

Abstract— We present a hybrid, hierarchical architecture for
mission control of autonomous underwater vehicles (AUVs).
The architecture is model based and is designed with semi-
automatic verification of safety and performance specifications
as a primary capability in addition to the usual requirements
such as real-time constraints, scheduling, shared-data
integrity, etc. The architecture is realized using a
commercially available graphical hybrid systems design and
code generation tool. While the tool facilitates rapid redesign
and deployment, it is crucial to include safety and performance
verification into each step of the (re)design process. A formal
model of the interacting hybrid automata in the design tool is
outlined, and a tool is presented to automatically convert
hybrid automata descriptions from the design tool into a
format required by two hybrid verification tools. The
application of this mission control architecture to a survey
AUV is described and the procedures for verification outlined.

I. INTRODUCTION

E present an architecture for high-level control of
complex systems such as AUVs that is hierarchical,

hybrid, and model-based. This architecture is hierarchical in
order to manage complexity; hybrid to more accurately
capture the discrete and continuous nature of AUV control
systems; and model-based so that it may be represented
mathematically, and hence formally and analytically
verified against a set of requirements. Our goal is to
develop a high-level control architecture and an associated
tool set to facilitate graphical design, rapid prototyping,
faster-than-real-time simulation, code generation for easy
deployment on target platforms, and to incorporate formal
verification of a set of requirements into every stage of the

Manuscript received September 15, 2004. This work was supported
in part by the National Science Foundation under the grants NSF-ECS-
0218207, NSF-ECS-0244732, NSF-EPNES-0323379, and NSF-ECS-
0424048, a DoD-EPSCoR grant from the Office of Naval Research under
the grant N000140110621, and a Exploratory and Foundational Research
Grant from ARL.

S. Tangirala (phone: 814-863-7594; fax: 814-863-8783; email:
cxt148@psu.edu) and M. O’Connor are with the Applied Research
Laboratory at Penn State University.

R. Kumar is with the Iowa State University, Dept. of Electrical and
Computer Engineering.

S. Bhattacharyya and L. E. Holloway are with University of
Kentucky, Dept. of Electrical and Computer Engineering.

design process. While the impetus for the development of
this architecture has been the control of autonomous
underwater vehicles (AUVs), it is general enough to be
broadly applicable. The mission controller has been under
development at the Applied Research Laboratory at the
Pennsylvania State University and has benefited from
discussions with collaborators from Iowa State.

AUVs are complex, large-scale, highly nonlinear, time-
varying, stochastic, and operate in an uncertain and
unpredictable environment. Vehicle control systems for
AUVs typically have several communicating
subsystems/modules which need to interact amongst
themselves and the environment via sensors to successfully
execute a mission within satisfactory real time bounds. In
order to manage the complexity and uncertain operating
environment, control systems for AUVs are in general,
hierarchical. Lower level control such as speed and attitude
control is typically dynamic-model based and is designed
using conventional or modern control methodologies. The
higher control levels are usually more abstract and include
additional requirements such as re-configurability, learning,
safety, failure, and exception handling, the ability to
manage dynamically changing mission goals, multi-system
coordination, and increased autonomy. Additionally,
concerns of real-time execution, shared-data integrity and
high-level programming have to be addressed.

Traditionally, artificial intelligence methods are
encountered in literature to deal with high-level
programming. Several programming and control
architectures have been developed for high-level control of
mobile-robots, in general, and AUVs, in particular [1]-[3].
Some, such as planning-based systems, are not suitable for
real-time operations in systems of reasonable complexity.
Other approaches, such as behavior-based systems, were
developed to answer real-time concerns and provide
flexibility, but many of them lack a rigorous set of
definitions and an associated systems analysis. While the
focus of intelligent control architectures has been the use of
technologies such as adaptation, learning, etc., to facilitate
safe execution of missions in complex environments, our
focus is additionally on real-time operations, automatic
code-generation, and semi-automatic verification of safety
and progress at every design stage. To this end, the

Hybrid-Model based Hierarchical Mission Control
Architecture for Autonomous Underwater Vehicles

S. Tangirala, R. Kumar, S. Bhattacharyya, M. O’Connor, and L. E. Holloway

W

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeB04.3

668

architecture proposed here is model-based and hierarchical.
The models we use are general hybrid dynamical systems,
where the enabling conditions and output actions associated
with state transitions can be general functions, and real-time
constraints are explicitly taken into account. The
mathematical modeling of the controller allows the
application of formal verification methods to guarantee that
some predetermined (safety and/or progress) specification
is met.

In our approach the control tasks for an AUV can
broadly be divided into lower level control, concerned with
continuous dynamics, and high-level control, which is
typically discrete and event/time-driven. In this paper, we
refer to the lower level of control as the Vehicle Control
(VC) and to the higher level of control as Mission Control
(MC). The overall system is therefore a hybrid system
containing both continuous and discrete states. The basic
idea is to hierarchically decompose AUV missions into
sequences of operations, operations into sequences of
behaviors, and behaviors into sequences of vehicle
maneuvers. A mission/operation can also contain
commands for vehicle maneuvers. Then, each level of the
hierarchy coordinates the level below it to accomplish
specific tasks. The MC design and verification is then
accomplished in a bottom-up fashion, starting with the
behavior controllers, which coordinate vehicle controllers,
moving up to operation controllers, which coordinate the
behavior controllers; and finally, a coordinator for each
type of mission specification (e.g., safety and progress),
which coordinates the operation controllers.

The mission controller modules are designed using TEJA
NP networking software tool [4]. TEJA supports the design
of interacting hybrid state machines and includes automatic
real-time code generation which allows for rapid
deployment on the target platform. For verification
purposes, the Teja modules specifications, which are
required to conform to a formal model, are converted into a
format readable by UPPAAL [5], a hybrid system
modeling, simulation, and verification tool. Abstractions are
used to reduce the order of the verification process at any
level, and verification proceeds in a bottom-up fashion until
the entire controller is verified. Section II describes our
hybrid mission control architecture, and Section III applies
this architecture to a survey AUV. Section IV outlines the
hybrid systems modeling framework that is used to
formalize the mission controller modules and describes the
tool and procedure for formal verification of safety and
performance of a specific mission control system.

II. HYBRID MISSION CONTROLLER ARCHITECTURE

The hybrid mission controller is organized
hierarchically as shown in Figure 1 below. Each of the
modules that make up the mission controller hierarchy is a

hybrid system, and the entire mission controller is modeled
as a set of interacting hybrid systems. Modules at any level
may command other modules at that and lower levels and
send responses to that and higher levels. All levels in the
mission controller hierarchy may assign vehicle commands
directly by placing appropriate vehicle commands in the
shared database. At the lowest level of the hierarchy is the
underwater vehicle (plant) along with the vehicle
controllers (VCs). The vehicle and the vehicle controllers
have a hybrid state-space (which might, in some vehicles,
be a purely continuous state space), and serve as the plant
for the higher level mission controller (MC), which is also
hybrid in nature. The vehicle controller and the mission
controller communicate through an interface layer
symbolically represented by MC2VC (mission controller to
vehicle controller) and VC2MC (vehicle controller to
mission controller). The MC2VC block also includes a
Command Conflict Manager which is responsible for
selecting a specific vehicle level command (when more than
one exists) according to a static or dynamic priority list or
using other methods (such as optimization). This module is
included since all modules in the mission controller
hierarchy are allowed to assign vehicle commands directly,
and so there is a distinct possibility that multiple vehicle
commands can coexist.

c1 c2 ck

o2 omo1

b1 b2 bn

Command
Conflict

Manager
VC2MC

Coordinators

Operation
Controllers

Behavior
Controllers

Interface

Vehicle
Controllers v1 v2 vp

Autonomous Underwater Vehicle

MC2VC

Shared
Data

V
eh

ic
le

C
om

m
an

ds

V
eh

ic
le

S
ta

te

Events

C
om

m
an

ds

R
es

po
ns

es

Figure 1: Hybrid Mission Control Architecture

As seen in Figure 1, the mission controller is organized in
a three-tier hierarchy, and all communication between
modules is restricted to event synchronization and shared
data. Command events propagate down the mission
controller hierarchy and response events propagate up the
mission controller hierarchy via event synchronization. An
event is initiated by a particular module and its recipients
are controlled by an event dependency table that may be
static or dynamic. An event may also initialize parameters
within modules in the hierarchy. Command events take the

general form ()paramscommandn
mdo , , where m is the

requesting controller module, n is the receiving controller

669

module, command is the task to be performed and may take
on values such as initialize, abort, etc., and params are
parameters and initial states for the receiving module.
Similarly, response events are in the general

form ()resultsresponsem
ndone , , where response is an

indication of the completion of the commanded task and
may take on values such as normal, abnormal, etc., and
results are parameters returned to the requesting module on
task completion. The lowest level of the mission controller
is comprised of Behavior Controllers, where a behavior
may be thought of as a skill or ability that an autonomous
system possesses which enables it to perform specific
mission tasks (thrive) while remaining safe (survive).
Behaviors directly interface with the vehicle controllers and
are therefore vehicle-centric. They require executions of
sequences of vehicle maneuvers. The middle level of the
mission control hierarchy consists of Operation
Controllers, where an operation represents a mission
segment or phase that is integral to the completion of the
overall AUV mission, and is user/mission-centric. These
correspond directly to user supplied mission orders and
command/sequence the behavior controllers to achieve their
objectives. The highest level of the mission controller
consists of the Mission Coordinators which are responsible
for sequencing and scheduling operations in order to
complete the mission while ensuring the safety of the
vehicle. Mission coordinators are typically of two types:
Progress, further divided into two parts: Sequential, and
Interrupt-driven; and Safety. The sequential coordinator is
responsible for executing a mission consisting of a sequence
of operations; the interrupt-driven coordinator is
responsible for executing a time or state-based interrupt
driven sequence of operations; and a safety coordinator
ensures safe operation of the vehicle. When an interrupt-
driven operation is due, the currently executing sequential
operation is suspended, if necessary, until the interrupt-
driven operation has been executed. Sequential operation is
resumed until the next (if any) interrupt-driven order is due.
Interrupts are classified and prioritized so that some may
have priority over sequential operations, while others do not
and may therefore not be able to interrupt certain classes of
sequential operations. The safety coordinator has priority
over all other coordinators. When an unsafe operating
condition is detected, the commands from the safety
coordinator supercede all other commands and seek to
move the vehicle into a safe region or abort the mission if
necessary. These priorities are implemented by the
Command Conflict Manager located in the MC2VC
interface and by event dependencies and synchronization.

A mission is therefore defined as a coordinated sequence
of operations, each of which is a sequence of behaviors, and
possibly vehicle controller commands. Each behavior is, in

turn, a sequence of commands to the vehicle subsystem
controllers via the MC2VC interface. AUV state
information is collected by sensors and periodically
transferred by the VC2MC interface to the shared database.
This state information is made available to all modules in
all levels of the mission controller hierarchy. Similarly,
vehicle commands, assigned and manipulated by all levels
in the mission controller are stored in the shared database
and sent to the AUV by the MC2VC interface. Formally, let
B denote the set of behaviors, O denote the set of
operations, and V denote the set of vehicle subsystem
controllers. A mission, m is defined as m ∈ M ⊂ (O+V)*,
where (O+V) * is the set of all sequences containing
elements of O and V, and M is the set of all possible
missions. Similarly, each operation oj ∈ (B+V)*, and each
behavior bk ∈ V*.

Teja, the design tool used to implement this mission
control architecture, allows the creation of a system
architecture where all the modules required for a particular
mission controller are instantiated and initialized, and their
interactions are specified via an event dependency table that
may be dynamically reset. Automatic code generation
ensures that the real-time scheduling needs are met to
tolerances far exceeding the mission control application.
Teja allows for abstract class definitions and inheritance so
that, when appropriate, generic controller classes may be
defined and subclasses may be used to refine and customize
the generic controllers to specific applications. Utilities are
provided to handle useful functionality such as
communications and data handling and parsing. Libraries
and utilities are provided for a variety of commonly used
platforms and operating systems including Windows, Linux,
and Solaris. All of these features make Teja an ideal tool for
rapid prototyping, testing, and deployment of mission
controllers on target vehicle platforms.

III. HYBRID MISSION CONTROLLER FOR A SURVEY AUV

The details of a specific application of the general AUV
mission control architecture to a generic survey AUV are
seen in Figure 2. The primary mission of a survey AUV is
to transit to a user specified location and conduct a survey
following a specific pattern in 3D, at a specified speed and
depth or altitude. In this example, there are three vehicle
controllers (VCs), the Autopilot, which accepts commands
to control the attitude, speed and depth of the AUV; the
Variable Buoyancy System (VBS) Controller, which accepts
commands to control the trim and buoyancy of the AUV;
and the Device Controller, which accepts commands to
control the various sensors and other devices on board the
AUV. Correspondingly, the vehicle state is comprised of
the position of the AUV in three dimensions along with the
velocity vector, the state of the buoyancy system, and the
states of the various sensors and other onboard devices.

670

Sequential
Coordinator

Interrupt
Coordinator

Safeties

WPNav GPSFix Launch
Device

Commander

Steering Loiter Pause

Command
Conflict

Manager
VC2MC

Coordinators

Operation
Controllers

Behavior
Controllers

Interface

Vehicle
Controllers

Autopilot
VBS

Controller
Device

Controller

Autonomous Underwater Vehicle

MC2VC

Events

C
om

m
an

ds

R
es

po
ns

es

Shared
Data

V
eh

ic
le

C
om

m
an

ds

V
eh

ic
le

S
ta

te

Surface/Dive

Figure 2: Survey AUV Mission Controller

The lowest level of this mission controller is comprised
of four behavior controllers: Steering, which is responsible
for steering the vehicle to a specified location in space and
interacts with the Autopilot; Loiter, which controls the
vehicle to loiter at a specific location in space for a
specified duration and interacts with the Autopilot and VBS
Controller; Surface/Dive, which commands the vehicle to
go to or come-off of the surface and interacts with the
Autopilot and the VBS Controller; and Pause, which is
used under certain situations to let the vehicle remain at it’s
current state for a specified duration. These behavior
controllers issue appropriate commands to the vehicle
controllers and monitor their responses, via the vehicle state
vector, to achieve their control objectives.

The behavior controllers are, in turn, commanded by the
operation controllers, which correspond directly to mission
orders that are specified by the user and are described next.
The Launch operation controller is responsible for bringing
the vehicle off of the surface and running at depth with
enough forward speed to achieve controllability. This
controller interacts with the Autopilot, the VBS Controller,
the Device Commander, and the Surface/Dive behavior
controller. The GPSFix operation controller sequentially
commands the AUV to shut off propulsion, rise to the
surface, raise the GPS mast, obtain a GPS-aided position
fix, retract the GPS mast, and re-launch the AUV. This
controller interacts with the Autopilot, the Surface/Dive
behavior controller, the Device Commander, the Device
Controller, and the Launch operation controller. The
WaypointNavigator operation controller controls the AUV
to transit to waypoints specified by the mission
specification. This controller interacts with Steering, Loiter,
and the Device Controller. The Device Commander is used
to control sensors and devices on the AUV in response to
mission orders; this controller interacts with the Device
Controller.

IV. FORMAL MODELING AND VERIFICATION

The complexity of AUV systems, control systems, and
missions, and the difficulty in reproducing exhaustive
operational scenarios, including sensor data in simulations,
dictates the need for analytical verification of some measure
of correctness of the mission controller/vehicle controller
combination and the mission itself to eliminate many
common errors and oversights. This is an area of ongoing
research and some results and tools are available such as
HyTech [8], and UPPAAL [1], [5], both of which perform
automatic symbolic verification for a specific class of linear
hybrid systems.

Our mission control architecture is designed with semi-
automatic verification as an integral capability. To this end,
and mindful of the state-of-the-art in verification tools,
certain restrictions are imposed on the hybrid modules that
make up the mission control architecture. The logic within
individual automata is restricted to use clocks and variables,
whose dynamics are represented by differential inclusions,
as the only continuous variables; all other continuous
dynamics are encapsulated in functions. Interactions
between modules are restricted to event synchronizations
and shared data. Hybrid automata have been used as
mathematical models for many important applications, such
as automated highway systems, air-traffic management
systems, embedded automotive controllers, manufacturing
systems, chemical processes, robotics, real-time
communication networks, and real-time circuits. Their wide
applicability has inspired a great deal of research from both
control theory and theoretical computer science. The
formalism presented in this section is used to model our
mission control architecture -- individual modules are
modeled as controlled hybrid automata and the mission
controller, as a whole, is modeled as a set of interacting
controller hybrid automata.

A. Controlled hybrid automaton

A controlled hybrid automaton is a tuple
HHHH ()RGEIPFYUQ ,,,,,,,,, Σ= , where:

State space: XLQ ×= is the state space of HHHH, L is a finite

set of locations and nX ℜ= is the continuous state space.
Events: Σ is the finite alphabet or event set of HHHH..

Continuous Controls and Parameters: mU ℜ= is the
continuous control space consisting of control and
exogenous continuous-time parameters. [) Uu →∞,0: is a

vector comprised of these controls and parameters.
Outputs: Y is the output space of HHHH, which may consist of
both continuous and discrete elements.
Continuous Dynamics: F is a function on UL × assigning
a vector field or differential inclusion to each location and
continuous control vector. The notation),(),(ufulF l ⋅= is

also used.

671

Output Functions: P is a set of output functions, one for
each location Ll ∈ . YUXplP l →×= :)(is the output

function associated with location Ll ∈ .

Invariant conditions: XI 2⊂ is a set of invariant
conditions on the continuous states, one for each location

Ll ∈ . The notation XilI l ⊆=)(is also used. At each

Ll ∈ , the default value is Xil = .

Edges: LLE ×Σ×⊂ is a set of directed edges.
Elle ∈′=),,(σ is a directed edge between a source

location Ll ∈ and a target location Ll ∈′ with event label
Σ∈σ .

Guard conditions: XG 2⊂ is the set of guard conditions
on the continuous states, one for each edge Ee ∈ . The

notation XgG ee ⊆= is also used. If no
e

g is explicitly

specified for some edge Ee ∈ , then the default value is
Xge = .

Reset conditions: R is the set of reset conditions, one for
each edge Ee∈ . The notation ereR =)(is used, where

X
e Xr 2: → is a set-valued map. If no er is explicitly

specified for some edge Ee ∈ , then the default value is the
identity function.
Definition - -step: For Σ∈σ , a -step is a binary relation

QQ ×⊂→
σ

and it is true that),(),(xlxl ′′→
σ

if and only if

(a) Elle ∈′=),,(σ , (b) le igx ∩∈ and (c) le ixrx ′∩∈′)(.

A -step is a transition or jump between discrete states. A
-step need not be taken even if egx ∈ , but some -step

must be taken before it holds that lix ∉ .

Definition - t-step: Let),(uxl
tϕ be a trajectory of),(ufl ⋅

with initial state x and evolving for time t. For +ℜ∈t , a t-
step is a binary relation QQ

t
×⊂→ and it is true that

),(),(xlxl
t

′′→ if and only if (a) ll ′= , (b) xx =′ for

0=t and (c)),(uxx l
tϕ=′ for 0>t where for []t,0∈τ ,

)),((),(uxfux l
l

l
ττ ϕϕ ∈ and (d) for all []t,0∈τ , lix ∈)(τ .

Accordingly, a t-step is a time trajectory of the system that
is valid for []t,0∈τ .

B. Interacting Controlled Hybrid Automata

In order to cope with the complexity of real-life
applications it is often convenient to model a hybrid system
in a modular fashion as a set of interacting hybrid automata,
{H j}. Each hybrid automaton in the set is a tuple as before:

HHHH jjjj { }jjjjjjjjjj RGEIHFYUQ ,,,,,,,,, Σ= 1

The interaction among various hybrid autonomous modules
takes place through event synchronization and sharing of
variables in invariant and guard conditions, as follows.

Invariant Conditions: For each k

k

jjj YXlILl Π×⊆∈)(, ,

where k=1…j-1, j+1…n.

Guard Conditions: For each ,jEe ∈
k

k

j

e

j YXgeG j Π×⊆=)(, where k=1…j-1, j+1…n.

All other components of the tuple are analogous to those of
the single hybrid automaton defined above.

Event Synchronization: For an event j
jΣ=Σ∈σ , let

{ }jjIn Σ∈= σσ |)(be the set of indices of the event sets

that contain the event σ . Then each -step must be taken
synchronously by each of the hybrid automata HHHH j if

)(σInj ∈ , the corresponding guard condition je
g is

satisfied, and the invariant condition)(lI j of the accepting

state is satisfied. In other words, for each)(σInj ∈ ,

),(),(2211
jjjj xlxl

σ
→ if and only if (a) jjjj Elle ∈=),,(21 σ (b)

jj le
j igx ∩∈1 and (c) jj l

jj
e

jj ixrx
2

)(12 ∩∈ .

C. Formal Verification

While mission control architectures for AUVs have been
deployed successfully [1]-[3], none of them were designed
for semi-automatic verification in all phases of controller
development using modern verification tools and techniques
without considerable overhead. Formal verification of a set
of requirements is achieved through reachability analysis,
forward or backward depending on the specification. For a
given region W in the hybrid state space, the region forward
reachable from W is defined as the set of all states reachable
from W after a finite number of steps with a similar
definition for backward reachability. While reachability is
difficult to prove for general hybrid automata, tools have
been developed for automatic model checking for linear
hybrid automata whose continuous dynamics are governed
by rectangular constraints on the variables and their
derivatives [8],[1]. Properties that can be checked by these
tools include safety, liveness, time-boundedness, and
duration requirements. Following [6], we see that in
practice, safety and other analyses can be posed as
reachability problems. Often, this involves the creation of
specialized monitor processes that are composed with the
system to be analyzed and “watch” the system. These
monitor processes enter a violation state if the main system
violates a specified safety requirement. It turns out that all
timed safety requirements, including bounded-time
response requirements, can be verified in this manner.
While there is no guarantee of termination of the
reachability analysis, it has been found that, in practice,
most analyses do terminate [7]. A major strength of HyTech
is its ability to perform parametric analyses where the
ranges of values of specific parameters necessary for
achievement of a safety or other specification may be
determined analytically.

672

We partition the verification problem into safety
verification – the verification that the logic of the mission
controller will not allow anything “bad”, such as deadlocks
or livelocks, to happen; and progress verification where the
progress of the mission controller towards achieving its
mission are checked both from a logical standpoint as well
as an algorithmic standpoint. A bottom-up approach is
employed where the controllers at the lowest level of the
hierarchy are verified first, and assuming their correctness,
the verification of the controllers in the next higher layer of
the hierarchy is performed. During verification of a
particular subsystem, an abstracted subsystem, called a
driver subsystem, may be created to emulate only the
relevant commands issued by either a higher level or lateral
subsystem. Similarly, an abstracted subsystem, called a stub
subsystem, may be created to emulate relevant responses
issued by either lower level or lateral subsystems. Driver
and stub subsystems reduce the complexity of verification
by reducing the number of discrete states and clocks in a
composed system. Subsystems whose internal states, guard
conditions, or update laws affect the subsystem being
verified should not be abstracted.

Figure 3: Semi-automatic verification

The tool used to implement the architecture, Teja NP [4],
is a general purpose hybrid systems design and deployment
tool. The structure of the model described in this section is
imposed on all modules that make up the mission controller
and that are designed using Teja NP. In addition to
formalizing the interacting hybrid automata models
developed using Teja, this has the further advantage of
ensuring that a specific mission controller implementation
may be formally verified against a set of requirements using
tools that conform to this modeling formalism. A hybrid
state machine is represented in Teja NP using an UML-like
language. A converter has been developed to convert the
hybrid state machine representation used by Teja NP into
the specification that UPPAAL and HyTech use to
represent linear hybrid systems. This allows the Teja
models to be semi-automatically imported into UPPAAL
and HyTech, where subsets may be collected and used for
formal verification of safety and performance. This process
is summarized in Figure 3. While there are several pending
research issues in the application of analytical verification,
including the question of how to determine and represent
the safety specifications to be checked, this method shows
some immediate promise and has already been used to
answer some basic safety questions. The details of the

hybrid state machine converter, the conversion process, the
procedures for verification, and the results of verification
studies are omitted here due to space considerations, but are
the subject of a follow-on paper.

V. CONCLUSION

A hybrid, model-based architecture for mission control of
AUVs is presented. The unique distinguishing feature of
this architecture is that it supports automated code-
generation, real-time operations, and formal verification.
Most past architectures lack these essential features. A
generic survey AUV mission controller conforming to this
architecture, and developed using a commercial hybrid
systems modeling and implementation tool, is presented. A
modeling formalism, which allows formal verification
methods and tools to be applied, is presented for the
interacting hybrid automata that make up the mission
controller. A tool to convert hybrid automata
representations from the design platform to two verification
tools is introduced, and the procedure to go from design to
verification to re-design is outlined.

REFERENCES

[1] Kumar, R., and Stover, J.A., “A Behavior-Based
Intelligent Control Architecture with Application to
Coordination of Multiple Underwater Vehicles,” IEEE
transactions on systems, man, and cybernetics—part a:
systems and humans, vol. 30, no. 6, November 2000.

[2] McPhail S.D., Pebody M., 1998, Autosub-1: Mission
programming and control of an Autonomous
Underwater Vehicle, Proc. Third European Marine
Science and technology Conference, May 1998,
Lisbon, Portugal.

[3] Bellingham, J.G., Consi, T.R., Beaton, R., and Hall,
W., Keeping Layered Control Simple, In Proceedings
AUV ’90, 1990.

[4] www.teja.com
[5] www.uppaal.com
[6] Alur, R., Courcoubetis, C., and Dill, D., “Model

Checking for Real-Time Systems”, Proceedings of
Logic in Computer Science, pp. 414-425, 1990.

[7] Alur, R., Henzinger, T.A., Lafferriere, G., and Pappas,
G.J., Discrete Abstractions of Hybrid Systems.
Proceedings of the IEEE, 88, July 2000.

[8] Henzinger, T.A., Ho, P-H., and Wong-Toi, H., “A user
guide to HyTech,” Proceedings of the First
International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS
'95), Lecture Notes in Computer Science 1019,
Springer-Verlag, 41-71, 1995.

[9] Larsen. K.G., and Pettersson, P., “Timed and Hybrid
Systems in UPPAAL2k”, MOVEP'2k : Modeling and
Verification of Parallel Processes, Nantes, France,
2000.

673

