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Abstract� Hybrid methods were developed for improving the Gauss�Newton method
in the case of large residual or ill�conditioned nonlinear least squares� These methods
are usually used in the form suitable for dense problems� But some old approaches
are unsuitable and some new possibilities appear in the sparse case� We propose
e�cient hybrid methods for various representations of the sparse problems� After
describing basic ideas that serves for deriving new hybrid methods� we are concerned
with designing hybrid methods for sparse Jacobian� partitioned Hessian and sparse
Hessian representations of the least squares problems� E�ciency of hybrid methods is
demonstrated by extensive numerical experiments�
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�� Introduction

Let fi � Rn � R� � � i � r� be real�valued functions with continuous second order
derivatives on an open set X � Rn� Let us denote

F �x� 	
�



rX
i��

f�i �x� 	
�


fT �x�f�x� �����

where f�x� 	 �f��x�� ���� fr�x��T � We are concerned with nding a local minimum
x� � X of the function F � Rn � R given by ����� i�e� a point x� � X that satises
the inequality F �x�� � F �x� �x � B�x�� �� for some � � � � where B�x�� �� 	 fx � X
� k x� x� k� �g � X is an open ball contained in X � Rn�

If we denote gi�x� and Gi�x� the gradients and the Hessian matrices of the functions
fi � Rn � R� � � i � r� respectively� and g�x� and G�x� the gradient and the Hessian
matrix of the function F � Rn � R respectively� then using ������ we obtain






g�x� 	
rX

i��

fi�x�gi�x� 	 JT �x�f�x� ���
�

and

G�x� 	
rX

i��

gi�x�gTi �x� �
rX

i��

fi�x�Gi�x� 	 JT �x�J�x� � S�x� �����

where J�x� 	 �g��x�� ���� gr�x��T is the Jacobian matrix of f�x� 	 �f��x�� ���� fr�x��T

and S�x� is the second order term� Numerical methods for local minimization of the
objective function F � Rn � R are usually derived from the Newton method� These
methods are iterative and their iteration step has the form

x� 	 x� �d

where x and x� are old and new vectors of variables respectively� � is a stepsize
parameter and d is a direction vector which approximately minimizes the quadratic
function

Q�d� 	
�


dTBd� gTd �����

over some subset of Rn� Here B 	 B�x� is an approximation of the Hessian matrix
G�x� and g 	 g�x� is the gradient given by ���
�� There are three basic possibilities
concerning how the matrix B in ����� can be constructed� The rst possibility is the
Newton method �or modied Newton method� dened by the substitution B�x� 	
G�x�� This method is usually quadratically convergent� but it requires second order
derivatives computed either analytically or numerically� Moreover the Hessian matrix
G�x� can be indenite which implies di�culties connected with its factorization and
with descent direction determination�

The second possibility leads to the so�called quasi�Newton methods which use an
arbitrary positive denite matrix in the rst iteration and which generate subsequent
matrices by simple quasi�Newton updates ����� The main advantage of this approach
is its general applicability �the objective function F � Rn � R cannot have the special
form ������ and the fact that the matrix B�x� can be kept positive denite�

The third possibility is based on the special form ����� of the objective function
F � Rn � R and it consists in the substitution

B�x� 	 JT �x�J�x� 	
rX

i��

gi�x�g
T
i �x�� �����

One reason for this choice is the fact that often F �x�� 	 � so that the second term of
����� is negligible in B�x�� ��� Another reason follows from the linearization of ������
In this case

�



F �x� d� �
�



rX
i��

�fi�x� � gTi �x�d�
� 	

	
�



rX
i��

�f�i �x� � 
fi�x�g
T
i �x�d� dT gi�x�g

T
i �x�d� 	

	 F �x� � gT �x�d�
�


dTBd 	 F �x� �Q�d�

with B given by ������ The method which uses the matrix ����� instead of the Hessian
matrix G�x� is called the Gauss�Newton �or modied Gauss�Newton� method �����
The main advantage of the Gauss�Newton method is its quadratic convergence for
zero�residual problems� Convergence of the Guass�Newton method is usually faster
then convergence of the quasi�Newton methods� but this advantage can be lost for
large�residual or ill�conditioned problems�

Besides the above three possibilities there exist their various combinations �see ����
�
�� ���� ���� ����� ����� ������ These so�called hybrid methods are of prime interest to us
and they are investigated in the subsequent parts of this contribution�

All the above methods can be realized in two di�erent forms using either the line
search strategy or the trust region strategy� A typical iteration step of the line search
strategy has the following form�

�L�� Direction determination� Choose d � Rn so that

k Bd� g k� � k g k �����

and

�gTd � ��� k g kk d k �����

where � � � � �� � �� ��� � � ��� and ��� do not depend on the iteration step��
g 	 g�x� and B 	 B�x��

�L
� Stepsize selection� Choose � � � so that

F �x� �d�� F � ����g
Td ����a�

and

gT �x� �d�d � ���gTd ����b�

where � � ��� � �	
� ��� � ��� � � ���� and ��� do not depend on the iteration step�
F 	 F �x� and g 	 g�x�� Finally set

x� 	 x� �d �����

�



If the conditions ����� and ����� cannot be satised simultaneously� we must change
the matrix B �restart��

The line search strategy is very convenient for the quasi�Newton methods that
generate matrices which are usually positive denite and well�conditioned� A di�erent
situation appears for the Gauss�Newton method since the matrix given by ����� is still
positive semidenite but very often ill�conditioned even a singular� In this case� the
direction vector d � Rn can have a rather large euclidean norm and� moreover� it can
be almost orthogonal to the gradient g� Therefore� too many line search steps can
appear for satisfying ����� and� moreover� frequent restarts may occur due to violation
of ������ Similar di�culties arise for the Newton method since the Hessian matrix
G�x� can be indenite and� therefore� ����� may be violated again� More details about
the line search strategy can be found in ����� Our implementation is described in �
���

A typical iteration step of the trust region strategy has the following form�

�T�� Direction determination� Choose d � Rn so that

k d k� �� �����a�

k d k� � 		k Bd� g k� � k g k �����b�

and

�Q�d� � ��� k g k min�k d k� k g k 	 k B k� ������

where � � � is a trust region bound� � � � � �� � �� ��� � � ��� and ��� do not
depend on the iteration step�� g 	 g�x� and B 	 B�x� �Q�d� is given by �������

�T
� Stepsize selection� Set

x� 	 x� d if F �x� d� � F �x�� ����
a�

x� 	 x if F �x� d� � F �x�� ����
b�

�T�� Trust region update� Compute


 	
F �x� d� � F �x�

Q�d�
� ������

When 
 � �
�� then determine the value � � � � � using quadratic interpolation
and set �� 	 ��� k d k if � � ���� �� 	 � k d k if ��� � � � ��� and �� 	 ��� k d k
if ��� � �� When �
� � 
 � �
� then set �� 	 �� When �
� � 
 then set
�� 	 min �max��� ��� k d k�� ����

�



Here � � ��� � ��� � � � ���� � � �
� � �	
� �
� � �
� � � and �� � � �barred constants
do not depend on the iteration step��

The trust region strategy is very advantageous in connection with both the New�
ton and the Gauss�Newton methods� The matrix ����� can be as indenite as ill�
conditioned� even singular� but k d k is always dened and bounded from above ac�
cording to ������� The trust region strategy has strong global convergence properties
�see ����� ������ More details about the trust region strategy can be found in ��
�� �����
����� ����� our implementation is described in �
���

All of the above considerations hold for both dense and sparse least squares prob�
lems but some of the old approaches are unsuitable and some new possibilities appear
in the sparse case� The e�ciency of sparse methods depends on the problem structure
representation� There exists three basic representations�

�SJ� Sparse Jacobian representation� Let ni be the numbers of nonzero elements of
gradients gi�x� � Rn� � � i � r� Denote �gi�x� � Rni packed gradients containing
only nonzero elements of gi�x� � Rn� ind �gi � Rni vectors containing indices of
elements of �gi�x� � Rni in gi�x� � Rn� � � i � r� and ord �gi 	 � �

Pi��
j�� ni�

� � i � r � �� Let

�J�x� 	

�
�� �g��x�

� � �
�gr�x�

�
�� � ind �J 	

�
�� ind �g�

� � �
ind �gr

�
�� � ord �J 	

�
�� ord �g�

� � �
ord �gr��

�
�� �

Then sparse Jacobian representation uses two numbers n� �n 	
Pr

i�� ni 	 ord �gr���
� and three vectors �J�x� � R�n �real�� ind �J � R�n �integer� and ord �J � Rr��

�integer��

�PH� Partitioned Hessian representation� Denote �Bi�x� � Rni�ni packed matrices
containing only nonzero elements ofBi�x� � Rn�n and �Bi�x� � Rni�ni����� vectors
containing only upper half parts of the symmetric matrices �Bi�x� � Rni�ni �
� � i � r� Let

�B�x� 	

�
��

�B��x�
� � �
�Br�x�

�
�� �

Then partitioned Hessian representation uses three numbers n� �n 	
Pr

i�� ni�
�m 	

Pr
i�� ni�ni���	
 and three vectors �B�x� � R �m �real�� ind �J � R�n �integer�

and ord �J � Rr�� �integer�� Partitioned Hessian representation was introduced
in �

��

�SH� Sparse Hessian representation� Let �m be the number of nonzero elements of
the upper half part of the matrix B�x� � Rn�n� Denote �B�x� � R 	m the vector
containing rowwise ordered nonzero elements of the upper half part of the matrix

�



B�x� � Rn�n� ind �B � R 	m the vector containing column indices of elements of
�B�x� � R 	m in B�x� � Rn�n and ord �B � Rn�� the vector with the elements
ord �Bi 	 � �

Pi��
j��mi� where mi are the numbers of nonzero elements in the

i�th row of the upper half part of the matrix B�x� � Rn�n� � � i � n� Then
sparse Hessian representation uses two numbers n� �m 	

Pn
i��mi 	 ord �Bn��� �

and three vectors �B�x� � R 	m �real�� ind �B � R 	m �integer� and ord �B � Rn��

�integer��

Sparse Jacobian representation is most general but it does not make possible an
easy use of second order information� Moreover if n
 r� then often �m
 �n� so that the
matrix operations connected with sparse Hessian representation are more economical
then those connected with the sparse Jacobian one� On the other hand� if some row of
the Jacobian matrix is dense� i�e� if ni � n for some � � i � r� then the Hessian matrix
is also dense� i�e� �m � n�n���	
 and since �m � �m� both the partitioned Hessian and
the sparse Hessian representations cannot be used� An advantage of sparse Hessian
representation against the partitioned one is the possibility of using matrix direct
methods� based on the sparse Choleski decomposition� which are� in the case of the
moderate ll�in� more e�cient then matrix iterative methods� We demonstrate� in
subsequent parts of our contribution� that sparse Hessian representation is generally
more economical then the partitioned one� even if a greater number of hybrid methods
can be realized in the partitioned one�

In the sparse case� the most complicated and time consuming part of both the line
search and the trust region methods is the direction determination� There are a great
variety of ways how this operation can be realized� but since we are concentrated on
the e�ect of improving the Gauss�Newton method by a hybrid approach� we use only
simle ones of them�

In connection with all of the above representations� we can use iterative meth�
ods based on conjugate gradients� The basic conjugate gradient �CG� algorithm is
represented by the following iterative process�

d� 	 �� g� 	 g� �����a�

�� 	k g� k�� p� 	 �g� �����b�

and

qi 	 Bpi� i 	 pTi qi� �����c�

di 	 di�� �
�i
i
pi� gi 	 gi�� �

�i
i
qi� �����d�

�i�� 	k gi k�� pi�� 	 �gi �
�i��
�i

pi �����e�

�



for i � N � Note that gi 	 Bdi � g for i � N �
Using the substitution B 	 JTJ we can transform the basic conjugate gradient

algorithm to solve linear least squares problems� We obtain the so�called conjugate
gradient least squares �CGLS� algorithm �see ���� as an example� which is represented
by the following iterative process�

d� 	 �� r� 	 �f� �����a�

v� 	 JTr�� �� 	k v� k
�� �����b�

p� 	 v� �����c�

and

ui 	 Jpi� i 	k ui k�� �����d�

di 	 di�� �
�i
i
pi� ri 	 ri�� �

�i
i
ui� �����e�

vi�� 	 JTri� �i�� 	k vi�� k�� �����f�

pi�� 	 vi�� �
�i��
�i

pi �����g�

for i � N � Note that ri 	 ��Jdi � f� for i � N � The CGLS algorithm is held to be
more stable then the CG one for linear least squares problems but� for n 
 r� it can
be slightly less e�cient since it uses a greater number of large vectors�

Both the CG and the CGLS algorithms can be used in truncated forms proposed
in ��� for line search and in ���� for trust region strategies respectively� Our imple�
mentation is given in �
��� In connection with sparse Jacobian or sparse Hessian
representations� we can also use direct methods based on sparse QR ��
� or sparse
Choleski ���� decompositions respectively� The following procedures will be used in
subsequent sections�

�LI� Line search strategy with iterative subalgorithm� Use truncated form of either
CG or CGLS algorithms ��� for computation of the direction vector �L�� in line
search strategy�

�LD� Line search strategy with direct subalgorithm� Use either sparse QR or sparse
Choleski decomposition with possible correction maintaining positive deniteness
���� for computation of the direction vector �L�� in line search strategy�

�TI� Trust region strategy with iterative subalgorithm� Use truncated form of either
CG or CGLS algorithms ���� for computation of the direction vector �T�� in
trust region strategy�

�



�TD� Trust region strategy with direct subalgorithm� Use either sparse QR or sparse
Choleski decomposition together with optimum step selection ���� for computa�
tion of the direction vector �T�� in trust region strategy�

Table 
a� Test problems for nonlinear least squares�

No� Problem n r �n �m �m
� Chained Rosenbrock function ��� �� �� ��� ��� ��

 Chained Wood function ��� �� ��� 
�� ��� ��
� Chained Powell singular ��� �� �� ��
 
�� �
�
� Chained Cragg and Levy function ��� �� �
� ��
 
�� ��
� Generalized Broyden tridiagonal function ��� �� �� ��� 
�� ���
� Chained Broyden banded function ��� �� �� ��� ���� �
�
� Extended Freudenstein and Roth problem �
�� �� �� ��� 
�� ��
� Wright and Holt zero residual problem ���� �� 
�� ��� �
� �

� Toint quadratic merging problem ���� �� ��� ��� ���� ���
�� Chained exponential problem �
�� �� �� 
�� ��� ���

Table 
b� Test problems for nonlinear equations�

No� Problem n r �n �m �m
� Countercurrent reactors problem � ��� �� �� ��� ��� 
��

 Countercurrent reactors problem 
 ��� �� �� 
�� ��� 
��
� Trigonometric system ���� �� �� 
�� ��� ���
� Trigonometric�exponential system TRIGEXP � ���� �� �� ��� 
�� ���
� Trigonometric�exponential system TRIGEXP 
 ���� �� �� ��� ��� 
��
� Singular Broyden problem �
�� �� �� ��� 
�� ���
� Tridiagonal system �
�� �� �� ��� 
�� ���
� Five�diagonal system �
�� �� �� 
�� �

 
��
� Seven�diagonal system �
�� �� �� ��� ��
� �
�
�� Structured Jacobian problem �
�� �� �� ��� ���� ��

�� Extended Rosenbrock function ���� �� �� �� ��� ��
�
 Extended Powell singular function ���� �� �� �� ��� ��
�� Extended Cragg and Levy function ��� �� �� �� �
� ��
�� Broyden tridiagonal function ��� �� �� ��� 
�� ���
�� Broyden banded function ��� �� �� ��� ���� �
�
�� Extended Powell badly scaled function ���� �� �� ��� ��� ��
�� Discrete boundary value problem ���� �� �� ��� 
�� ���
�� Modied Broyden tridiagonal problem ���� �� �� ��� 
�� ���

This contribution is organized as follows� In section 
� we study basic ideas of
hybrid methods� namely switches for leaving the Gauss�Newton method and techniques

�



for construction of the matrix B�x� in ����� from the second order information� In
section �� two hybrid methods suitable for sparse Jacobian representation are proposed�
In section �� three hybrid methods based on partitioned Hessian approximation are
studied� In section �� three hybrid methods� based on sparse Hessian approximation�
are investigated� Finally� in section �� useful comments based on numerical results are
presented� Numerical results were obtained using �� test problems of nonlinear least
squares listed in �
�� and �� test problems of nonlinear equations listed in �
��� Names
and sizes of these problems are given in tables �a and �b�

Problems given in Table �a are more suitable for testing our hybrid methods than
problems given in Table �b since objective functions corresponding to nonlinear equa�
tions have nonzero local minima in many cases� Since a square Jacobian matrix�
connected with a system of nonlinear equations� is singular in nonzero local minimum�
many iterations are usually needed for nding such a point�

	� Basic ideas of hybrid methods

A typical hybrid method for nonlinear least squares is based on three ideas� The
rst one is an e�cient switch between the Gauss�Newton method and the method
based on a second order information� The second one is a technique for construction
of the matrixB�x� in ����� using a second order information� The last but not least one
is an updating technique for obtaining a second order information� We shall give more
details about the rst two ideas here� The last one is the main purpose of subsequent
sections�

First let us concentrate our attention on the conditions for leaving the Gauss�
Newton method� The most simple condition of this type was proposed by Fletcher and
Xu in ���� as the condition HY
� In fact Fletcher and Xu recommended two additional
conditions HY� and HY� but the latter ones use values that can be computed from
the matrix decomposition only� which is impractical in the sparse case� The condition
HY
 can be written in the following form

F � F� � ���F �
���

where F and F� are the old and the new values of the objective function respectively
and the Gauss�Newton method is left if �
��� holds�

Another condition was introduced by Dennis and Welsch in ����� This condition
consists in comparing two predicted reductions with the actual one and it can be
written in the following form

j
F� � F

dT g � �
�
dTBd

� � j� ��� j
F� � F

dT g � �
�
dTJTJd

� � j �
�
�

where B is a matrix containing second order information� Condition �
�
� has a
disadvantage in that two additional matrix vector products have to be computed�
Therefore� it is practical at most in connection with trust region strategy which always

��



uses one of these matrix vector products� Moreover condition �
�
� cannot be used in
the case when the matrix J or JTJ is overwritten� which frequently occurs�

The last condition we have tested was introduced by Ramsin and Wedin in �����
This condition is based on the observation that the ratio k PJf k 	 k PJ�f

� k� where
PJ 	 J�JTJ���JT � is a good estimate of the convergence rate of the Gauss�Newton
method at least in a neighborhood of the solution �f� and J� are quantities from the
previous iteration�� A neighborhood of the solution can be detected by comparing the
values k PJf k and k f k� If we use the Gauss�Newton step d 	 ��JTJ���JTf then
PJf 	 �Jd and the resulting condition has the following form

k Jd k� ��
 k f k �
��a�

and simultaneously

k Jd k� ��� k J�d� k � �
��b�

Condition �
��� is applicable for direction vectors computed from the Gauss�Newton
equation JTJd 	 �JTf only� This limitation excludes the trust region strategy and
it is also partially unsuitable for truncated iterative methods like CG and CGLS�
Moreover� condition �
��� cannot be used if the direction vector is obtained using a
second order information� so that we cannot return to the Gauss�Newton method�

The above conditions form a basis for the following switches�

�FX� The Fletcher and Xu switch� Compute the values F and F�� If condition �
���
holds� then use a second order information in the next iteration� Otherwise use
the Gauss�Newton method in the next iteration�

�DW� The Dennis and Welsch switch� Compute the values dT g � �
�d

TBd and dT g �
�
�
dTJTJd� If condition �
�
� holds� then use a second order information in the

next iteration� Otherwise use the Gauss�Newton method in the next iteration�

�RW� The Ramsin and Wedin switch� If a second order information was used in the
current iteration� then use it also in the next iteration� Otherwise compute the
values k Jd k and k f k� If conditions �
��a� and �
��b� are satised� then use a
second order information in the next iteration� Otherwise use the Gauss�Newton
method in the next iteration�

We anticipate the main computational experiments now and we show the relative
e�ciency of the three fore�mentioned switches� The simple BFGS update method
�SJH��� proposed in the next section� is used for this purpose� We denote SJH��LI�FX
and SJH��LI�RW line search methods with switches FX and RW respectively and
SJH��TI�FX and SJH��TI�DW trust region methods with switches FX and DW
respectively� Table 
a shows summary results for �� least squares problems listed
in Table �a� Table 
b shows summary results for �� nonlinear equations problems
listed in Table �b� These tables contain the total number of iterations NI� the total

��



number of function evaluations NF� the total number of gradient evaluations NG�
the total computational time� the number of local solutions NL which was obtained
instead of global ones and the number of fails� The method failed when either more
than ���� function evaluations or ��� iterations for nonlinear least squares problems
and ��� iterations for nonlinear equations respectively were required� We used the
values ��� 	 ���� for LI�FX� ��
 	 ����� and ��� 	 ��� for LI�RW� ��� 	 ������ for
TI�FX� ��� 	 ���� for TI�DW respectively� These values were obtained using extensive
numerical experiments and they are quite suitable�

Table 	a� Results for �
 nonlinear least squares problems with �
 variables�

Method NI NF NG TIME NL FAIL
SJH��LI�FX ��
 ��� ��� ������� � �
SJH��LI�RW ��� ��� ��� ������� � �
SJH��TI�FX ��� ��� ��� ��
���� � �
SJH��TI�DW ��� ��� ��� �����
� � �

Table 	b� Results for �	 nonlinear equations problems with �
 unknowns�

Method NI NF NG TIME NL FAIL
SJH��LI�FX ���� ���
 ���
 ������� � �
SJH��LI�RW ���� ��
� ��
� ������
 � �
SJH��TI�FX ���� ���� ���
 ��
���� � �
SJH��TI�DW ���� ���� ���� ��
���� � �

Tables 
a and 
b show that the most simple switch FX is at least as e�cient as
the more complicated and often unusable switches DW and RW� Therefore we merely
use the switch FX in the subsequent sections�

Now let us brie�y describe techniques for the construction of the matrixB�x� using
a second order information� We consider the following possibilities�

�SU� Simple quasi�Newton update� If the Gauss�Newton method should be left� then
compute the matrix B� from the matrix �J��TJ� using a quasi�Newton update�
otherwise set B� 	 �J��TJ�� Similar procedure is applied to the matrix J�

when the sparse Jacobian representation is used�

�CU� Cumulative quasi�Newton update� If the Gauss�Newton method should be left�
then compute the matrix B� from the matrix B using a quasi�Newton update�
otherwise set B� 	 �J��TJ�� Similar procedure is applied to the matrix J�

when the sparse Jacobian representation is used�

�




�DA� Di�erence approximation of the second order term� If the Gauss�Newton
method should be left� then compute an approximation of the matrix S� us�
ing di�erences of gradients and set B� 	 �J��TJ� � S�� otherwise set B� 	
�J��TJ�� The matrix S� need not be stored separately since the second order
information is immediately substituted into the matrix B��

�QA� Quasi�Newton approximation of the second order term� Compute the matrix S�

from the matrix S using a quasi�Newton update� If the Gauss�Newton method
should be left� then set B� 	 �J��TJ� � S�� otherwise set B� 	 �J��TJ��

Note that technique QA requires two matrices B and S while techniques SU� CU� DA
uses the matrix B only�


� Hybrid methods for sparse Jacobian representation

In this section� we propose two hybrid methods realized as simple quasi�Newton
updates �SU�� The rst one is based on so�called product form ��� or factorized ����
quasi�Newton updates� We need to nd the updated Jacobian matrix

J�
u 	 J� � uvT �����

with the vectors u � Rr and v � Rn chosen in such a way that the quasi�Newton
condition

B�s 	 �J�
u �

TJ�
u s 	 y ���
�

is satised� where

s 	 x� � x� y 	 g� � g� �����

There exist equivalents of the form ����� for all members of the convex part of the
Broyden family� but we shall restrict our attention only to the BFGS method that
corresponds to the choice

u 	 J�s	 k J�s k� v 	 y	
q
yTs� �J��Tu� �����

Formulas ����� and ����� form a basis for the rst hybrid method which we denote
as SJH�� It consists of the update ����� and ����� which is used whenever a second
order information should be considered� This method can be used together with CG
based iterative subalgorithms LI and TI only since we have to solve the linear equation
JT
u Jud 	 JTf which is not equivalent to the linear least squares problem with the

objective function �
� k Jud � f k�� Using the CG subalgorithm� we have to compute

two matrix vector products ri 	 Jupi 	 Jpi�vTpiu and qi 	 JT
u ri 	 JTri�uT riv �see

�����c�� which is a very easy operation�

��



The next hybrid method is based on the rank one formula� Consider the augmented
linear least squares problem with the objective function �

�
k J�

a d
� � f�a k

� where

J�
a 	

�
J�

w

	
� f�a 	

�
f�

�

	
� �����

Then using ����� and ����� we obtain B�d� 	 �J��Tf� where

B� 	 �J�
a �

TJ�
a 	 �J��TJ� � wwT �����

which together with the choice

w 	 �y � �J��TJ�s�	
q
sT �y � �J��TJ�s� �����

gives exactly the rank one quasi�Newton update� Note that ����� can be used only if
sT �y � �J��TJ�s� � � which slightly restricts the use of the update ������

Formulas ����� and ����� form a basis for the second hybrid method which we
denote as SJH
� It consists of the update ����� and ����� which is used whenever
a second order information should be considered and sT �y � �J��TJ�s� � � holds
simultaneously� This method can be used together with all subalgorithms LI� LD� TI�
TD since we can solve the linear least squares problem with the objective function
�
� k Jad� fa k�� The matrix Ja di�ers from the matrix J only in the last row which is
of course dense�

Now we can give a computational comparison of two hybrid methods SJH� and
SJH
 together with the sparse Jacobian Gauss�Newton method SJGN� This compar�
ison is shown in tables �a and �b which have the same meaning as tables 
a and 
b�
Again �� least squares problems and �� nonlinear equations problems given in tables
�a and �b were used� The results correspond to FX switch with the values ��� 	 ����
and ��� 	 ������ in �
��� for line search and trust region realizations respectively�

Table �a� Results for �
 nonlinear least squares problems with �
 variables�

Method NI NF NG TIME NL FAIL
SJGN�LI ��� ��� ��� ������� � �
SJH��LI ��
 ��� ��� ������� � �
SJH
�LI �
� ��� ��� �����
� � �
SJGN�TI ��� ��� ��� ������� � �
SJH��TI ��� ��� ��� ��
���� � �
SJH
�TI ��
 ��� ��
 ������� � �

Tables �a and �b show that simple quasi�Newton updates usually improve an ef�
ciency of the Gauss�Newton method� The only exception is the rst row of Table
�b� where an excelent result of the Gauss�Newton method was caused by surprising
success in obtaining nonzero local minimum of the TRIGEXP 
 problem�

��



Table �b� Results for �	 nonlinear equations problems with �
 unknowns�

Method NI NF NG TIME NL FAIL
SJGN�LI ��� ���� ���� ������
 � �
SJH��LI ���� ���
 ���
 ������� � �
SJH
�LI ���� ���� ���� ������� � �
SJGN�TI ���� 
�
� ���� ������� � �
SJH��TI ���� ���� ���
 ��
���� � �
SJH
�TI ���� �
�� ���� ������� � �

�� Hybrid methods for partitioned Hessian representation

In this section� we propose three di�erent hybrid methods� The rst one is realized
as a cumulative quasi�Newton update �CU�� This update is in fact the partitioned
rank�one update introduced in �

�� Let �g�i � � � i � r� be new packed gradients�
Dene either

�B�
i 	 �Bi �

��zi � �Bi�si���zi � �Bi�si�T

�sTi ��zi � �Bi�si�
� ����a�

if a second order information should be considered and j �sTi ��zi � �Bi�si� j� ��� or

�B�
i 	 �Bi ����b�

if a second order information should be considered and j �sTi ��zi � �Bi�si� j� ��� or

�B�
i 	 �g�i ��g

�
i �

T ����c�

otherwise� where �zi 	 f�i �g�i � fi�gi and where �si are packed vectors which contains
elements of the vector s 	 x� � x with indices contained in ind �gi� � � i � r� In this
way we obtain packed matrices �B�

i � � � i � r� which dene the partitioned matrix �B�

as it was shown in section ��
Formulas ����� form a basis for the rst hybrid method which we denote as PHH��

In connection with the switch FX� it is exactly a partitioned variant of the HY
 hybrid
method proposed by Fletcher and Xu in ����� We chose the rank�one update since the
matrices �B�

i � � � i � r� can be indenite even if the matrix �B� is positive denite� In
fact we have tested some other updates� BFGS update as an example� but rank�one
update was found most e�cient�

The next hybrid method is of QA type� It is based on the rank�one update applied
to the approximations �Gi of the packed Hessian matrices �Gi�x�� � � i � r� These
matrices are stored in the extra vector

��



�G 	

�
��

�G�

� � �
�Gr

�
��

like the matrices �Bi� � � i � r� �see section �� and they are updated in such a way
that either

�G�
i 	 �Gi �

��yi � �Gi�si���yi � �Gi�si�T

�sTi ��yi � �Gi�si�
� ���
a�

if j �sTi ��yi � �Gi�si� j� ��� or

�G�
i 	 �Gi ���
b�

otherwise� where �yi 	 �g�i � �gi� � � i � r� Then we dene either

�B�
i 	 �g�i ��g

�
i �

T � f�i
�G�
i ���
c�

if a second order information should be considered or

�B�
i 	 �g�i ��g

�
i �

T ���
d�

otherwise� In the rst iteration we set Gi 	 I� � � i � r�
Formulas ���
� form a basis for the second hybrid method which we denote as

PHH
� It is very similar to the method proposed in ��� which uses the unsymmetric
Broyden update instead of ���
a�� In fact we have tested some other updates instead
of ���
a� but rank�one update was found most e�cient�

The last hybrid method is of DA type� It is based on the di�erence approximation
of the packed Hessian matrices using the formula

�eik�
T �Gi�x

��eil � �eik�
T �G�

i e
i
l 	

�



���gi�x
��eil��gi�x

���Teik���gi�x
��eik��gi�x

���Teil�

����a�
where eik and eil are k�th and l�th columns of the ni dimensional unit matrix respec�
tively� Then we dene either

�B�
i 	 �g�i ��g

�
i �

T � f�i
�G�
i ����b�

if a second order information should be considered or

�B�
i 	 �g�i ��g

�
i �

T ����c�

otherwise� for � � i � r�
Formulas ����� form a basis for the third hybrid method which we denote as PHH��

This method is inexpensive since the current matrix �G�
i of the dimension ni have to

be stored and ni gradients have to be computed only for � � i � r� Let nmax 	

��



max�ni� � � i � r� and �n 	
Pr

i�� ni� Then we need to store an extra vector of the
dimension nmax�nmax � ��	
 and we need to evaluate �n	r equivalent gradients�

Now we can give computational comparison of three hybrid methods PHH�� PHH
�
PHH� together with the partitioned Hessian variants of the modied Newton PHMN�
quasi�Newton PHQN�Gauss�Newton PHGNmethods respectively �the PHMNmethod
was realized using gradient di�erences and the PHQN method was realized as the
partitioned rank�one update�� This comparison is shown in tables �a and �b which
have the same meaning as tables 
a and 
b� Again �� least squares problems and
�� nonlinear equations problems given in tables �a and �b were used� The results
correspond to FX switch with values ��� 	 ����� and ��� 	 ������ in �
��� for line search
and trust region realizations respectively �PHH� method used the value ��� 	 ����� in
all the cases��

Table �a� Results for �
 nonlinear least squares problems with �
 variables�

Method NI NF NG TIME NL FAIL
PHMN�LI ��� ��� ���� ������� � �
PHQN�LI ��� ���� ���� ������� � �
PHGN�LI ��� �
� �
� ������� � �
PHH��LI ��� ��� ��� ��
���� � �
PHH
�LI ��� ��� ��� ������� � �
PHH��LI ��� ��
 ���� ������� � �
PHMN�TI 
�� ��� ��� ������� � �
PHQN�TI ���� ���
 ���
 ��
���� � �
PHGN�TI ��� ��� �
� ������� � �
PHH��TI ��� ��� ��� ��
���
 � �
PHH
�TI 
�� ��� 
�� ��
���� � �
PHH��TI 
�� 
�� ��
 ��
���
 � �

��



Table �b� Results for �	 nonlinear equations problems with �
 unknowns�

Method NI NF NG TIME NL FAIL
PHMN�LI ��� �
�
 ���� ������� � �
PHQN�LI �
�� ���
 ���
 ������� � �
PHGN�LI ���� ���� ���� 
��
��� � �
PHH��LI ��� ��� ���� ���
��� � �
PHH
�LI ��� ��� ��� ��
���� � �
PHH��LI ��� ���
 
��� ������
 � �
PHMN�TI ��� ��� ���
 ������� � �
PHQN�TI 
�
� 
��� 
��� 
������ � �
PHGN�TI ���� 
��� ���� 
�
���� � �
PHH��TI ��
 ���� �
� ��
���� � �
PHH
�TI ��� ��� ��� ��
���� � �
PHH��TI ��� ��� ���� ������� � �

Tables �a and �b show that the proposed hybrid methods considerably outperform
pure ones� especially in connection with trust region strategy�

�� Hybrid methods for sparse Hessian representation

In this section� we propose three di�erent hybrid methods� The rst one is realized
as a cummulative quasi�Newton update �CU�� This update is in fact the sparse Marwill
update introduced in �
��� Denote Pi � Rn�n� � � i � n� diagonal matrices such that
eTj Piej 	 � if eTj Bei 	 � and eTj Piej 	 � otherwise� for � � j � n� Then Pi is the
orthogonal projection matrix which projects any vector to the subspace of vectors
having the same sparse structure as the i�th row of the matrix B� Dene

U� 	 B �
nX
i��

��Pis�
TPis�

yeTi �y �Bs�ei�Pis�
T ����a�

where U� is an unsymmetric matrix which has the same sparsity pattern as the matrix
B and where ay is a pseudoinverse of a �ay 	 � if a 	 � and ay 	 �	a otherwise�� Then
we set either

B� 	
�


�U� � �U��T � ����b�

if a second order information should be considered or

B� 	 �J��TJ� ����c�

otherwise�
Formulas ����� form a basis for the rst hybrid method which we denote SHH��

In connection with the switch FX� it is exactly a sparse variant of the HY
 hybrid

��



method proposed by Fletcher and Xu in ����� We chose the Marwill update since it
was found to be best among all sparse updates we have tested� This observation is
also mentioned in ���� and �����

The next hybrid method� which we denote SHH
� is exactly a sparse variant of the
method PHH
 described in the previous section� This method uses the formulas ���
�
again� but the matrices �B�

i � � � i � r� are not stored� they are directly added into the
sparse structure �B�� The SSH
 method is not suitable when we are limited by the
storage since the partitioned structure �G� have to be stored�

The last hybrid method� which we denote SHH�� is exactly a sparse variant of
the method PHH� described in the previous section� This method uses the formulas
����� again� but the matrices �B�

i � � � i � r� are not stored� they are directly added
into the sparse structure �B�� Note that the SSH� method do not use any partitioned
structure� it needs an extra vector of the dimension nmax�nmax � ��	
 only�

Now we can give a computational comparison of the three hybrid methods SHH��
SHH
� SHH� together with the sparse Hessian variants of the modied Newton SHMN�
quasi�Newton SHQN� Gauss�Newton SHGN methods respectively �the SHMN method
was realized using gradient di�erences and the SHQN method was realized as the
sparse Marwill update�� This comparison is shown in tables �a and �b which have the
same meaning as tables 
a and 
b� Again �� least squares problems and �� nonlinear
equations problems given in tables �a and �b were used� The results correspond to FX
switch with values ��� 	 ���� and ��� 	 ������ in �
��� for line search and trust region
realizations respectively �SHH� method used the value ��� 	 ����� in all the cases��

��



Table �a� Results for �
 nonlinear least squares problems with �
 variables�

Method NI NF NG TIME NL FAIL
SHMN�LI ��� ��� ���� ������� � �
SHQN�LI ��� �
�� �
�� ������� � �
SHGN�LI ��� ��� ��� ������� � �
SHH��LI �
� ��� ��� ��
���
 � �
SHH
�LI ��� ��� ��� ��
��
� � �
SHH��LI ��� ��� ��� ��
���� � �
SHMN�LD 
�� ��� ���� ������� � �
SHQN�LD ���� ���� ���� ������� � �
SHGN�LD ��� ���� ���� ������� � �
SHH��LD ��� ��� ��� ������� � �
SHH
�LD 

� ��� ��� ��
���� � �
SHH��LD 
�� ��� ��� ��
���� � �
SHMN�TI 
�� ��� ��� �����
� � �
SHQN�TI �

� ���� �
�� �����
� � �
SHGN�TI ��� ��� ��� ������
 � �
SHH��TI ��� ��� ��� ������� � �
SHH
�TI 
�� ��
 ��� ��
���� � �
SHH��TI 
�
 
�� ��� ������� � �
SHMN�TD 
�� 
�� ��� �����

 � �
SHQN�TD ���� ��
� ���� 
�
���� � �
SHGN�TD ��� ��� ��� ��
���� � �
SHH��TD 
�� ��� 
�� ������� � �
SHH
�TD 

� 
�� 
�� ������� � �
SHH��TD ��� 
�� 
�� ������
 � �

Tables �a and �b show that the proposed hybrid methods are much more e�cient
than pure ones� The only exception is the SHH��LD method �see Table �b� which
failed on the Powell badly scaled function� It is interesting that the simple update
variant of the SHH��LD method was much more e�cient in this case �we obtained
results NI	���� NF	���� NG	���� TIME	������
� NL	�� FAIL	��� For all other
realizations �LI� TI� TD� the cumulative update variant was better�


�



Table �b� Results for �	 nonlinear equations problems with �
 unknowns�

Method NI NF NG TIME NL FAIL
SHMN�LI ��� ���� ��
� ���
��� � �
SHQN�LI 
��� ���� ���� ������
 � �
SHGN�LI ��� ���� ���� ������� � �
SHH��LI ��
 ���
 ���� ������� � �
SHH
�LI ��� ��� ��� ���
�
� � �
SHH��LI ��� ���� 
��� �����
� � �
SHMN�LD ��� 
��� ��
� ������� � �
SHQN�LD ���� ���� ���� 
�
���� � �
SHGN�LD ��� ���� ���� ������� 
 �
SHH��LD ��
� ���� ���� ��
���� 
 �
SHH
�LD ��� ��� ��� ��
���� 
 �
SHH��LD ��� ��� ���� ������� � �
SHMN�TI ��� �
� �

� ������� � �
SHQN�TI ���� ���� ��
� ���
��� � �
SHGN�TI ���� 
��� ���� ��
���� � �
SHH��TI ��� ��� ��� ������� � �
SHH
�TI �
� ��� ��� ������� � �
SHH��TI ��� ��� ���� ������� � �
SHMN�TD ���� �
�� ���� 
����

 � �
SHQN�TD �
�
 ���� ���� ������� � �
SHGN�TD ���� ���� ���� 
�
���� � �
SHH��TD ��� ��� �
� ������� � �
SHH
�TD ��
 ��� ��� ������� � �
SHH��TD 
�� ��� ��� ��
���� � �

� Conclusions

Before formulating our conclusions we need to make several comments on the im�
plementation of the above methods� All methods were implemented using modular
interactive system for universal functional optimization UFO �
��� This is an extensive
software system containing more then �
�� Fortran modules realizing basic parts of
optimization methods� For this reason all methods were realized using the same line
search or trust region strategies and with the same matrix operations� Therefore� the
results are quite comparable and they show real e�ciency of individual methods�

The problems used for testing our methods are given in tables �a and �b together
with the sizes of individual representations �numbers n� r� �n� �m� �m�� The e�ciency
of the methods depended on the number of nonzero local minima �NL� in such a way
that each nonzero local minimum usually increased the total number of iterations and
function evaluations� Therefore� what is really comparable are only results with the


�



same number of nonzero local minima� On the other hand� the method which gives a
lower number of nonzero local minima is more suitable for the computations� It was
pointed out in �
�� that truncated CG and CGLS methods tend to nd nonzero local
minima so that better results were obtained with direct methods �LD and TD��

According to the results presented in our tables and the comments stated above�
we can express several conclusions �which of course hold only for our collection of test
problems��

�C�� When both function and gradient evaluations are inexpensive then methods
based on sparse Hessian representation are most e�ective� It follows from the
fact that often �m � �n � �m and� therefore� matrix operations connected with
sparse Hessian representation are most economical�

�C
� Hybrid methods considerably outperform the Gauss�Newton method� They are
sensitive to the condition for leaving the Gauss�Newton method� namely to con�
stant ��� in �
���� Cumulative update �CU� methods are usually better than SU
methods� Simple update �SU� methods for sparse Jacobian representation could
be easily generalized as limited memory CU methods�

�C�� We do not recommend PHH
 and SHH
 methods which have greater storage
requirements and are not more e�cient than PHH�� PHH� and SHH�� SHH�
methods respectively� The PHH� and SHH� methods are very e�ective� espe�
cially in connection with trust region strategy� when gradient evaluations are not
expensive�

�C�� Methods based on matrix decompositions are usually more advantageous for non�
linear equations then those based on truncated CG or CGLS subalgorithms in
the sense that they nd the global minima more frequently� Matrix direct meth�
ods are also more economical then unpreconditioned matrix iterative methods�
measured by computational time� if ll�in is moderate�

Finally� let us recommend some areas for future research� First� since a condition for
leaving Gauss�Newton method is a crucial point of hybrid methods and since we have
used only a simple one� it could be useful to develop additional e�cient possibilities�
Furthermore� the sparse version of the factorized quasi�Newton update SJH� could be
studied and tested� Finally� the limited memory variants of both the SJH� and SJH

updates could be implemented and tested�
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