p, q) centre problems. The average deviation of TSAq is 0.63% which is about 

40% smaller than the one of GMAq (1.06%).  
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6 Conclusion and suggestions for future research 

Two meta-heuristics based on data aggregation, an efficient implementation of an exact 

method, and the use of a VNS is proposed to solve large unconditional and conditional vertex 

p-centre problems. The first approach called the three-stage approach (TSA) consists of three 

stages. The first stage is a learning process incorporating demand point aggregation and an 

exact method. The second stage uses a VNS to solve the disaggregated problem with the 

facilities identified from the previous stage as potential facility sites. A post-optimisation is 

performed, as the third stage, using the same VNS but on the original problem instead. The 

second approach is a guided multi-start approach (GMA). This is designed to provide 

flexibility in revisiting the aggregated problem several times so to produce a new and diverse 

solution configuration which is then fed into the VNS.  

According to the computational results on the TSP dataset, our methods perform quite 

well and run relatively fast. For the small dataset (n  6,117), the methods find the optimal 

solution on some instances for both the unconditional and conditional problems. These 

optimal values are obtained by our modified version based on set covering and new attributes 

to enhance its efficiency. These optimal solutions could be used for benchmarking purpose as 

well. In most cases, GMA performs better than TSA as GMA yields a smaller average 

deviation except for the conditional large dataset.  

This research could be worthwhile expanding and adapting to other related problems such 

as clustering of large datasets with higher dimension as part of data mining.   
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