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With the increasing carbon emissions worldwide, lithium-ion batteries have become the main component of energy storage
systems for clean energy due to their unique advantages. Accurate and reliable state-of-charge (SOC) estimation is a central factor
in the widespread use of lithium-ion batteries. �is review, therefore, examines the recent literature on estimating the SOC of
lithium-ion batteries using the hybrid methods of neural networks combined with Kalman �ltering (NN-KF), classifying the
methods into Kalman �lter-�rst and neural network-�rst methods.�en the hybrid methods are studied and discussed in terms of
battery model, parameter identi�cation, algorithm structure, implementation process, appropriate environment, advantages,
disadvantages, and estimation errors. In addition, this review also gives corresponding recommendations for researchers in the
battery �eld considering the existing problems.

1. Introduction

With the worldwide reduction of nonrenewable energy
sources and carbon dioxide emissions, clean energy devel-
opment has become an important theme [1–3]. Lithium-ion
batteries are gradually regarded as the most natural green
alternative to traditional fossil fuels for their high energy
density, no memory e�ect [4], long life, and environmental
protection [5]. Lithium-ion batteries are now widely used in
electric vehicles, ships, and distributed energy storage sys-
tems.With the continuous development of the smart grid, the
hybrid energy storage system consisting of lithium-ion bat-
teries and supercapacitors has become an attractive option
[6].�e continuous development of lithium-ion batteries also
achieves emission peak and carbon neutrality goals.

In contrast to conventional fossil fuels, lithium-ion
batteries also need a state parameter indicating the current
remaining energy. �erefore, the state of charge (SOC) is
proposed [7–9]. SOC is de�ned as the ratio of the current
available capacity of the battery to the maximum available

capacity. Consequently, accurate battery capacity estimation
is crucial to estimate the SOC [10–12]. By clarifying the
change in SOC, the abnormal charging capacity of the
battery can be determined, ensuring the safe operation of the
electric vehicle [13]. Meanwhile, the accurate estimation of
the battery SOC is also the basis for managing lithium-ion
batteries and understanding the battery status. However,
SOC cannot be measured directly and can only be estimated
based on the relationship between SOC and measurable
variables [14, 15]. Consequently, it is essential to establish a
reliable and accurate SOC estimation method [16].

More and more researchers are enthusiastic about es-
timating SOC using hybrid methods to improve the pre-
cision of SOC estimation. Achieving accurate SOC
estimation in natural application environments remains a
challenge due to the inconsistency of batteries in the pack
[17]. �e hybrid method combining neural network with
Kalman �lter (NN-KF) can solve the nonlinear relationship
between battery SOC and other variables by using the self-
learning ability and strong self-adaptability of neural
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network (NN) [18–20] on the one hand. On the other hand,
it is the ability to combine the fast convergence property of
the Kalman filter to achieve a real-time estimation of SOC
[21–23] and reduce the influence of noise on the results..is
review classifies this hybrid method into Kalman filter-first
method and the neural network-first method. It is promising
to apply the NN-KF hybrid method into practice as an
efficient method to obtain SOC estimates for lithium-ion
batteries.

.e remainder of this review is organized as follows:
Section 2 describes the types and characteristics of lithium-
ion battery models, the methodological flow of the .evenin
model parameter identification, and a detailed evaluation of
all methods. A detailed and comprehensive introduction to
the current framework and remarks of Kalman filter-first
methods and neural network-first methods is presented in
Section 3. Section 4 discusses the future direction from the
perspective of the current situation. Conclusion is drawn in
Section 5.

2. Modeling and Parameter Identification

SOC estimation of lithium-ion batteries requires high ac-
curacy and reliability of the model, so it is essential to use a
reasonable model and a suitable parameter identification
method to simulate the battery characteristics.

2.1. Battery Model. Establishing a battery state-space model
plays an essential role in the accurate estimation of SOC and
directly affects the accuracy of the SOC estimation. To make
the state model closer to the actual usage environment and
meet the needs of combining neural network and Kalman
filter, the battery model must be simple and compatible with
the actual situation [24]. .e standard battery models used
in the research are the .evenin and the neural network-
based models. .e following is a brief description of their
characteristics.

.evenin model has a simple structure, high accuracy,
and strong robustness even in unknown cell environments.
Figure 1(a) shows that it consists of an ideal voltage source
UOC, a series resistor R0, and a capacitor-resistor (RC)
network, where R0 represents the battery’s internal resis-
tance, and R1 and C1 are the polarization resistance and
polarization capacitance, respectively.

.e number of RC networks is changeable, and its
number represents the order of the .evenin model.
Figure 1(b) is the structural diagram of the second-order
.evenin model.

.e complex dynamic characteristics and uncertain
operating conditions make building a suitable battery model
difficult. .e results of SOC estimation under cold condi-
tions were reported to be inadequate [25–29]. Accordingly,
the .evenin model is not perfect [30]. Other suitable
battery models, such as the electrochemical-thermal deg-
radation model [31], are still needed to describe the complex
battery behavior at different ambient temperatures.

Neural network, a branch of artificial intelligence, has
been widely used for predicting outcomes based on input

data [32–35]. Compared with the .evenin model, the
neural network-based modeling method does not need to
consider the electrochemical state inside the battery.
However, it only needs to use the measurable parameters as
inputs and establish a nonlinear relationship between the
input data and the output data to construct the estimated
battery SOC model through the self-learning capability [36].

2.2. Model Parameter Identification. .evenin model pa-
rameters are susceptible to operating conditions such as
SOC levels and ambient temperature. During the use of
lithium-ion batteries, it is helpful to describe the electro-
chemical characteristics and improve the accuracy if the
model parameters can be effectively identified. Meanwhile,
the accurate identification of model parameters can facilitate
the combination of Kalman filter and neural network to
improve the accuracy of battery SOC estimation. .e
schematic diagram of the recognition process is depicted in
Figure 2.

A large number of algorithms, including genetic algo-
rithms (GA) [37], least squares (LA) [38], and hybrid pulse
power characteristic (HPPC) test [39], have been used in
recent years for parameter identification of .evenin models.

Taking the first-order.eveninmodel as an example, the
unknown parameters are R0, R1, and C1. According to
Kirchhoff’s law and analyzing the model, the following
equations can be obtained:

UOC � UL − UR − U1,

IL � C1
dU1

dt
+

U1

R1
.
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.e discrete equation is obtained according to equation
(1), as shown in the following equation:
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In the above two equations, U1 is the RC network voltage
and UL is the terminal voltage. QN is the rated capacity of the
battery and IL is the circuit current.△t is the sampling time
interval, and τ is the time constant, τ � R1C1. k is the time
parameter.

Yang et al. use GA for the first-order .evenin model to
identify the parameters [37]. GA is a global search method
formed by simulating the genetics and evolution of or-
ganisms in their natural environment. However, it cannot
use the feedback information in time, so the search speed is
slow, and it is not good enough to solve the large-scale
computation problem. In response to these problems, the
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particle swarm optimization (PSO) algorithm is favored by
many researchers because it is easier to implement and has
lower computational complexity [40].

LA is also a standard method for the identi�cation of
battery model parameters. �evenin battery model can be
considered a linear system, identi�ed by the parameter
identi�cation toolbox inMatlab/Simulink [41]. According to
the parameter �tting function in the toolbox, parameter
identi�cation can be achieved using LA. �e recursive least
squares (RLS) method is proposed to make the algorithm
relevant to the practical use environment. Compared to LS, it
can extract model parameters in real time using new
measurement data [42], signi�cantly reducing the compu-
tational and storage e�ort. Recently, Li et al. performed
discharge experiments on lithium-ion batteries and com-
bined RLS to identify R0, R1, and C1 in the battery model.
�e data from the voltage recovery stage makes it easier to
obtain the model parameters to be identi�ed with a high
degree of accuracy [43].

�e battery model is also a�ected by noise in the
natural application environment. �e RLS method is
susceptible to noise, resulting in inaccurate identi�cation

of model parameters. �e recursive total least squares
(RTLS) [44], adaptive forgetting recursive total least
squares (AF-RTLS) [45], and the Frisch scheme-based bias
compensating recursive least squares (FBCRLS) [46] have
been proposed to e�ectively suppress the model identi-
�cation errors caused by noise, which provides more
reliable SOC estimation.

A recursive least squares method with forgetting factors
(FFRLS) is also applied to the parameter identi�cation of the
�evenin model. FFRLS has faster convergence and better
tracking performance with an increased forgetting factor λ [47].
In general, the smaller λ, the better the computational �t of the
system, but themore signi�cant the ¥uctuation. So, determining
the λ value quickly is also an urgent problem to be solved.

HPPC tests can be used to determine the model pa-
rameters at di�erent temperatures and di�erent discharge
rates. Li et al. (2021) conducted several experiments and
�nally created a table of battery parameters concerning
temperature and discharge rate [39]. Experimental data
from another part also veri�ed the validity of the HPPC
method. �e appropriate methods for identifying battery
parameters are summarized in Table 1.
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Figure 2: �e process of battery parameter identi�cation.
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Figure 1: �e structure of �evenin models. (a) �evenin equivalent circuit model. (b) Second-order �evenin equivalent circuit model.
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3. State-of-Charge Estimation

3.1. Kalman Filter-First Method. .e basic idea of the Kal-
man filter-first method is that when the sensor obtains
voltage, current, and temperature measurements from the
battery, it can be iterated directly since various methods have
previously determined the battery model parameters. .e
values needed by the neural network are then computed, and
the final SOC estimation results are output by the neural
network. .e structure diagram is shown in Figure 3.

.e Kalman filtering-first method is highly resistant to
interference and suitable for SOC estimation in complex
environments, while having high robustness. However, the
method relies on an accurate battery model, and different
battery models also require reasonable methods for pa-
rameter identification.

.e traditional KF algorithm is proposed to solve the
linear problem [48–50], while the lithium-ion battery can be
considered a nonlinear system..erefore, it is hardly used in
the battery SOC estimation process. Several algorithms that
can handle nonlinear systems, such as extended Kalman
filter (EKF) and Unscented Kalman filter (UKF), are
proposed.

.e EKF linearizes nonlinear systems with Taylor series
expansions, essentially a recursive algorithm. Xu et al. used
EKF for the initial estimation of battery SOC and then used
the estimated SOC value along with voltage and current as of
the input to the long short-term memory (LSTM) network
[47]. .e model’s performance was verified at − 15°C, 0°C,
and 25°C, respectively, and the mean absolute error (MAE)
was less than 1%..e EKF-LSTMmaintains high estimation
accuracy even at very low ambient temperatures. Similarly,
EKF can be combined with the back propagation neural
network (BPNN) to estimate the battery SOC [51]..e EKF-
BP algorithm is verified by dynamic stress test (DST), Beijing
Bus Dynamic Stress Test (BBDST), and other complex
working conditions. .e estimated error is less than 1.10%.

Both the above algorithms are for individual lithium-ion
batteries, while in practical applications, such as electric
vehicles, the application of lithium-ion battery packs is much
more. When estimating the battery pack SOC, it is not
appropriate to consider it as a simple battery. .e method
discussed previously cannot be directly applied to a battery
pack consisting of many batteries. Developing a simple,
reliable, and effective SOC estimation method for battery
packs is essential.

Dao et al. developed a smart battery management system
(BMS) based on KF and NN to estimate the SOC of a
lithium-ion battery pack, as shown in Figure 4. .e battery
pack temperature range is 19–42°C. .e performance is
better than ANN and KF alone by experimental evaluation
on real battery packs with an error of less than 1% [52].
However, there are still some problems with this method.
For example, the capacity balance between each battery in
the pack is not considered in the application. .e capacity
decay of each battery varies during use, and the impact of
capacity balance on BMS and battery pack SOC estimation
needs to be considered.

EKF suffers from computational overload for complex
nonlinear problems and generates linearity errors. UKF,
proposed by Julier and Uhlmann in 1997 [53], uses lossless
transformations to obtain the mean and covariance of in-
dividual probabilities, avoiding solving Jacobi matrices. By
constructing an adaptive unscented Kalman filter (AUKF)
algorithm based on the.evenin model, Hosseininasab et al.
presented a combined NN and AUKF method for SOC
estimation [54]. Considering the initial offset, capacity error,
and current sensor drift considering shunt thermal effects,
the root-mean-square Error (RMSE) still reaches 0.954% at
25°C. .e results of SOC estimation based on the Kalman
filter-first method are summarized in Table 2.

3.2. Neural Network-First Method. .e Kalman filter-first
method can accommodate the initial error of the SOC and
estimate the SOC effectively online. However, the high com-
putational requirements and effective model parameterization
need to be effectively addressed before practical application,
which has limited the application of themethod to some extent.
In contrast, the neural network modeling approach can avoid
the detailed study of lithium-ion battery models and parameter
identification. A good battery SOC estimation algorithm can be
built using only previous reliable data.

For the neural network method alone [55], the SOC
estimation results highly depend on the dataset used. Once
the data set differs significantly from the applied battery
operating conditions, the error in the estimation results of
the lithium-ion battery SOC can be substantial. .e neural
network-first method avoids this problem. Even if a less than
perfect data set is used, the output of the NN can be cor-
rected using the KF, and finally, an accurate battery SOC can
be obtained.

Table 1: Methods for identifying battery model parameters.

Years Methods Advantages Disadvantages

2019
GA [37] Parallel and global search Slow search speed
LA [41] Calculate the coefficients at one time Offline
RLS [42] Process data in real-time Taking up a lot of storage space

2020 FFRLS [47] Better performance Difficult to decide the value of λ

2021
RLS [43] Conduct discharge experiments Time-consuming
HPPC [39] Consider temperature and discharge rate Tedious
PSO [40] Lower computational complexity Easily fall into the local optimum
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�e central idea of the neural network-�rst method is
�rst to use the neural network to reveal the nonlinear re-
lationship between SOC and measurable variables such as
current, voltage, and temperature. �e output of the NN is
then smoothed using a KF algorithm to achieve accurate and
stable SOC estimates.

3.2.1. Feed-Forward Neural Network. Feedforward neural
network (FNN) is simple in structure and easy to train,
which has become the most common method for SOC
estimation of lithium-ion batteries [56–58].

Qin et al. used a nonlinear autoregressive neural network
(NARXNN) to estimate the SOC of lithium-ion batteries and
then applied UKF to reduce the error [59]. Compared with
the battery SOC estimation results based on NARXNN
alone, the error is reduced by about 1% at 0°C. Since each
estimate uses data from a single sampling point and does not

consider the dynamic chemistry of the battery, the esti-
mation accuracy of this method is usually not very high.

�e polarization characteristics of the battery can be
used as a new input to the FNN to describe the dynamic
chemistry of the battery accurately. One way to consider
polarization is to increase the NN input data from a single
sample point to multiple sample points [60], which requires
selecting a suitable time constant. �e method for selecting
the time constant is designed as shown in Figure 5, where τ
represents the time constant and r(x, y) represents the
correlation coe«cient. Chen et al. (2019) designed a neural
network-�rst battery SOC estimation method based on an
improved FNN model and EKF algorithm [61]. �e SOC
estimation error can be kept to less than 2% even with
inaccurate initial SOC value, inaccurate initial capacity, and
low temperature (− 10°C, 0°C, and 10°C). �is method is
more suitable for complex electric vehicle application
environments.

Ipack

Unit #1 Unit #2 Unit #3

9S4P 9S4P 9S4P

Vpack

(a) (c)

(b)

Figure 4: Con�gurations of the smart BMS and lithium-ion battery pack. Reproduced with permission from reference [23]. Copyright 2021,
energies. (a) Smart BMS for experiment. (b) LiB unit con�guration (9S4P). (c) LiB pack con�guration with units.

Table 2: Kalman �lter priority methods used for SOC estimation.

Years Methods Remarks Temperature SOC errors
2019 EKF-LSTM [47] High accuracy at low temperatures − 15°C, 0°C, 25°C MAE< 1%
2020 UKF-NN [54] Easy to implement 25°C RMSE� 0.954%
2021 EKF-BPNN [51] Real-time estimation Unspeci�ed <1.10%

EKF-ANN [52] Estimate SOC of the battery pack 19–42°C <1%

Kalman filter Input layer

Vk

Vk–1

Ik–1

Tk–1

Ik

SOCk–1

SOCk

KF algorithm

Output layerHidden layer

Figure 3: �e structure diagram of the KF priority method.
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�e terminal voltage can be used as the output of the
neural network. Meanwhile, the SOC is considered as an
internal state, which is indirectly estimated through the
feedback error of the voltage [62]. �is indirect method has
the advantage of uncertainty enhancement and feedback
compensation. �e e�ect of temperature on SOC, however,
is not considered. Table 3 lists the above studies.

3.2.2. Deep Learning. In recent years, deep learning algo-
rithms have attracted the attention of researchers in the �eld
of battery state estimation because of their ability to auto-
matically extract features and their good generalization
performance [63]. Deep learning algorithms are also in-
creasingly introduced into the SOC estimation of lithium-
ion batteries.

Deep belief network (DBN) can be combined with KF.
�e DBN can extract the relationship between battery SOC
and input parameters with its strong nonlinear �tting ability.
�e KF eliminates measurement noise and improves SOC
estimation accuracy [64]. �e framework of the proposed
model is shown in Figure 6. �e RMSE of the SOC esti-
mation by DST is lower than 0.7%.�is hybrid is suitable for
estimating the SOC of lithium-ion batteries under dynamic
conditions.

LSTM network can handle time-series data considering
the time dependence of SOC estimation. Yang et al. (2020)
used a stepwise search algorithm to determine the hyper-
parameters of the LSTM network and further reduce the
estimation error by UKF [65]. �e results show that the
RMSE of the LSTM-UKF method is 1.1%, which is better
than other FNN methods. In addition, the method has
excellent generalization ability to the temperature at 0–50°C,
and more reliable SOC estimation results can be obtained at
temperatures without training data.

�e commonly used LSTM network is a “many-to-
many” structure, as shown in Figure 7. �e output at mo-
ment t+ 1 is related to the input information at moment t+ 1

and moment t. �e results in earlier information have little
to no impact on the current output, making it impossible to
take full advantage of the past information.

To address this problem, Tian et al. (2020) proposed a
“many-to-one” structure of the LSTM network [66]. �is
framework introduced an adaptive cubature Kalman �lter
(ACKF) algorithm that maximizes the impact of the above
measurements on current SOC estimates and further ex-
tended the applicability of the neural network-�rst method.
High estimation accuracy was achieved in the temperature
range of 10 to 50°C. �is LSTM-ACKF method avoids
�nding the optimal hyperparameters in the training phase of
the LSTM network, which is very di«cult. Only a rough
selection in the training phase is needed, and then a more
accurate SOC estimation result can be obtained using ACKF.

To accurately estimate the SOC for lithium-ion battery
packs, a combination of LSTM and improved square root
cubature Kalman �lter (SRCKF) is proposed [67]. To address
the inconsistency of batteries among packs, Shu et al.
designed an iterative rule for LSTM-SRCKF using the
smoothing method with the maximum and minimum SOC
values in the packs as features. �e method could converge
quickly to the reference value even at sub-zero temperatures,
with RMSE less than 0.4%. �is method still has not con-
sidered aging problems such as battery capacity decay.

By combining di�erent neural networks, the advantages
of each can be retained, which improves the estimation
e«ciency and applicability. One-dimensional convolutional
units can be combined with the gated recurrent unit (GRU)
to form a new deep neural network (DNN), as shown in
Figure 8. �e DNN used 10 minutes of data as input for fast
and accurate SOC estimation across the entire battery SOC
range [68].

�e KF algorithm is introduced to enhance the ro-
bustness of the neural network. �e DNN-KF method can
quickly adapt to batteries with di�erent aging states, and the
RMSE can be less than 3.146%.�e deep learning-based SOC
estimation methods are summarized in Table 4.

Start

Initialization: τ = 1,
limit of r (x,y) = 0.95

τ = τ + 1

τ < 1000

End

Yes
Yes

Output τ

No

Input polarization
state series

Calculate r (x,y)Update reference

Input current series

r (x,y) < 0.95

Figure 5: �e selection process of time constants. Reproduced with permission from reference [29]. Copyright 2019, Elsevier.
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4. Discussion

From the above experimental results, the NN-KF hybrid
method to estimate the SOC of lithium-ion battery is ac-
curate. However, there are still some problems that need to
be investigated.

(1) �e problem of SOC estimation for lithium-ion
battery packs has still not been e�ectively addressed.
Battery capacity and SOC imbalance in packs are
widespread problems [69]. As a result, developing an
NN-KF hybrid method considering the capacity
balance of lithium-ion batteries is necessary to im-
prove battery safety and extend the applicability of
SOC estimation methods.

(2) In subsequent studies, the use of transfer learning to
improve the generalization ability of the hybrid

method can be considered so that the method can be
generalized to SOC estimation of other types of
lithium batteries. After transfer learning, the hybrid
method can be quickly adapted to various situations.

(3) Expand the types of the NN-KF hybrid methods
through the mutual hybrid of di�erent neural net-
works and Kalman �lters. Analyzing the e�ects of
di�erent combinations on the SOC estimation and
�nding a more suitable hybrid method might be the
following research priorities.

(4) Noise disturbance is still a pressing problem for the
Kalman �lter-�rst method. �erefore, an e�ective
method is needed to improve the accuracy of model
parameter identi�cation and SOC estimation in the
whole life cycle of the battery under noise
disturbance.

Table 3: SOC errors of those estimation methods.

Years Methods Remarks Temperature SOC errors
2019 NARXNN-UKF [59] Ignoring dynamic properties 0°C, 25°C, 45°C <3.55%

FNN-EKF [61] Introducing the new input − 10°C, 0°C, 10°C <2%
2020 RBFNN-UKF [62] Indirect method to estimate SOC Unspeci�ed Unspeci�ed

State Function
SOCimit

SOCk-1

Voltage
Current

Temperaute SOCk
Output

SOC
DBN

Initial value model

Data sampling

50000

-4

-2

0

2

4
45

40

35

30

25

203.0

3.5

4.0

4.5

Time (s)
10000 500004500040000

Time (s)
35000

SO
C 

(%
)

30000
0

10

20

30

40

50

SOCinitial

SOC estimation model

SOCstate

SOCmeasureTk...Tk-p

Vk...Vk-n

Ik...Ik-m

Temperature (°C)

Current (A)

Voltage (V)

Estimation

Actual SOC

Figure 6: �e framework of the proposed model based on DBN-KF. Reproduced with permission from Ref 32. Copyright 2019, Elsevier.

t-1 t+1 t+n

XnX2X1X0

YnY2Y1Y0Output layer

Hidden layer

Input layer

Time

HHHH

t

Figure 7: Basic LSTM architecture.

Mathematical Problems in Engineering 7



(5) �e SOC estimation results are sensitive to tem-
perature changes. In the future, it is essential to
improve the stability of SOC estimation methods in
more extreme environments. Furthermore, the
ambient temperature does not directly re¥ect the
chemical properties inside the battery. �e surface
temperature of the battery can be used as an input
variable for the hybrid method.

(6) SOC needs to be predicted without interruption
during the battery life. �erefore, it is essential to
ensure that the SOC is accurately estimated even
during the continuous aging of the battery. Few

hybrid methods consider this problem. Future work
is to integrate state of health (SOH) and remaining
useful life (RUL) as aging parameters into the NN-
KF hybrid method, adapting to di�erent degrees of
dynamic characteristics and aging states of the
battery.

5. Conclusion

�is review analyzes the SOC estimation of lithium-ion
batteries based on the NN-KF hybrid method. First, the
battery model is introduced, and the parameter

Table 4: Deep learning frameworks used for SOC estimation.

Years Methods Remarks Temperature SOC errors
2019 DBN-KF [64] Better for dynamic conditions 22°C to 45°C RMSE <0.7%
2020 LSTM-UKF [65] Excellent generalization to temperature 0°C to 50°C RMSE <1.1%

LSTM-ACKF [66] Making the most of past information 10°C to 50°C RMSE <2.2%
2021 LSTM-SRCKF [67] New iteration rules designed − 20°C to 0°C RMSE <0.4%

DNN-KF [68] Short input time required Unspeci�ed RMSE <3.15%
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Figure 8: Schematic diagrams of (a) the developed DNN, (b) a 1D convolutional unit, (c) a GRU, and (d) dense layers. Reproduced with
permission from reference [36]. Copyright 2021, Elsevier.
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identification methods and procedures are discussed to
prepare for SOC estimation. .en, the Kalman filter-first
method and the neural network-first method are introduced,
and the remarks of each method. Finally, the future de-
velopment direction is proposed with the actual existing
problems.

Lithium-ion batteries’ chemical reactions and aging
mechanisms are very complex, making it challenging to
describe them with a specific model. .e existing model
parameter identification methods all have their advantages
and disadvantages. None of them perfectly matches the
natural application environment, which means that most
Kalman filter-first methods can only achieve good estima-
tion performance in simulated environments. Of course, the
advantages of small computation and short estimation time
of Kalman filter-first methods are challenging to be pos-
sessed by neural network-first methods. Future research
focuses on making the SOC estimation results of NN-KF
hybrid methods more accurate, applying these methods to
practical application environments, and achieving real-time
estimation.

In conclusion, this review makes a significant contri-
bution to the accurate estimation of the SOC and help to
expand the use of lithium-ion batteries. .e widespread use
of lithium-ion batteries can promote energy conservation,
carbon dioxide emission reduction, and environmental
protection, contributing to emission peak and carbon
neutrality goals. .is review can also provide a valuable
overview and recommendations for researchers in the
battery field.
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