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Abstract - Many researches are carried out in the
domain of the execution time prediction for sequential
or parallel applications. This data can be used by
job scheduling algorithms present on grid or cluster
infrastructures to improve their behavior. In real-time
context, the prediction of execution time is a crucial
data, which the respect of deadline constraints may
depend on.

Both domains introduce their own prediction
models. In parallel job scheduling, historic-based
models can be used to estimate the execution time of
a job using an experience base of past executions of
similar jobs. In real-time domain, the Worst Case
Execution Time (WCET) of applications is notably
computed from the profile of the applications.

In this paper, an hybrid method for predicting
execution time of parallel applications is presented.

This method relies on both profile-based and historic-

based predictions. Programs profiles are analyzed in
order to decompose them into a set of basic blocks.

The execution time of each block is determined using

past executions of the programs. Then, a prediction
of the overall execution time can be performed by

applying historic-based predictions model to estimate

the execution count of basic blocks.
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1 Introduction

Many researches are carried out in the domain
of execution time prediction for sequential or
parallel applications. The objective is to
associate a program with its execution context,
since its execution time may depend on the
application parameters, the computer hardware
and configuration, the operating system, and
other programs that are on the same computer.

In the domain of parallel computing, the
prediction of execution time is an interesting
input for batch schedulers [1][2][3]. In the
AROMA scheduler [4], it will be used to satisfy
QoS constraints. The good performance of the
mapping algorithm is directly related to the
accuracy of predicted values. An overestimated
value will delay the execution of the application
and an underestimated value will create an
interruption of the application and perhaps no
results.

In real-time context, the prediction of execution
time is very important to validate the good
behavior of the whole system. One solution,
to validate the real-time constraints and so the
deadline of the scheduled tasks, is to work on the
Worst Case Execution Time (WCET)[5].

It is necessary to define an easy way to obtain
a good estimate of the future execution time of
an application. Some methods will be automated
and some others will need assistance from the
users. Two main techniques exist:

• predictions based on an historic of past
executions [6][3],

• predictions based on the study of the
program[7]. This is kind of techniques is
used in the real-time domain to calculate the
WCET.

The objective of this paper is to propose a
model for execution time prediction that uses
both techniques. This hybrid method relies on
the study of the program structure in order to
decompose it into a set of atomic parts named
basic blocks. An historic of past executions is



then used to estimate the execution time of the
whole application.

1.1 Related Work and
Contributions

Two main methods are used to evaluate the
WCET of an application. The first one is dynamic
and the other one is static. In the first case, the
application is executed on the real architecture
of processors, or simulated on a software model
of the architecture, and its execution time is
determined by measurements [8][9]. Real inputs
are used. The main problem is to find a good
set of inputs that leads to the maximal execution
time. The main methods are used to find a good
set of inputs:

• testing all possible inputs,

• taking a set of inputs given by the user, since
he is supposed to have a good knowledge
of his program and so of data that may
maximize the execution time,

• creating some heuristics to find a good input
with genetic algorithms for example,

• considering inputs as unknown values and
solve formal equations.

In the static case, the structure and the
source of the program are studied, in three steps
methods:

• the flow analysis enables to decompose the
program into atomic parts, and then all
possible paths through the program are
explored,

• the study of the low level expresses the
time needed to execute atomic parts of the
program on specific architecture,

• the value of the WCET is calculated with the
two previous information.

Some restrictions are necessary to use these
kinds of methods: no dynamic allocation
structure, no recursion and no unbounded loop.
Those conditions enable to bound the number
of paths to explore. However, an increasingly
number of paths is still a difficulty for applying
these methods.

A commonly-used technique of performance
prediction for serial or parallel applications in
non-real-time domains is based on the study of
past executions. It suppose that executions of
similar applications in similar context lead to
similar execution times [6][10][2] [3].

In a first approach, a classification of the
applications can be done [6]. In this case, a
set of templates is used to identify the different
types of applications. These templates contain
information such as the application type (batch
or interactive, parallel or serial), the submission
queue, the user, the binary name, the parameters,
the number of computing nodes, etc. The main
difficulty is to define a good set of templates that
leads to a correct number of categories to classify
the jobs into. The number of categories must
be sufficient to group only related jobs together,
but not too high to make accurate predictions.
In [10], the authors propose algorithms that
automatically determine a set of appropriate
templates.

Another approach uses instance-based learning
techniques, also called locally weighted learning
techniques [11]. The principle is to memorize all
executions with all inputs and outputs. When
a prediction must be calculated with specific
inputs, one or several instances with similar
inputs are searched in the set of past executions.
Their outputs and resources utilization are used
to estimate the execution time. To find the
similar experiments, a distance is calculated. The
Euclidean distance is used in this article as in [2]
[3]. A vector E is defined to represent all inputs
of the program (NV values):

E = {Ev}v∈[1;NV ] = [E1, E2, . . . , ENV ]

The Euclidean distance function is:
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The distance d between two input values
depends on the type of the values. Indeed, they
can be linear or nominal (a nominal attribute is a
discrete attribute which values are not necessarily
in any linear order, such as colors). Linear
inputs can also be continuous or discrete. An
heterogeneous distance function is used [12]:
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The estimation of a future execution time
(T (E∗)) for a specific input E∗ is performed by
merging several past experiments with different
methods: model of the k-nearest neighbor [13],
locally weighted polynomial regression [14], or
weighted average [3][2]. This last model is used in
this paper, and relies on the following equation:

T (E∗) =

∑

E
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) (3)

K expresses the proximity of the experiments.
It can be defined by numerous weighting functions
[11]. In this paper, the Gaussian function is
chosen: K(d) = e−( d

k )2

Our contribution is to merge both profile-based
techniques and instance-based learning ones to
produce execution time predictions. Even if our
work is notably related to WCET calculation
methods, the objective is not WCET prediction
but the estimation of a program running time for
specified inputs, in order to provide scheduling
algorithms with information about submitted
applications to schedule. Using our prediction
technique is quite easy to set up since it only needs
the use of standard GNU profiling tools and of a
simple database.

2 Definition of the
Prediction Model

The hybrid model of prediction proposed in
this article uses the historical approach based on
locally weighted learning techniques, combined
with a flow analysis of the program. Annotations
inside the program source can eventually be used
to improve the prediction accuracy.

The general functioning of our hybrid
prediction model is given by figure 1. An
experience base is progressively built using
different executions of the program. Our
prediction method is based on the use of
standard GNU profiling tools: gprof and gcov.
The program is decomposed into several basic
blocks, using the gcov tool. The unit execution
time of each block (T BB) is computed using the
different past executions, and is supposed to be
constant from one execution to another. The

execution count of each block (NBB) depends on
the program inputs. In the database, each input
set is mapped to the number of blocks executions.
When a prediction has to be performed, this
number is estimated using the different entries
in the database, weighted by the distance
between the entries and the query. Then, the
total execution time can be calculated from the
estimated NBB and the computed T BB.

2.1 Block Decomposition

A block is a maximal sequence of instructions
which has one and only one entry and exit point.
It contains only simple instructions, without any
branching or function call. The execution time of
a block is supposed to be independant from the
inputs of the program, and thus to be constant on
a same architecture. This is a simplification since
modern processors often propose optimization
mechanisms, such as caches or pipelines, that
could produce different execution times for a same
block.

In computing programs, the main blocks are
always executed many times. Thus the cache,
for example, introduces different times only for
the first execution which is neglected because
the block will be executed many times after. A
function f (with f being an element of the set F
of all program functions) is composed by different
blocks b with different execution times T BB

b . The
number of executions NBB

b (E) of the block b
depends on the input E of the program . So the
total execution time TExec(E) of a program is:

TExec(E) =
∑

f∈F



NF
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f

NBB
b (E) · T BB

b





(4)

where:

• NF
f (E) is the number of times that the

function f is executed,

• BBF
f is the set of blocks that composes the

function f .

2.2 Past Execution Study

The first step is to compute the T BB
b values.

This is done by using the different experiences
(previous runs) contained in the database. When
a new execution of the program is performed, the
new experience obtained enables to compute new
T BB

b values in order to improve their precision.
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Figure 1: Principle of the hybrid prediction

The execution time of the basic blocks are
supposed to be constant for each block, whatever
the inputs of the program are. Thus, considering
the previous runs of the program, we obtain a set
of equations (one equation per run with its own
inputs E):

T F
f (E) =

∑

b∈BBF
f

NBB
b (E) · T BB

b (5)

where T F
f (E) is the execution time of the

function f depending on the inputs E of the
program.

In this equation, for each experience, the
T F

f (E) value is given by the gprof profiler,
and the NBB

b (E) values are obtained thanks to
gcov. These data vary from one run to another
depending on the inputs of the program. The
T BB

b , which are unknown, do not depend on the
inputs.

Computing the execution time of the program
blocks is thus equivalent to solving a linear
equation system, where T BB

b are the unknowns,
under the constraint of getting positive results.
The number of equation systems to solve
corresponds to the number of functions of the
program.

However, the equation systems obtained are
often ill-conditioned, and their resolution with
standard methods are not possible. We have
designed for this purpose an iterative resolution,
which is adapted to the problem.

2.3 Prediction of Execution Time

The goal of the second step is to give an
estimation of the NBB

b (E) values, depending on
the inputs of the program. If we consider the
equation (5), the T BB

b values are known from
previous step. An estimation of the execution
count NBB

b (E) of the basic blocks has to be
performed in order to predict the execution time
of the program functions, and thus its global
execution time.

This estimation will be done using the
experiences stored in the database. Each one
maps the inputs of the program with the
corresponding execution count for each basic
block. The idea is to use the historic-based model
given by equation (3) to estimate the execution
count of each basic block for the inputs of the
query.

A distance-weighted average is thus used
to form an estimate of the execution count
of the program basic blocks. We use the
Gaussian function to give more importance to the
experiences which inputs are closed to the ones
of the query. The k value enables to adjust the
Gaussian function width, in order to fit both cases
when there are many experiences in the database
or not.

The distance function is defined as in equation
(1). Nevertheless, this definition can be improved
by adding a coefficient that enables to favor some
inputs over others in the calculation of the basic
blocks counts. Indeed, not all blocks depend on
all inputs, and it can be useful to indicate which
inputs are relevant to compute the count of each
block. So, the distance becomes:
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The wv parameters indicate the importance
of each input feature on the distance, and
so on the computation of the block execution
count estimate. Their values depend on the
structure of the program, and can be given
by the user through source code annotations.
These annotations will indicate which inputs are
relevant for the prediction of execution count of
each basic block of the program. An example of
annotation is given below:

1 #pragma etp dependency ( s i z e )
2 for ( int i = 0 ; i < s i z e ; i++ ) {
3 vector [ i ] = 0;
4 }
5 #pragma etp end

We have implemented a tool that deduces such
information from annotations given by the user in
C programs through #pragma directives. These
directives are ignored by compilers such as GCC,
and are analysed by our tool to get the wv

weighting parameters. Each basic block between
the etp dependency directive and the etp end
one (etp stands for “execution time prediction”)
depends on the specified inputs (size attribute
in the example above).

3 Implementation and
Performances

In order to experiment our hybrid prediction
method, we use an MPI application which
performs particle filtering [15]. This parallel
application is designed using a master/slave
model. The master task role is to synchronize the
slaves, and to collect the information they have
computed. The particles are equally distributed
over the slaves, so that each slave is responsible
of the evolution of a set of particles over the time.

Different runs of the application point out that
the execution time of the master task is always
less than 0.5 second (in term of CPU time), and
can be neglected in comparison with the execution
time of slave tasks. The CPU time of the slaves
mainly depends on two parameters: the number
of particles and the number of time intervals
considered (which is equivalent to the number
of iterations of the particle filtering algorithm).
For a given number of particles, the number of
computational nodes (and thus of slaves) has an
impact on the execution time, since the particles

are equally shared out between the different
slaves. The slaves are identical tasks, so each of
them has the same CPU time.

The figure 2 shows the evolution of the
execution time of slave tasks in function of the
program inputs (the number of time intervals
and the global number of particles for the whole
program). We can notice that the number of
particles and of time intervals have the same effect
on CPU time, regardless of the number of tasks.
However, if the number of slave tasks is multiplied
by 3, the number of particles per slave is divided
by 3, and so is the execution time of each task.
Thus, the number of tasks of the application is
also considered as an input.
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Figure 2: Execution time of a slave task for
different input values

The first step of the work is to create an
experience base. In production environments,
the base would be continuously filled with each
executed job. By consequence, jobs have two
successive states: first, they are considered as
queries, in order to get a prediction of their
execution time; then, they are executed, and
profiled at the same time by gprof and gcov in
order to become a new experience that will be
stored into the database.



In this work, those two phases are completely
separated. First, the experience base is created
and filled with a set of experiences. Then,
time predictions are performed for another set of
random runs, and compared with measured times.

The goal of the learning phase is to determine
the execution time of each basic block, and also
to store into the database associations between
inputs and execution counts of the different basic
blocks. The application is run several times,
with different input sets, i.e. with different
numbers of computational nodes used (and so
different numbers of slave tasks), and also with
different number of particles and time intervals
considered. The inputs are chosen in order to be
the most representative as possible by covering
the whole input space. The lowest number of
runs is determined to be sufficient to solve the
linear equation system (one run corresponds to
an equation), and thus depends on the program
structure, more precisely on the number of basic
blocks per function of the program.

The next step is to compute a solution for
each equation system obtained. The unknowns
determined here correspond to the execution time
of each basic block of the program. The systems
are ill-conditioned, and their resolution requires
non-standard methods. We have designed an
algorithm of resolution which solve the system by
successive iterations. At each iteration, a well-
conditioned system is solved. An artificial error
is introduced in the system in order to have a
convergence towards a potential solution since
the ill-conditioning of the system leads to a non-
convergence.

At this point, the experience base contains all
that is required to make predictions of execution
times. In order to validation the hybrid approach
introduced in this paper, several runs of the
application for different inputs will be studied.
For each of them, the execution time will be
predicted using our approach, and then it will be
measured. The inputs are chosen to cover the
entire input space in terms of number of tasks,
particles and time intervals. Most inputs used
in these runs differ from the ones used during
the learning phase. Nevertheless, some inputs are
used in both kinds of runs because this case can
actually be encountered.

The figure 3 shows the difference between
predicted and measured execution times for
different inputs. We can observe that these two
values are very closed. The difference between

them varies from 0.4% to 17,6%, with a mean
value which is equal to 5,3%. The error between
predicted and measured values is directly related
to the distance between the query and the closest
experiences stored in the database. Such results
are quiete acceptable, since this approach is not
designed to be used in real-time context.
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Figure 3: Predicted and measured execution
times for different inputs

4 Conclusion and Future
Directions

In this paper, an hybrid method for execution
time prediction has been presented. It combines
profile-based prediction techniques with historic-
based ones, and mainly aims to provides
scheduling algorithms with information about
the submitted applications to schedule. In
this approach, the application is divided into
a set of basic blocks, for which execution time
is considered constant and independant from
the inputs. Nevertheless, their execution count
depends on the inputs, and it will have a
significant impact over the application execution
time.

The first step of the hybrid method is
to compute the execution time of each basic
block. This is done by solving linear equation
systems obtained with previous executions of the
application profiled by the gprof and gcov tools
for different inputs. Then, the goal of the second
step is to estimate the execution count of each
block using locally weighted learning techniques.
Annotations of the source code can be used to
improve the accuracy of the prediction.

Our hybrid method for execution time
prediction has been tested over an MPI parallel
application, which performs particle filtering.



Good results are obtained since a comparison
between predicted execution time and measured
execution time shows that these two values are
relatively closed: a mean difference of 5.3% has
been observed between them for the experiences
that have been carried out in this paper.

In a next future, the accuracy of the results can
be improved by taking in account optimization
mechanisms of modern processors, such as caches
and pipelines. We also think about analysing
object code instead of source code to determine
the basic blocks, which will result in a more
accurate determination of the basic blocks,
corresponding exactly to what the processor
executes. Finally, other distance functions, such
as Minkowsky distance or Manhattan one, and
other weighting functions will be tried in order to
evaluate their impact on the estimations.
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