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Abstract. Hybrid methods were developed for improving the Gauss-Newton method
in the case of large residual or ill-conditioned nonlinear least squares. These methods
are usually used in the form suitable for dense problems. But some old approaches
are unsuitable and some new possibilities appear in the sparse case. We propose
efficient hybrid methods for various representations of the sparse problems. After
describing basic ideas that serves for deriving new hybrid methods, we are concerned
with designing hybrid methods for sparse Jacobian, partitioned Hessian and sparse
Hessian representations of the least squares problems. Efficiency of hybrid methods is
demonstrated by extensive numerical experiments.
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1. Introduction

Let f; : R* — R, 1 <1 <r, be real-valued functions with continuous second order
derivatives on an open set X C R". Let us denote

F(e) = 3 30 ) = 5/ () (11)

where f(z) = [fi(z),..., f(z)]T. We are concerned with finding a local minimum
" € X of the function F' : R* — R given by (1.1) i.e. a point * € X that satisfies
the inequality F'(2*) < F(x) Vo € B(a*,¢) for some ¢ > 0, where B(a*,¢) = {z € X
|| @ —a*||< e} C X is an open ball contained in X C R".

If we denote ¢;(x) and G;(x) the gradients and the Hessian matrices of the functions
fi: R — R, 1 <i < r, respectively, and g(x) and G(x) the gradient and the Hessian
matrix of the function F': R" — R respectively, then using (1.1), we obtain



o) = X0 o) = I ) f(2) (12

and

T T

G(x) =Y gila)g] (x) + D filz)Gi(x) = T (x)J(x) + S(x) (1.3)
=1 =1
where J(z) = [g1(2), ..., g.(z)]T is the Jacobian matrix of f(z) = [fi(2),..., fr(2)]F
and S(x) is the second order term. Numerical methods for local minimization of the
objective function F': R* — R are usually derived from the Newton method. These
methods are iterative and their iteration step has the form

2T =24+ ad

where z and 2t are old and new vectors of variables respectively, o is a stepsize
parameter and d is a direction vector which approximately minimizes the quadratic
function

Q(d) = %dTBd +g7d (1.4)

over some subset of R". Here B = B(x) is an approximation of the Hessian matrix
G/(z) and g = g(x) is the gradient given by (1.2). There are three basic possibilities
concerning how the matrix B in (1.4) can be constructed. The first possibility is the
Newton method (or modified Newton method) defined by the substitution B(x) =
G/(x). This method is usually quadratically convergent, but it requires second order
derivatives computed either analytically or numerically. Moreover the Hessian matrix
G/(x) can be indefinite which implies difficulties connected with its factorization and
with descent direction determination.

The second possibility leads to the so-called quasi-Newton methods which use an
arbitrary positive definite matrix in the first iteration and which generate subsequent
matrices by simple quasi-Newton updates [16]. The main advantage of this approach
is its general applicability (the objective function F': R* — R cannot have the special
form (1.1)) and the fact that the matrix B(x) can be kept positive definite.

The third possibility is based on the special form (1.1) of the objective function
F: R* — R and it consists in the substitution

B@zﬂuM@=§MMﬂm (1.5)

One reason for this choice is the fact that often F'(2*) = 0 so that the second term of
(1.3) is negligible in B(x*,¢). Another reason follows from the linearization of (1.1).
In this case
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with B given by (1.6). The method which uses the matrix (1.5) instead of the Hessian
matrix G(z) is called the Gauss-Newton (or modified Gauss-Newton) method [13].
The main advantage of the Gauss-Newton method is its quadratic convergence for
zero-residual problems. Convergence of the Guass-Newton method is usually faster
then convergence of the quasi-Newton methods, but this advantage can be lost for
large-residual or ill-conditioned problems.

Besides the above three possibilities there exist their various combinations (see [1],
2], [3], [8], [10], [11], [17]). These so-called hybrid methods are of prime interest to us
and they are investigated in the subsequent parts of this contribution.

All the above methods can be realized in two different forms using either the line
search strategy or the trust region strategy. A typical iteration step of the line search
strategy has the following form.

(L1) Direction determination. Choose d € R" so that

| Bd+g||<w] gl (1.6)

and

—gtd=c |l gllld] (1.7)

where 0 < w < w < 1, &9 > 0 (w and £y do not depend on the iteration step),
g =g¢(x) and B = B(x).

(L2) Stepsize selection. Choose a > 0 so that

Fle+ad) — F < fagld (1.8a)

and

g (x + ad)d > &597d (1.8b)

where 0 < &y < 1/2, &; < &, < 1 (&1 and &3 do not depend on the iteration step)
F = F(z) and g = g(x). Finally set

T —x+ad (1.9)



If the conditions (1.6) and (1.7) cannot be satisfied simultaneously, we must change
the matrix B (restart).

The line search strategy is very convenient for the quasi-Newton methods that
generate matrices which are usually positive definite and well-conditioned. A different
situation appears for the Gauss-Newton method since the matrix given by (1.5) is still
positive semidefinite but very often ill-conditioned even a singular. In this case, the
direction vector d € R" can have a rather large euclidean norm and, moreover, it can
be almost orthogonal to the gradient g. Therefore, too many line search steps can
appear for satisfying (1.8) and, moreover, frequent restarts may occur due to violation
of (1.7). Similar difficulties arise for the Newton method since the Hessian matrix
G/(x) can be indefinite and, therefore, (1.7) may be violated again. More details about
the line search strategy can be found in [16]. Our implementation is described in [25].

A typical iteration step of the trust region strategy has the following form.

(T1) Direction determination. Choose d € R" so that

I d][<A, (1.10a)
[d[<A=|Bd+g|<wl]ygl (1.10b)

and
—Q(d) =z co || g || min(|| d ][ gl /[ BI) (1.11)

where A > 0 is a trust region bound, 0 < w < w < 1, & > 0 (w and £y do not
depend on the iteration step), ¢ = g(x) and B = B(x) (Q(d) is given by (1.4)).

(T2) Stepsize selection. Set
et =x+d if Flx+d) < F(a), (1.12a)

t=g it F(e+d) > F(z). (1.12b)

X

(T3) Trust region update. Compute

_ F(z+d) - F(x)
a Q)

When p < py, then determine the value 0 < g < 1 using quadratic interpolation
and set A* = By | d || it § < ph, AT = B[ d ||l fy < B < B and A* =, || d|
if 3, < B. When p1 < p < py then set AT = A. When p, < p then set
AT = min (max(A, 3 || d||), A).

(1.13)




Here 0 < 41 < B, < 1 < 7,0 < pr <1/2, py < pa <1 and A>0 (barred constants
do not depend on the iteration step).

The trust region strategy is very advantageous in connection with both the New-
ton and the Gauss-Newton methods. The matrix (1.5) can be as indefinite as ill-
conditioned, even singular, but || d || is always defined and bounded from above ac-
cording to (1.10). The trust region strategy has strong global convergence properties
(see [35], [37]). More details about the trust region strategy can be found in [12], [31],
[34], [38], our implementation is described in [27].

All of the above considerations hold for both dense and sparse least squares prob-
lems but some of the old approaches are unsuitable and some new possibilities appear
in the sparse case. The efficiency of sparse methods depends on the problem structure
representation. There exists three basic representations.

(SJ) Sparse Jacobian representation. Let n; be the numbers of nonzero elements of
gradients g;(x) € R", 1 < ¢ < r. Denote ¢;,(x) € R™ packed gradients containing
only nonzero elements of ¢;(x) € R", ind §; € R™ vectors containing indices of
elements of g;(x) € R™ in g;(x¢) € R*", 1 < ¢ <r,and ord ¢g; = 1 + Z;;ll n;,
1 <¢<r+1. Let

g1(x) A ind gy A ord §

J(x) = v | yind J = , ord J =

gr() ind g, ord §,41

Then sparse Jacobian representation uses two numbersn, n = 3./_ n;, = ord ¢,41—
1 and three vectors J(z) € R" (real), ind J € R" (integer) and ord J € R'*!
(integer).

(PH) Partitioned Hessian representation. Denote BZ(J?) € R™*™ packed matrices
containing only nonzero elementsof B;(x) € R"*" and B;(x) € R (i =1)/2 yectors
containing only upper half parts of the symmetric matrices B;(x) € R™*™,

1 <<y, Let
) Bl(l')
B(z) = ..
B, (x)
Then partitioned Hessian representation uses three numbers n, n = >0 n,;,

= 32i_; ni(n; +1)/2 and three vectors B(l‘) € R™ (real), ind J € R (integer)
and ord J € R'™' (integer). Partitioned Hessian representation was introduced
in [22].

(SH) Sparse Hessian representation. Let m be the number of nonzero elements of
the upper half part of the matrix B(z) € R™". Denote B(x) € R™ the vector
containing rowwise ordered nonzero elements of the upper half part of the matrix



B(x) € R™™ ind B € R™ the vector containing column indices of elements of
B(z) € R™ in B(z) € R and ord B € R™ the vector with the elements
ord B; = 1+ Z;;ll m;, where m; are the numbers of nonzero elements in the
i-th row of the upper half part of the matrix B(x) € R"*", 1 < ¢ < n. Then
sparse Hessian representation uses two numbers n, m = 3>"" ;, m; = ord Bn-l—l —1
and three vectors B(z) € R™ (real), ind B € R™ (integer) and ord B € R"!
(integer).

Sparse Jacobian representation is most general but it does not make possible an
easy use of second order information. Moreover if n < r, then often m < 7, so that the
matrix operations connected with sparse Hessian representation are more economical
then those connected with the sparse Jacobian one. On the other hand, if some row of
the Jacobian matrix is dense, i.e. if n; ~ n for some 1 < < r, then the Hessian matrix
is also dense, i.e. m ~ n(n+1)/2 and since m > m, both the partitioned Hessian and
the sparse Hessian representations cannot be used. An advantage of sparse Hessian
representation against the partitioned one is the possibility of using matrix direct
methods, based on the sparse Choleski decomposition, which are, in the case of the
moderate fill-in, more efficient then matrix iterative methods. We demonstrate, in
subsequent parts of our contribution, that sparse Hessian representation is generally
more economical then the partitioned one, even if a greater number of hybrid methods
can be realized in the partitioned one.

In the sparse case, the most complicated and time consuming part of both the line
search and the trust region methods is the direction determination. There are a great
variety of ways how this operation can be realized, but since we are concentrated on
the effect of improving the Gauss-Newton method by a hybrid approach, we use only
simle ones of them.

In connection with all of the above representations, we can use iterative meth-
ods based on conjugate gradients. The basic conjugate gradient (CG) algorithm is
represented by the following iterative process:

do=0, go=y, (1.14a)
n=lawl?  p=—g0 (1.14b)
and
¢ = Bpi, 6 =p] (1.14c)
di =di—1 + %pn gi = gi-1 + %qm (1.14d)
_ 2 _ Vit
Yitr =l g I, piyr = —gi + = D (1.14e)



for « € N. Note that g; = Bd; + g for ¢« € N.

Using the substitution B = JT.J we can transform the basic conjugate gradient
algorithm to solve linear least squares problems. We obtain the so-called conjugate
gradient least squares (CGLS) algorithm (see [33] as an example) which is represented
by the following iterative process:

do == 0, g — —f, (115&)
vy =Jro, =l | (1.15b)
p1= v (1.15¢)
and
U, = in, 52 :H U; Hz, (115(1)
di=diy+ Lpi ri= i — g, (L.15¢)
6; 6;
vigr =J v i = v | (1.15f)
Yi+1

Pit1 = Vip1 +

P (1.15g)

for ¢« € N. Note that r; = —(Jd; + f) for ¢ € N. The CGLS algorithm is held to be
more stable then the CG one for linear least squares problems but, for n < r, it can
be slightly less efficient since it uses a greater number of large vectors.

Both the CG and the CGLS algorithms can be used in truncated forms proposed
in [9] for line search and in [38] for trust region strategies respectively. Our imple-
mentation is given in [27]. In connection with sparse Jacobian or sparse Hessian
representations, we can also use direct methods based on sparse QR [42] or sparse
Choleski [18] decompositions respectively. The following procedures will be used in
subsequent sections.

(LI) Line search strategy with iterative subalgorithm. Use truncated form of either
CG or CGLS algorithms [9] for computation of the direction vector (L1) in line
search strategy.

(LD) Line search strategy with direct subalgorithm. Use either sparse QR or sparse
Choleski decomposition with possible correction maintaining positive definiteness
[19] for computation of the direction vector (L1) in line search strategy.

(TT) Trust region strategy with iterative subalgorithm. Use truncated form of either
CG or CGLS algorithms [38] for computation of the direction vector (T1) in
trust region strategy.



(TD) Trust region strategy with direct subalgorithm. Use either sparse QR or sparse
Choleski decomposition together with optimum step selection [31] for computa-
tion of the direction vector (T1) in trust region strategy.

Table 1a: Test problems for nonlinear least squares.

No. | Problem noor

1 | Chained Rosenbrock function [7] 50 98 147 196 99
2 | Chained Wood function [7] 50 144 240 336 99
3 | Chained Powell singular [7] 50 96 192 288 123
4 | Chained Cragg and Levy function [7] 50 120 192 264 99
5 | Generalized Broyden tridiagonal function [7] 50 50 148 294 147
6 | Chained Broyden banded function [7] 50 50 334 1308 329
7 | Extended Freudenstein and Roth problem [24] 50 98 196 294 99
8 | Wright and Holt zero residual problem [44] 48 240 480 720 72
9 | Toint quadratic merging problem [39] 50 144 576 1440 171
10 | Chained exponential problem [24] 50 99 246 441 147

Table 1b: Test problems for nonlinear equations.

No. | Problem nor n m m
1 | Countercurrent reactors problem 1 [5] 50 50 196 484 217
2 | Countercurrent reactors problem 2 [5] 50 50 243 T17T 284
3 | Trigonometric system [40] 50 50 250 750 150
4 | Trigonometric-exponential system TRIGEXP 1 [40] 50 50 148 294 147
5 | Trigonometric-exponential system TRIGEXP 2 [40] 49 49 193 501 213
6 | Singular Broyden problem [21] 50 50 148 294 147
7 | Tridiagonal system [23] 50 50 148 294 147
8 | Five-diagonal system [23] 50 50 244 722 240
9 | Seven-diagonal system [23] 50 50 338 1324 329
10 | Structured Jacobian problem [21] 50 50 384 1685 372
11 | Extended Rosenbrock function [30] 50 50 75 100 75
12 | Extended Powell singular function [30] 48 48 96 144 96
13 | Extended Cragg and Levy function [7] 48 48 84 120 84
14 | Broyden tridiagonal function [7] 50 50 148 294 147
15 | Broyden banded function [7] 50 50 334 1308 329
16 | Extended Powell badly scaled function [30] 50 50 100 150 75
17 | Discrete boundary value problem [30] 50 50 148 294 147
18 | Modified Broyden tridiagonal problem [30] 50 50 148 294 147

This contribution is organized as follows. In section 2, we study basic ideas of
hybrid methods, namely switches for leaving the Gauss-Newton method and techniques
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for construction of the matrix B(x) in (1.4) from the second order information. In
section 3, two hybrid methods suitable for sparse Jacobian representation are proposed.
In section 4, three hybrid methods based on partitioned Hessian approximation are
studied. In section 5, three hybrid methods, based on sparse Hessian approximation,
are investigated. Finally, in section 6, useful comments based on numerical results are
presented. Numerical results were obtained using 10 test problems of nonlinear least
squares listed in [24] and 18 test problems of nonlinear equations listed in [26]. Names
and sizes of these problems are given in tables la and 1b.

Problems given in Table la are more suitable for testing our hybrid methods than
problems given in Table 1b since objective functions corresponding to nonlinear equa-
tions have nonzero local minima in many cases. Since a square Jacobian matrix,
connected with a system of nonlinear equations, is singular in nonzero local minimum,
many iterations are usually needed for finding such a point.

2. Basic ideas of hybrid methods

A typical hybrid method for nonlinear least squares is based on three ideas. The
first one is an efficient switch between the Gauss-Newton method and the method
based on a second order information. The second one is a technique for construction
of the matrix B(x) in (1.4) using a second order information. The last but not least one
is an updating technique for obtaining a second order information. We shall give more
details about the first two ideas here. The last one is the main purpose of subsequent
sections.

First let us concentrate our attention on the conditions for leaving the Gauss-
Newton method. The most simple condition of this type was proposed by Fletcher and
Xu in [17] as the condition HY2. In fact Fletcher and Xu recommended two additional
conditions HY1 and HY3 but the latter ones use values that can be computed from
the matrix decomposition only, which is impractical in the sparse case. The condition
HY?2 can be written in the following form

F—Ft<pF (2.1)

where F' and F'T are the old and the new values of the objective function respectively
and the Gauss-Newton method is left if (2.1) holds.

Another condition was introduced by Dennis and Welsch in [15]. This condition
consists in comparing two predicted reductions with the actual one and it can be
written in the following form

N P
dTg+idapd =PV Ty 1T 4

1] (2.2)
where B is a matrix containing second order information. Condition (2.2) has a

disadvantage in that two additional matrix vector products have to be computed.
Therefore, it is practical at most in connection with trust region strategy which always
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uses one of these matrix vector products. Moreover condition (2.2) cannot be used in
the case when the matrix J or J7J is overwritten, which frequently occurs.

The last condition we have tested was introduced by Ramsin and Wedin in [36].
This condition is based on the observation that the ratio || Pyf || / || Py-f~ ||, where
Py = J(JTJ)71JT, is a good estimate of the convergence rate of the Gauss-Newton
method at least in a neighborhood of the solution (f~ and J~ are quantities from the
previous iteration). A neighborhood of the solution can be detected by comparing the
values || Pyf || and || f||. If we use the Gauss-Newton step d = —(JT.J)"1JT f then
Py f = —Jd and the resulting condition has the following form

I Jd < ns |11l (2.3a)

and simultaneously

I Jd|<na || J7d™ || - (2.3b)

Condition (2.3) is applicable for direction vectors computed from the Gauss-Newton

equation JTJd = —JT f only. This limitation excludes the trust region strategy and

it 1s also partially unsuitable for truncated iterative methods like CG and CGLS.

Moreover, condition (2.3) cannot be used if the direction vector is obtained using a

second order information, so that we cannot return to the Gauss-Newton method.
The above conditions form a basis for the following switches.

(FX) The Fletcher and Xu switch. Compute the values F' and F'*. If condition (2.1)
holds, then use a second order information in the next iteration. Otherwise use
the Gauss-Newton method in the next iteration.

(DW) The Dennis and Welsch switch. Compute the values d* g + %dTBd and d” g +
%dTJTJd. If condition (2.2) holds, then use a second order information in the

next iteration. Otherwise use the Gauss-Newton method in the next iteration.

(RW) The Ramsin and Wedin switch. If a second order information was used in the
current iteration, then use it also in the next iteration. Otherwise compute the
values || Jd || and || f ||. If conditions (2.3a) and (2.3b) are satisfied, then use a
second order information in the next iteration. Otherwise use the Gauss-Newton
method in the next iteration.

We anticipate the main computational experiments now and we show the relative
efficiency of the three fore-mentioned switches. The simple BFGS update method
(SJH1), proposed in the next section, is used for this purpose. We denote SJH1/LI/FX
and SJH1/LI/RW line search methods with switches FX and RW respectively and
SJH1/TI/FX and SJH1/TI/DW trust region methods with switches FX and DW
respectively. Table 2a shows summary results for 10 least squares problems listed
in Table la. Table 2b shows summary results for 18 nonlinear equations problems
listed in Table 1b. These tables contain the total number of iterations NI, the total
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number of function evaluations NF, the total number of gradient evaluations NG,
the total computational time, the number of local solutions NI which was obtained
instead of global ones and the number of fails. The method failed when either more
than 1000 function evaluations or 500 iterations for nonlinear least squares problems
and 800 iterations for nonlinear equations respectively were required. We used the
values 7; = 0.01 for LI/FX, 53 = 0.005 and 7y = 0.5 for LI/RW, ; = 0.0001 for
TI/FX, 52 = 0.85 for TI/DW respectively. These values were obtained using extensive
numerical experiments and they are quite suitable.

Table 2a: Results for 10 nonlinear least squares problems with 50 variables.

Method NI NF NG TIME NL FAIL
SJH1/LI/FX | 402 588 583 0:34.33 - -
SJH1/LI/RW | 389 567 567 0:36.58 - -
SJH1/TI/FX | 347 465 357 0:28.89 - -
SJH1/TI/DW | 335 456 345 0:31.25 - -

Table 2b: Results for 18 nonlinear equations problems with 50 unknowns.

Method NI NF NG TIME NL FAIL
SJHI/LI/FX | 1033 1492 1492 1:40.94
SJHLI/LI/RW | 1064 1628 1628 1:40.62
SJHL/TI/FX | 1474 1785 1492 1:23.93
SJH1/TI/DW | 1438 1800 1456 1:26.50

| o o

Tables 2a and 2b show that the most simple switch FX is at least as efficient as
the more complicated and often unusable switches DW and RW. Therefore we merely
use the switch FX in the subsequent sections.

Now let us briefly describe techniques for the construction of the matrix B(x) using
a second order information. We consider the following possibilities.

(SU) Simple quasi-Newton update. If the Gauss-Newton method should be left, then
compute the matrix BT from the matrix (J*)TJ* using a quasi-Newton update,
otherwise set BY = (JT)TJ*. Similar procedure is applied to the matrix J*
when the sparse Jacobian representation is used.

(CU) Cumulative quasi-Newton update. If the Gauss-Newton method should be left,
then compute the matrix B* from the matrix B using a quasi-Newton update,
otherwise set BY = (JT)TJ*. Similar procedure is applied to the matrix J*
when the sparse Jacobian representation is used.

12



(DA) Difference approximation of the second order term. If the Gauss-Newton
method should be left, then compute an approximation of the matrix S* us-
ing differences of gradients and set Bt = (J*)TJ+ 4+ S*_ otherwise set B* =
(JH)TJ*. The matrix ST need not be stored separately since the second order
information is immediately substituted into the matrix B™.

(QA) Quasi-Newton approximation of the second order term. Compute the matrix S+
from the matrix S using a quasi-Newton update. If the Gauss-Newton method

should be left, then set B = (J*)TJT + ST, otherwise set BT = (JH)TJ*.

Note that technique QA requires two matrices B and S while techniques SU, CU, DA
uses the matrix B only.

3. Hybrid methods for sparse Jacobian representation

In this section, we propose two hybrid methods realized as simple quasi-Newton
updates (SU). The first one is based on so-called product form [6] or factorized [43]
quasi-Newton updates. We need to find the updated Jacobian matrix

JI=J" +ut (3.1)

with the vectors u € R” and v € R"™ chosen in such a way that the quasi-Newton
condition

Bts=(JNHJts =y (3.2)

is satisfied, where

s=zt—2, y=g"—g. (3.3)

There exist equivalents of the form (3.1) for all members of the convex part of the
Broyden family, but we shall restrict our attention only to the BFGS method that
corresponds to the choice

w=JVs/ | Js |, v=y/\/yTs— (I u. (3.4)

Formulas (3.1) and (3.4) form a basis for the first hybrid method which we denote

as SJHI. It consists of the update (3.1) and (3.4) which is used whenever a second

order information should be considered. This method can be used together with CG

based iterative subalgorithms LI and T1 only since we have to solve the linear equation

JYJ,d = JTf which is not equivalent to the linear least squares problem with the

objective function 1 || J,d + f ||>. Using the CG subalgorithm, we have to compute

two matrix vector products r; = Jup; = Jp; + v pu and ¢; = Jgri =Jri+ulrw (see
(1.14c¢)) which is a very easy operation.
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The next hybrid method is based on the rank one formula. Consider the augmented
linear least squares problem with the objective function 1 || J7d* + f ||* where

J;=[J+],f;=[f0+]. (3.5)

w
Then using (1.4) and (1.5) we obtain B*d* = (J*)T f* where

BY = (JHTJF = (DT + ww’ (3.6)
which together with the choice

w=(y — (I T\ s (y — (JH)TT*s) (3.7)

gives exactly the rank one quasi-Newton update. Note that (3.7) can be used only if
sy — (J*)TJ*s) > 0 which slightly restricts the use of the update (3.5).

Formulas (3.5) and (3.7) form a basis for the second hybrid method which we
denote as SJH2. It consists of the update (3.5) and (3.7) which is used whenever
a second order information should be considered and s (y — (JT)TJ*s) > 0 holds
simultaneously. This method can be used together with all subalgorithms LI, LD, TI,
TD since we can solve the linear least squares problem with the objective function
% | Jud + f. ||*. The matrix .J, differs from the matrix J only in the last row which is
of course dense.

Now we can give a computational comparison of two hybrid methods SJH1 and
SJH2 together with the sparse Jacobian Gauss-Newton method SJGN. This compar-
ison is shown in tables 3a and 3b which have the same meaning as tables 2a and 2b.
Again 10 least squares problems and 18 nonlinear equations problems given in tables
la and 1b were used. The results correspond to FX switch with the values n; = 0.01
and 77 = 0.0001 in (2.1) for line search and trust region realizations respectively.

Table 3a: Results for 10 nonlinear least squares problems with 50 variables.

Method NI NF NG TIME NL FAIL
SJGN/LI | 450 675 675 0:41.41 - -
SJH1/LI | 402 588 588 0:34.33 - -
SJH2/LI | 421 600 600 0:37.29 - -
SJGN/TI | 407 553 417 0:38.67 - -
SJH1/TT | 347 465 357 0:28.89 - -
SJH2/TT | 362 508 372 0:34.16 - -

Tables 3a and 3b show that simple quasi-Newton updates usually improve an ef-
ficiency of the Gauss-Newton method. The only exception is the first row of Table
3b, where an excelent result of the Gauss-Newton method was caused by surprising
success in obtaining nonzero local minimum of the TRIGEXP 2 problem.
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Table 3b: Results for 18 nonlinear equations problems with 50 unknowns.

Method NI NF NG TIME NL FAIL
SJGN/LI | 909 1434 1434 1:31.12
SJHI/LI | 1033 1492 1492 1:40.94
SJH2/LI | 1113 1631 1631 1:59.13
SJGN/TT | 1965 2121 1983 1:33.49
SJH1/TT | 1474 1785 1492 1:23.93
SJH2/TT | 1101 1298 1119 1:01.69

NS S RS ST
—_

4. Hybrid methods for partitioned Hessian representation

In this section, we propose three different hybrid methods. The first one is realized
as a cumulative quasi-Newton update (CU). This update is in fact the partitioned
rank-one update introduced in [22]. Let gf,1 < i < r, be new packed gradients.
Define either

2. RANA. _ DAT
(2, — Bis) (2 — Bi&) ‘ (4.1a)
B;s;)

N+ _
B =B, + T F
8 (% —
if a second order information should be considered and | §;‘F(22 - Bzéz) |> 70 or

Bf = B, (4.1b)

if a second order information should be considered and | 87 (%; — Bzéz) |< 7o or

Bt =gt(at)" (4.1¢)

K3

otherwise, where 2; = fi" g — fig; and where §; are packed vectors which contains
elements of the vector s = 2+ — 2 with indices contained in ind §;,1 < i < r. In this
way we obtain packed matrices B;", 1 < ¢ < r, which define the partitioned matrix B+
as it was shown in section 1.

Formulas (4.1) form a basis for the first hybrid method which we denote as PHHI.
In connection with the switch FX, it is exactly a partitioned variant of the HY2 hybrid
method proposed by Fletcher and Xu in [17]. We chose the rank-one update since the
matrices B;", 1 <2 <r, can be indefinite even if the matrix Bt is positive definite. In
fact we have tested some other updates, BFGS update as an example, but rank-one
update was found most efficient.

The next hybrid method is of QA type. It is based on the rank-one update applied
to the approximations G; of the packed Hessian matrices Gi(:p),l < ¢ < r. These
matrices are stored in the extra vector

15



N

like the matrices B;,1 < ¢ < r, (see section 1) and they are updated in such a way
that either

A A Ai_GiAi Ai—GiAiT
G = Gy Wi Gisilii = Gid) (4.2a)
S (yz - Gisz)
if | 87(5; — (&) |> 7o or
Gt =G, (4.2b)
otherwise, where ; = ¢ — g;, 1 <7 < r. Then we define either
B =gt ()" + 1 GE (4.2¢)
if a second order information should be considered or
BY = gHgh)" (4.2d)

otherwise. In the first iteration we set G; = [,1 <1 <r.

Formulas (4.2) form a basis for the second hybrid method which we denote as
PHH2. It is very similar to the method proposed in [8] which uses the unsymmetric
Broyden update instead of (4.2a). In fact we have tested some other updates instead
of (4.2a) but rank-one update was found most efficient.

The last hybrid method is of DA type. It is based on the difference approximation
of the packed Hessian matrices using the formula

N N

3 3 3 3 1 ~ 7 7 ~ 7 7
()" GilaT)er m (e)) GFep = o ((gi(a +8ep) —gi(a™)) e+ (Gala ™ +bei) —gi(2™)) T e))

20
(4.3a)
where ¢} and €] are k-th and [-th columns of the n; dimensional unit matrix respec-
tively. Then we define either

B =g gh)" + 67 (4.3b)
if a second order information should be considered or

N

Bt =gtgh)" (4.3¢)

K3

otherwise, for 1 <1 <r.

Formulas (4.3) form a basis for the third hybrid method which we denote as PHH3.
This method is inexpensive since the current matrix G;" of the dimension n; have to
be stored and n; gradients have to be computed only for 1 < ¢ < r. Let ny., =
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max(n;, 1 < ¢ <r)and n =Y, n;. Then we need to store an extra vector of the
dimension npaz(Nmer + 1)/2 and we need to evaluate n/r equivalent gradients.

Now we can give computational comparison of three hybrid methods PHH1, PHH2,
PHH3 together with the partitioned Hessian variants of the modified Newton PHMN,
quasi-Newton PHQN, Gauss-Newton PHGN methods respectively (the PHMN method
was realized using gradient differences and the PHQN method was realized as the
partitioned rank-one update). This comparison is shown in tables 4a and 4b which
have the same meaning as tables 2a and 2b. Again 10 least squares problems and
18 nonlinear equations problems given in tables la and 1b were used. The results
correspond to FX switch with values i; = 0.005 and 7; = 0.0001 in (2.1) for line search
and trust region realizations respectively (PHH3 method used the value 7; = 0.005 in
all the cases).

Table 4a: Results for 10 nonlinear least squares problems with 50 variables.

Method NI NF NG TIME NL FAIL
PHMN/LI | 380 537 1694 1:09.65 - -
PHQN/LI | 673 1074 1074 0:55.86 - -
PHGN/LI | 441 629 629 0:38.95 - -
PHH1/LI | 378 497 778 0:29.66 - -
PHH2/LI | 360 446 446 0:33.51 - -
PHH3/LI | 354 482 1080 0:38.06 - -
PHMN/TI | 296 336 956 0:58.68 - -
PHQN/TI | 1068 1332 1332 1:25.30 - 1
PHGN/TI | 411 563 421 0:40.64 - -
PHH1/TT | 341 417 351 0:29.82 - -
PHH2/TT | 267 345 277 0:28.94 - -
PHH3/TT | 249 275 402 0:26.42 - -

17



Table 4b: Results for 18 nonlinear equations problems with 50 unknowns.

Method NI NF NG TIME NL FAIL
PHMN/LI | 839 1282 4937 1:53.37
PHQN/LI | 1263 1992 1992 1:31.51
PHGN/LI | 1165 1887 1887 2:52.58
PHH1/LI 768 979 1555 1:12.17
PHH2/LI 70 984 984  1:24.31
PHH3/LI 749 1182 2617 1:19.42
PHMN/TI | 767 869 3372 1:51.61
PHQN/TI | 2329 2798 2347 2:41.15
PHGN/TT | 1969 2141 1987 2:23.14
PHH1/TT | 902 1061 920 1:23.87
PHH2/TT | 768 871 786 1:21.18
PHH3/TT | 670 744 1076 1:09.65

NS SO SO SN 1S TS (IS R

Tables 4a and 4b show that the proposed hybrid methods considerably outperform
pure ones, especially in connection with trust region strategy.

5. Hybrid methods for sparse Hessian representation

In this section, we propose three different hybrid methods. The first one is realized
as a cummulative quasi-Newton update (CU). This update is in fact the sparse Marwill
update introduced in [29]. Denote P, € R"*" 1 <1 < n, diagonal matrices such that
e;FPiej =01if e?Bei = 0 and e;FPiej = 1 otherwise, for 1 < 5 < n. Then P; is the
orthogonal projection matrix which projects any vector to the subspace of vectors
having the same sparse structure as the ¢-th row of the matrix B. Define

Ut =B+ i((PZ»S)TPZ'S)Te;fF(y — Bs)ei(Pis)T (5.1a)

where U™ is an unsymmetric matrix which has the same sparsity pattern as the matrix
B and where a' is a pseudoinverse of a (a" = 0 if a = 0 and a' = 1/a otherwise). Then
we set either

1
Bt = 5(U+ + (U (5.1b)
if a second order information should be considered or

Bt = (JHlJt (5.1¢)

otherwise.
Formulas (5.1) form a basis for the first hybrid method which we denote SHHI.
In connection with the switch FX, it is exactly a sparse variant of the HY2 hybrid
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method proposed by Fletcher and Xu in [17]. We chose the Marwill update since it
was found to be best among all sparse updates we have tested. This observation is
also mentioned in [14] and [41].

The next hybrid method, which we denote SHH2, is exactly a sparse variant of the
method PHH2 described in the previous section. This method uses the formulas (4.2)
again, but the matrices B;", 1 <@ < r, are not stored, they are directly added into the
sparse structure B*. The SSH2 method is not suitable when we are limited by the
storage since the partitioned structure G+ have to be stored.

The last hybrid method, which we denote SHH3, is exactly a sparse variant of
the method PHH3 described in the previous section. This method uses the formulas
(4.3) again, but the matrices B;",l <1 < r, are not stored, they are directly added
into the sparse structure BT. Note that the SSH3 method do not use any partitioned
structure, it needs an extra vector of the dimension 1,4, (e + 1)/2 only.

Now we can give a computational comparison of the three hybrid methods SHH1,
SHH2, SHH3 together with the sparse Hessian variants of the modified Newton SHMN,
quasi-Newton SHQN, Gauss-Newton SHGN methods respectively (the SHMN method
was realized using gradient differences and the SHQN method was realized as the
sparse Marwill update). This comparison is shown in tables 4a and 4b which have the
same meaning as tables 2a and 2b. Again 10 least squares problems and 18 nonlinear
equations problems given in tables la and 1b were used. The results correspond to FX
switch with values 77; = 0.01 and 7; = 0.0001 in (2.1) for line search and trust region
realizations respectively (SHH3 method used the value 7; = 0.005 in all the cases).
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Table 5a: Results for 10 nonlinear least squares problems with 50 variables.

Method NI NF NG TIME NL FAIL
SHMN/LI | 304 419 1380 0:55.75 - -
SHQN/LI 870 1298 1298 0:44.55 1 -
SHGN/LI 500 733 733 0:37.41 - -
SHH1/LI 423 576 818 0:23.12 - -
SHH2/LI 339 457 457  0:26.25 - -
SHH3/LI 313 451 968  0:29.61 -
SHMN/LD | 263 456 1339 0:54.76 1 -
SHQN/LD | 1569 3338 3338 1:45.74 1
SHGN/LD | 841 1377 1377 0:53.55 - -
SHH1/LD 308 518 704 0:17.90 - -
SHH2/LD 226 387 387 0:20.54 -
SHH3/LD 206 396 700 0:24.55 1 -
SHMN/TT | 299 345 966 0:50.20 - -
SHQN/TI | 1226 1584 1236 1:03.27 1 -
SHGN/TI | 467 638 477 0:30.32 - -
SHH1/TI 347 471 357  0:19.06 - -
SHH2/TI 297 372 307 0:24.17 - -
SHH3/TI 252 275 395 0:19.77 -
SHMN/TD | 238 291 779 0:43.22 1 -
SHQN/TD | 1596 1929 1606 2:25.16 1
SHGN/TD | 346 468 356 0:21.64 - -
SHH1/TD | 243 367 253 0:17.14 - -
SHH2/TD | 220 274 230 0:19.88 - -
SHH3/TD | 191 217 291 0:16.42 - -

Tables 4a and 4b show that the proposed hybrid methods are much more efficient
than pure ones. The only exception is the SHH1/LD method (see Table 5b) which
failed on the Powell badly scaled function. It is interesting that the simple update
variant of the SHH1/LD method was much more efficient in this case (we obtained

results NI=401, NF=646, NG=646, TIME=0:15.82, NL=1, FAIL=0). For all other

realizations (LI, TI, TD) the cumulative update variant was better.
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Table 5b: Results for 18 nonlinear equations problems with 50 unknowns.

Method NI NF NG TIME NL FAIL
SHMN/LI | 843 1356 5027 1:32.11 6 -
SHQN/LT | 2373 3595 3595 1:58.42 6 1
SHGN/LI 863 1346 1346 1:05.31 5 -
SHH1/LI 792 1012 1543 0:46.41 5 -
SHH2/LI 689 877 87T 0:52.29 5 -
SHH3/LI 704 1164 2404 0:53.28 5 -
SHMN/LD | 636 2131 5128 1:13.88 6 1
SHQN/LD | 3600 8071 8071 2:27.53 8 3
SHGN/LD | 695 1463 1463 0:39.16 2 1
SHH1/LD | 1021 1580 1877 0:29.55 2 1
SHH2/LD 405 665 665 0:23.51 2 -
SHH3/LD 316 667 1107 0:17.36 3 -
SHMN/TT | 733 825 3229 1:19.31 4 -
SHQN/TI | 4605 5334 4623 4:32.54 5 3
SHGN/TI | 1970 2159 1988 1:25.85 4 1
SHH1/TI 856 994 874 0:46.58 4 -
SHH2/TI 827 939 845 0:38.11 4 -
SHH3/TI 688 771 1105 0:47.18 4 -
SHMN/TD | 1184 1264 4985 2:01.22 5 1
SHQN/TD | 4282 4876 4300 7:55.00 8 3
SHGN/TD | 1797 1895 1815 2:29.46 3 1
SHH1/TD | 707 817 729 0:47.46 3 -
SHH2/TD | 462 559 480 0:47.78 3 -
SHH3/TD | 267 351 453 0:24.45 3 -

6. Conclusions

Before formulating our conclusions we need to make several comments on the im-
plementation of the above methods. All methods were implemented using modular
interactive system for universal functional optimization UFO [28]. This is an extensive
software system containing more then 1200 Fortran modules realizing basic parts of
optimization methods. For this reason all methods were realized using the same line
search or trust region strategies and with the same matrix operations. Therefore, the
results are quite comparable and they show real efficiency of individual methods.

The problems used for testing our methods are given in tables la and 1b together
with the sizes of individual representations (numbers n, r, i, 1, m). The efficiency
of the methods depended on the number of nonzero local minima (NL) in such a way
that each nonzero local minimum usually increased the total number of iterations and
function evaluations. Therefore, what is really comparable are only results with the
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same number of nonzero local minima. On the other hand, the method which gives a
lower number of nonzero local minima is more suitable for the computations. It was
pointed out in [26] that truncated CG and CGLS methods tend to find nonzero local
minima so that better results were obtained with direct methods (LD and TD).

According to the results presented in our tables and the comments stated above,
we can express several conclusions (which of course hold only for our collection of test
problems):

(C1) When both function and gradient evaluations are inexpensive then methods
based on sparse Hessian representation are most effective. It follows from the
fact that often m < n < m and, therefore, matrix operations connected with
sparse Hessian representation are most economical.

(C2) Hybrid methods considerably outperform the Gauss-Newton method. They are
sensitive to the condition for leaving the Gauss-Newton method, namely to con-
stant 7p in (2.1). Cumulative update (CU) methods are usually better than SU
methods. Simple update (SU) methods for sparse Jacobian representation could
be easily generalized as limited memory CU methods.

(C3) We do not recommend PHH2 and SHH2 methods which have greater storage
requirements and are not more efficient than PHH1, PHH3 and SHH1, SHH3
methods respectively. The PHH3 and SHH3 methods are very effective, espe-
cially in connection with trust region strategy, when gradient evaluations are not
expensive.

(C4) Methods based on matrix decompositions are usually more advantageous for non-
linear equations then those based on truncated CG or CGLS subalgorithms in
the sense that they find the global minima more frequently. Matrix direct meth-
ods are also more economical then unpreconditioned matrix iterative methods,
measured by computational time, if fill-in is moderate.

Finally, let us recommend some areas for future research. First, since a condition for
leaving Gauss-Newton method is a crucial point of hybrid methods and since we have
used only a simple one, it could be useful to develop additional efficient possibilities.
Furthermore, the sparse version of the factorized quasi-Newton update SJH1 could be
studied and tested. Finally, the limited memory variants of both the SJH1 and SJH2
updates could be implemented and tested.
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