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Hybrid Model of Convolutional LSTM and CNN to
Predict Particulate Matter

Seonggu Lee and Jitae Shin

Abstract—Particulate matter (PM) can harm human health
by causing lung cancer, pneumonia, or cardiovascular disease.
There is a growing awareness of dangerous PM among people
and governments. In order to prepare for the risk, the
prediction performance of PM is important. Therefore, many
kinds of research are developing various prediction models.
Among the models, LSTM based models show the best result
and it uses various auxiliary data, including spatial features to
improve performance. However, spatial features can be
depreciated because all input data has to be unfolded to 1D
vector. In this paper, we apply Convolutional LSTM to our
model to take advantage of the spatiotemporal relation of the
wind and PM forecasting problem. Also, we add CNN to extract
temporal features of the dataset on our model in parallel.
Finally, we combine both Convolutional LSTM and CNN to
predict more accurate PM concentration. In the experiment, we
compared this model with LSTM and CNN-LSTM models in
previous studies. At the result, the hybrid model showed the
best performance.

Index Terms—Deep learning, convolutional long short-term
memory (ConvLSTM), CNN, particulate matter prediction.

I. INTRODUCTION

Particulate matter (PM) is the term for a very small mixture
of solid particles and liquid droplets found in the air [1]. This
term includes PM10 whose diameters are generally 10
micrometers and smaller; and PM2.5 whose diameters are
generally 2.5 micrometers and smaller [1]. PM is very small
and light, floating in the atmosphere. People can breathe
these PM which causes serious health problems including
decreased lung function, obesity, asthma and exacerbation of
chronic respiratory, and cardiovascular diseases [2]. PM also
has a direct negative impact on other human life areas. It is
the main problem of reduced visibility (e.g., haze) in many
countries, which can increase the possibility of a traffic
accident. Additionally, it contributes to acid rain effects, and
damages farm crops [1]. Due to these bad effects on human
life, many people are interested in an accurate prediction
method of PM concentration. They can avoid contact with
PM and prevent various problems that these can cause if they
know the temporal change of PM in advance. To predict PM
concentrations, many kinds of research are underway;
deterministic method and statistical method are generally
used.

A deterministic method establishes a numerical model
which is based on the aerodynamic theory and
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physicochemical processes tracking the generation,
dispersion, and transmission process of pollutants [3];
WRF/Chem model and CMAQ model [4] are commonly
used. This method is helpful to understand the PM diffusion
process. However, it needs too much prior complex
knowledge [5].

A Statistical method is not sophisticated but simply applies
statistics-based models to predict air quality [3]. The models
established by the statistical method can be divided into a
non-deep-learning based model and deep-learning based
model. The non-deep-learning based model includes the
autoregressive integrated moving average (ARIMA) [6],
multiple linear regressions (MLR) and the support vector
regression (SVR). The deep-learning based model includes
the multilayer perceptron (MLP), the deep recurrent neural
network (DRNN) [7], the long short-term memory neural
network (LSTM NN) [3] and the hybrid model based on
convolutional neural network and LSTM (CNN-LSTM) [8].

In the recent study, the deep-learning-based model showed
better prediction accuracy than non-deep-learning-based
method [3], [8]. Among these models, LSTM-based models,
remembering information for long periods of time showed
better performance. Especially, the CNN-LSTM model
showed the highest accuracy. This model uses CNN, which
extracts temporal feature to improve performance [8] and
then uses LSTM to analyze the extracted features to estimate
the PM concentration of the next point of time.

A used dataset is also important to predict PM
concentration more accurately. Several studies selected
nearby PM measurement stations as a source of the dataset
based on the spatial correlation between these stations and a
target station to apply the spatial information on the model,
and used auxiliary data such as meteorological data or other
air pollutants [3], [7]. Using this additional data, these
experiments showed a better predictive performance.

However, LSTM model or CNN-LSTM model cannot
handle both spatial data and temporal data at the same time.
Hence, the additional data can be depreciated. Because all
input data has to be unfolded to 1D vector before temporal
data processing on the models, spatial information can be lost
during this process [9]. Thus, these models have a limitation
in predicting PM concentration which changes continuously
depending to the spatiotemporal axis. For example, if a wind
is strong, PM from a nearby area can flow in the target area
where we want to measure. In this case, the PM concentration
changes depending on spatiotemporal data, including wind
intensity, wind direction, and surrounding PM concentration.
However, the recent studied model cannot process
spatiotemporal data simultaneously as mentioned above. This
fact is the reason for deteriorating the predictive performance
of the model.
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In this paper, we use Convolutional LSTM (ConvLSTM),
which combines convolution operation on LSTM and include
2D spatial information, thus it can analyze spatial and
temporal information at the same time [9]. By doing so, we
can take advantage of the spatiotemporal relation of the wind
and PM forecasting problem and inflow of PM can be
simulated on the forecasting model. Also, we add 3D CNN to
extract the temporal feature of the dataset in parallel and
finally combine both ConvLSTM and 3D CNN to predict PM
concentration more accurately.

II. PROPOSED METHOD

A. Data Description

The PM dataset shows collected the PM concentration
of Korea where it was relatively high in the world. In detail,
PM10 data were measured every hour in 53 places in Seoul,
Gyeonggi, and Incheon. We could access the data on
https://www.airkorea.or.kr/. Further, since weather data
has a correlation with the prediction of PM concentration,
we also used weather data from three meteorological
stations located in the area where the PM measurement
stations had been installed. We could access the data on
https://data.kma.go.kr/data/grnd/. The measuring stations
are represented in the Google map as shown in Fig. 1. The
measurement period of the data is from January 1, 2014 to
December 31, 2016. We used 2014 and 2015 as training
data and 2016 as test data. All raw data are listed in the
Table I in detail.
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Fig. 1. PM station(left) and meteorological station(right).

TABLE I: INPUT PARAMETER

Region

Gyeonggi, Incheon, Seoul

Measurement Period

2014.1.1 1:00 — 2016.12.31 24:00

Feature Unit Source

1h PM10 concentration ug/m 53 of PMI0 stations

1h Temperature °C 3 of meteorological stations
1h Humid % 3 of meteorological stations
1h Vapor Pressure hPa 3 of meteorological stations
1hWind speed m/s 3 of meteorological stations
1h Wind direction ° 3 of meteorological stations

B. Data Pre-processing

We need a pre-processing to train the model correctly. The
ConvLSTM model used in this paper has to contain 2D
spatial information of the data. Therefore, as shown in Fig. 2,
the locations of the measuring stations were grid-mapped to
each cell of the 2D matrix based on the Transverse Mercator
(TM) coordinate. The TM coordinate is a conformal mapping
of the earth ellipsoid where a central meridian is mapped into
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a straight line at constant scale and is used for the grid
systems of several countries in geography [10]. The
grid-mapping formula of i-th stations is in (1). Xy and Yy
denote the TM coordinate given by integer and min is the
function that returns minimum value. According to the
equation (1), the size of the matrix was set to 9x9.
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Fig. 2. Grid mapping of station distribution.

Then, the data of measuring stations were grid-mapped to
each cell in which the location had been mapped. The
meteorological data and the PM data were combined and
represented as three-dimensional tensor in every time slice.
All missing values were interpolated through the inverted
distance weight (IDW) used for spatial data interpolation
[11]. Additionally, we need to compare other models which
do not include 2D spatial information. Thus, we also
unfolded the conjugated data to make the input of the models.
All process is shown in Fig. 3.
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Fig. 3. Conjugation, interpolation and unfolding.

C. Modeling

The proposed model is shown in Fig. 4, which is a hybrid
model of ConvLSTM and 3D CNN. The input data are
four-dimension including past 24-hour time, row, column
and features. The kernel size of ConvLSTM is
two-dimension including row and column. The kernel size of
3D CNN is three-dimension including time, row and column.

The ConvLSTM model uses three kinds of features as
inputs including PM10 concentration, wind intensity, and
wind direction data. The ConvLSTM model structure applies
encoder-decoder for future predictor [12]. Two 2D
ConvLSTM layers represent encoder and decoder
respectively. The encoder creates hidden representation from
past 24-hour data. This is copied by four times and used to
inputs of the decoder. Therefore, spatiotemporal features are
extracted sequentially to predict the next 4-hour PM
concentrations.

The 3D CNN Model uses all feature data except the
direction of the wind as input. Three 3D CNN layer extracts
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only accumulated temporal features from past 24-hours in
parallel. The features extracted from the two models are
merged, and three 2D CNN layers with a kernel size of 1x1
analyze the merged feature. Then, next 4-hour PM
concentrations of all stations are extracted from the output of
last 2D CNN layer.

In our model, we set the filter size to 128 on 3D CNN
layers and 2D ConvLSTM layers and to 1024 on 2D CNN
layers. Specifically, we make multiple models with the
different kernel size, [k,k] of the 2D ConvLSTM layers,
which was subdivided into [1,1], [3,3], [5,5], which is for we
need to compare the result depending on the kernel size.
Predicted value can be affected by the more distant
measuring stations in every prediction time if the kernel size
is larger [9]. Also, we set the padding to (k-1) / 2 to keep the
spatial information.

CNN Model

Input without Wind direction
24x9x9x5)

L3
3D CNN Layer [3,1,1]
output : (22:“:9x9x 128)

3D CNN Layer [3,1,1]
output : (20 x 9 x 9 x 128)

3D CNN Layer [20,1,1]
output : (1x 9 x 9 x 128)
+

ConvLSTM Model

Input with PM and Wind
{24% 9 x9x 3)

¥

ConvLSTM 2D Layer [k.k]
output : (9 x 9 x 128)
+

Repeat
_output: (4x9x9x 128 |
¥
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|

¥
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Fig. 4. Hybrid Model of ConvLSTM and CNN.

To verify the performance of the proposed models, various
comparable models are needed. Those models maintain the
encoder-decoder for future predictor structure to predict the
next 4-hour PM concentration at same time.

1) ConvLSTM : The CNN model part is excluded from the
Hybrid model and the ConvLSTM model part is directly
connected to 2D CNN. Merging is also excluded. This
model uses all features.

CNN-LSTM : This model is similar to the CNN-LSTM
model [8] proposed in the previous study, but two LSTM
layers are used to apply the encoder-decoder structure.
Two 1D CNN layer and two LSTM layer are connected
sequentially. Because this model does not need 2D
spatial data, we use unfolded 1D vector from 3D tensors.
Thus, 2D spatial information is excluded.

LSTM : This model is made from the CNN-LSTM
model, but two 1D CNN layers are excluded. This model
is the simplest model, thus this is used as the baseline for
this paper.

2)

3)

III. EXPERIMENT

To evaluate the performance of the proposed model, three
indicators are used including the root mean square error
(RMSE), the mean absolute error (MAE), and the index of
agreement (IOA), which are mainly used to show model
accuracy in weather forecasting research. The formulas for
each indicator are in (2), (3) and (4); N denotes the number of

test samples, y; denotes predicted value and y;k denotes true

value. The IOA denotes how closely the predicted value
matches the actual value. If the predicted value is close to the
true value, the IOA value is close to 1.
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The average of RMSE, MAE, and IOA of PM
concentration from all PM measuring stations for the next 4
hours are presented in Table II, Table III and Table IV,
respectively. In the tables, Hybrid denotes the proposed
model in this paper, and [1,1], [3,3] and [5,5] denotes the
kernel size of Convolution LSTM.

TABLE II: COMPARISON OF RMSE OF THE DIFFERENT MODEL

Next Next Next Next

Model 1-hour 2-hour 3-hour 4-hour Average
Hybrid [1,1] 1049 1436 17.04 1913 1525
Hybrid [3,3] 9.76 1336 1638 18.86  14.59
Hybrid [5,5] 1044 1372 1659 1899  14.93
[C;’;]VLSTM 9.85 13.61 1669  19.19  14.84
CNN-LSTM 1391 1541 1733 1926 1648
LSTM 1390 1600 1799 1967 _ 16.89
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TABLE III: COMPARISON OF MAE OF THE DIFFERENT MODEL

Next Next Next Next

Model 1-hour 2-hour 3-hour 4-hour Average
Hybrid [1,1] 735 9.77 1147 1280 1035
Hybrid [3,3] 6.89 9.11 1103 1262 9.1
Hybrid [5,5] 7.41 9.46 1130 1286 1026
g";‘]" LST™M 6.95 9.27 1123 1284 1007
CNN-LSTM 9.80 10.63 1175 1289 1127
LSTM 9.89 1124 1248 1349  11.78

TABLE IV: COMPARISON OF IOA OF THE DIFFERENT MODEL

Next Next Next Next

Model 1-hour 2-hour 3-hour 4-hour Average
Hybrid [1,1] 0.9654 09309 0.8959 0.8624 0.9136
Hybrid [3,3] 0.9703 09415 09089 0.8768  0.9244
Hybrid [5,5] 09647 09361 09038 0.8717 09191
%’;‘]V LSTM 09695 09378 09028 0.8686 0.9197
CNN-LSTM 0.9385 09240 0.9026  0.8776 0.9107
LSTM 0.9353 09109 0.8840 0.8579  0.8971
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Among the proposed Hybrid models with different kernel
size, the Hybrid model with [3,3] kernel size shows the best
performance in all indicators (RMSE: 14.59, MAE : 9.91,
IOA : 0.9244) and the Hybrid model with [5,5] kernel size
(RMSE : 14.93, MAE : 10.26, IOA : 0.9191) shows the better
performance than the Hybrid model with [1,1] kernel size
(RMSE : 15.25, MAE : 10.35, IOA : 0.9136.) If the kernel
size is [1,1], the ConvLSTM layers in the Hybrid model
cannot extract additional spatial features from the near
measuring stations. Therefore, the result shows that
extracting additional spatial features makes the performance
better. It also represents that considering the inflow of PM by
wind effect is important. The best kernel size for effectively
extracting spatial information from the given dataset is not
[5,5] but [3, 3]. This means that the model with large kernel
size can cause performance degradation because more distant
measuring stations used to every time slices input is not
relevant to predict target measuring stations.

Compared with all models, Hybrid models and
ConvLSTM model which keep two-dimensional spatial
information show better results than CNN-LSTM (RMSE :
16.48, MAE : 11.27, IOA : 0.9107) and LSTM (RMSE :
16.89, MAE : 11.78, IOA : 0.8971) which do not keep the
spatial information through unfold process of input data. This
result indicates that it is reasonable to keep the spatial
information in order to estimate the PM concentration of
many measuring stations from many measuring stations.

Also, the Hybrid model shows better performance than
ConvLSTM model having same kernel size on ConvLSTM
layers. This shows that the combination of 3D CNN layers
extracting temporal features in parallel can help to improve
the performance.

IV. CONCLUSION

In this paper, we proposed a Hybrid model, which
combines the ConvLSTM model processing spatiotemporal
information at the same time sequentially and the CNN
model extracting temporal features in parallel. To evaluate
the performance of the proposed model, we compared this
model with other models including LSTM model or
CNN-LSTM model which maintains temporal information
for long periods of time, but those are not suitable to process
spatial data. We used three indicators including RMSE, MAE
and IOA indicators which are generally used in weather
forecasting research. Some useful findings can be listed as
follows:

1) The Hybrid model and ConvLSTM model which can
keep and process spatial information exhibited better
performance than the LSTM-based models which do not
keep spatial information.

By choosing the appropriate kernel size and using the
proper number of near measuring stations to every time
slices input, the model performance could be improved.
Comparing the Hybrid model and ConvLSTM model,
we demonstrated that combining with CNN can make
performance better because CNN extracted temporal
features in parallel.

2)

3)
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For further work, we will extend the coverage of
measuring stations and use more additional feature data to
predict longer-term PM concentration. Also, we will improve
the internal structure of the ConvLSTM layer to simulate
inflow of PM from near areas by the wind effect better.
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