
  

 
Abstract—Particulate matter (PM) can harm human health 

by causing lung cancer, pneumonia, or cardiovascular disease. 

There is a growing awareness of dangerous PM among people 

and governments. In order to prepare for the risk, the 

prediction performance of PM is important. Therefore, many 

kinds of research are developing various prediction models. 

Among the models, LSTM based models show the best result 

and it uses various auxiliary data, including spatial features to 

improve performance. However, spatial features can be 

depreciated because all input data has to be unfolded to 1D 

vector. In this paper, we apply Convolutional LSTM to our 

model to take advantage of the spatiotemporal relation of the 

wind and PM forecasting problem. Also, we add CNN to extract 

temporal features of the dataset on our model in parallel. 

Finally, we combine both Convolutional LSTM and CNN to 

predict more accurate PM concentration. In the experiment, we 

compared this model with LSTM and CNN-LSTM models in 

previous studies. At the result, the hybrid model showed the 

best performance. 

 
Index Terms—Deep learning, convolutional long short-term 

memory (ConvLSTM), CNN, particulate matter prediction.  

 

I. INTRODUCTION 

Particulate matter (PM) is the term for a very small mixture 
of solid particles and liquid droplets found in the air [1]. This 
term includes PM10 whose diameters are generally 10 
micrometers and smaller; and PM2.5 whose diameters are 
generally 2.5 micrometers and smaller [1]. PM is very small 
and light, floating in the atmosphere. People can breathe 
these PM which causes serious health problems including 
decreased lung function, obesity, asthma and exacerbation of 
chronic respiratory, and cardiovascular diseases [2]. PM also 
has a direct negative impact on other human life areas. It is 
the main problem of reduced visibility (e.g., haze) in many 
countries, which can increase the possibility of a traffic 
accident. Additionally, it contributes to acid rain effects, and 
damages farm crops [1]. Due to these bad effects on human 
life, many people are interested in an accurate prediction 
method of PM concentration. They can avoid contact with 
PM and prevent various problems that these can cause if they 
know the temporal change of PM in advance. To predict PM 
concentrations, many kinds of research are underway; 
deterministic method and statistical method are generally 
used. 

A deterministic method establishes a numerical model 
which is based on the aerodynamic theory and 
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physicochemical processes tracking the generation, 
dispersion, and transmission process of pollutants [3]; 
WRF/Chem model and CMAQ model [4] are commonly 
used. This method is helpful to understand the PM diffusion 
process. However, it needs too much prior complex 
knowledge [5]. 

A Statistical method is not sophisticated but simply applies 
statistics-based models to predict air quality [3]. The models 
established by the statistical method can be divided into a 
non-deep-learning based model and deep-learning based 
model. The non-deep-learning based model includes the 
autoregressive integrated moving average (ARIMA) [6], 
multiple linear regressions (MLR) and the support vector 
regression (SVR). The deep-learning based model includes 
the multilayer perceptron (MLP), the deep recurrent neural 
network (DRNN) [7], the long short-term memory neural 
network (LSTM NN) [3] and the hybrid model based on 
convolutional neural network and LSTM (CNN-LSTM) [8].  

In the recent study, the deep-learning-based model showed 
better prediction accuracy than non-deep-learning-based 
method [3], [8]. Among these models, LSTM-based models, 
remembering information for long periods of time showed 
better performance. Especially, the CNN-LSTM model 
showed the highest accuracy. This model uses CNN, which 
extracts temporal feature to improve performance [8] and 
then uses LSTM to analyze the extracted features to estimate 
the PM concentration of the next point of time.  

A used dataset is also important to predict PM 
concentration more accurately. Several studies selected 
nearby PM measurement stations as a source of the dataset 
based on the spatial correlation between these stations and a 
target station to apply the spatial information on the model, 
and used auxiliary data such as meteorological data or other 
air pollutants [3], [7]. Using this additional data, these 
experiments showed a better predictive performance. 

However, LSTM model or CNN-LSTM model cannot 
handle both spatial data and temporal data at the same time. 
Hence, the additional data can be depreciated. Because all 
input data has to be unfolded to 1D vector before temporal 
data processing on the models, spatial information can be lost 
during this process [9]. Thus, these models have a limitation 
in predicting PM concentration which changes continuously 
depending to the spatiotemporal axis. For example, if a wind 
is strong, PM from a nearby area can flow in the target area 
where we want to measure. In this case, the PM concentration 
changes depending on spatiotemporal data, including wind 
intensity, wind direction, and surrounding PM concentration. 
However, the recent studied model cannot process 
spatiotemporal data simultaneously as mentioned above. This 
fact is the reason for deteriorating the predictive performance 
of the model. 
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In this paper, we use Convolutional LSTM (ConvLSTM), 
which combines convolution operation on LSTM and include 
2D spatial information, thus it can analyze spatial and 
temporal information at the same time [9]. By doing so, we 
can take advantage of the spatiotemporal relation of the wind 
and PM forecasting problem and inflow of PM can be 
simulated on the forecasting model. Also, we add 3D CNN to 
extract the temporal feature of the dataset in parallel and 
finally combine both ConvLSTM and 3D CNN to predict PM 
concentration more accurately. 
 

II. PROPOSED METHOD 

A. Data Description 

The PM dataset shows collected the PM concentration 
of Korea where it was relatively high in the world. In detail, 
PM10 data were measured every hour in 53 places in Seoul, 
Gyeonggi, and Incheon. We could access the data on 
https://www.airkorea.or.kr/. Further, since weather data 
has a correlation with the prediction of PM concentration, 
we also used weather data from three meteorological 
stations located in the area where the PM measurement 
stations had been installed. We could access the data on 
https://data.kma.go.kr/data/grnd/. The measuring stations 
are represented in the Google map as shown in Fig. 1. The 
measurement period of the data is from January 1, 2014 to 
December 31, 2016. We used 2014 and 2015 as training 
data and 2016 as test data. All raw data are listed in the 
Table I in detail. 

 

 
Fig. 1. PM station(left) and meteorological station(right). 

 
TABLE I: INPUT PARAMETER 

Region 

Gyeonggi, Incheon, Seoul 

Measurement Period 

2014.1.1 1:00 – 2016.12.31 24:00 

Feature Unit Source 

1h PM10 concentration ug/m
3
 53 of PM10 stations 

1h Temperature ℃ 3 of meteorological stations 
1h Humid % 3 of meteorological stations 
1h Vapor Pressure hPa 3 of meteorological stations 
1hWind speed m/s 3 of meteorological stations 
1h Wind direction ° 3 of meteorological stations 

 

B. Data Pre-processing 

We need a pre-processing to train the model correctly. The 
ConvLSTM model used in this paper has to contain 2D 
spatial information of the data. Therefore, as shown in Fig. 2, 
the locations of the measuring stations were grid-mapped to 
each cell of the 2D matrix based on the Transverse Mercator 
(TM) coordinate. The TM coordinate is a conformal mapping 
of the earth ellipsoid where a central meridian is mapped into 

a straight line at constant scale and is used for the grid 
systems of several countries in geography [10]. The 
grid-mapping formula of i-th stations is in (1). XTM and YTM 
denote the TM coordinate given by integer and min is the 
function that returns minimum value. According to the 
equation (1), the size of the matrix was set to 9x9. 

))min()(),min()((),( TMTMTMTM YiYXiXcolrow     (1) 

  

Fig. 2. Grid mapping of station distribution. 

Then, the data of measuring stations were grid-mapped to 
each cell in which the location had been mapped. The 
meteorological data and the PM data were combined and 
represented as three-dimensional tensor in every time slice. 
All missing values were interpolated through the inverted 
distance weight (IDW) used for spatial data interpolation 
[11]. Additionally, we need to compare other models which 
do not include 2D spatial information. Thus, we also 
unfolded the conjugated data to make the input of the models. 
All process is shown in Fig. 3. 

 

 

Fig. 3. Conjugation, interpolation and unfolding. 
 

C. Modeling 

The proposed model is shown in Fig. 4, which is a hybrid 
model of ConvLSTM and 3D CNN. The input data are 
four-dimension including past 24-hour time, row, column 
and features. The kernel size of ConvLSTM is 
two-dimension including row and column. The kernel size of 
3D CNN is three-dimension including time, row and column.  

The ConvLSTM model uses three kinds of features as 
inputs including PM10 concentration, wind intensity, and 
wind direction data. The ConvLSTM model structure applies 
encoder-decoder for future predictor [12]. Two 2D 
ConvLSTM layers represent encoder and decoder 
respectively. The encoder creates hidden representation from 
past 24-hour data. This is copied by four times and used to 
inputs of the decoder. Therefore, spatiotemporal features are 
extracted sequentially to predict the next 4-hour PM 
concentrations.  

The 3D CNN Model uses all feature data except the 
direction of the wind as input. Three 3D CNN layer extracts 

International Journal of Information and Electronics Engineering, Vol. 9, No. 1, March 2019

35



  

only accumulated temporal features from past 24-hours in 
parallel. The features extracted from the two models are 
merged, and three 2D CNN layers with a kernel size of 1x1 
analyze the merged feature. Then, next 4-hour PM 
concentrations of all stations are extracted from the output of 
last 2D CNN layer. 

In our model, we set the filter size to 128 on 3D CNN 
layers and 2D ConvLSTM layers and to 1024 on 2D CNN 
layers. Specifically, we make multiple models with the 
different kernel size, [k,k] of the 2D ConvLSTM layers, 
which was subdivided into [1,1], [3,3], [5,5], which is for we 
need to compare the result depending on the kernel size. 
Predicted value can be affected by the more distant 
measuring stations in every prediction time if the kernel size 
is larger [9]. Also, we set the padding to (k-1) / 2 to keep the 
spatial information. 

 

 
Fig. 4. Hybrid Model of ConvLSTM and CNN. 

 

To verify the performance of the proposed models, various 
comparable models are needed. Those models maintain the 
encoder-decoder for future predictor structure to predict the 
next 4-hour PM concentration at same time. 
1) ConvLSTM : The CNN model part is excluded from the 

Hybrid model and the ConvLSTM model part is directly 
connected to 2D CNN. Merging is also excluded. This 
model uses all features. 

2) CNN-LSTM : This model is similar to the CNN-LSTM 
model [8] proposed in the previous study, but two LSTM 
layers are used to apply the encoder-decoder structure. 
Two 1D CNN layer and two LSTM layer are connected 
sequentially. Because this model does not need 2D 
spatial data, we use unfolded 1D vector from 3D tensors. 
Thus, 2D spatial information is excluded. 

3) LSTM : This model is made from the CNN-LSTM 
model, but two 1D CNN layers are excluded. This model 
is the simplest model, thus this is used as the baseline for 
this paper.  

III. EXPERIMENT 

To evaluate the performance of the proposed model, three 
indicators are used including the root mean square error 
(RMSE), the mean absolute error (MAE), and the index of 
agreement (IOA), which are mainly used to show model 
accuracy in weather forecasting research. The formulas for 
each indicator are in (2), (3) and (4); N denotes the number of 

test samples, iy
 
denotes predicted value and *

iy  denotes true 

value. The IOA denotes how closely the predicted value 
matches the actual value. If the predicted value is close to the 
true value, the IOA value is close to 1. 
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The average of RMSE, MAE, and IOA of PM 
concentration from all PM measuring stations for the next 4 
hours are presented in Table II, Table III and Table IV, 
respectively. In the tables, Hybrid denotes the proposed 
model in this paper, and [1,1], [3,3] and [5,5] denotes the 
kernel size of Convolution LSTM. 
 

TABLE Ⅱ: COMPARISON OF RMSE OF THE DIFFERENT MODEL 

Model 
Next 

1-hour 

Next 

2-hour 

Next 

3-hour 

Next 

4-hour 
Average 

Hybrid [1,1] 10.49  14.36  17.04  19.13  15.25  

Hybrid [3,3] 9.76  13.36  16.38  18.86  14.59  

Hybrid [5,5] 10.44  13.72  16.59  18.99  14.93  
ConvLSTM 
[3,3] 

9.85  13.61  16.69  19.19  14.84  

CNN-LSTM 13.91  15.41  17.33  19.26  16.48  
LSTM 13.90  16.00  17.99  19.67  16.89  

 
TABLE Ⅲ: COMPARISON OF MAE OF THE DIFFERENT MODEL 

Model 
Next 

1-hour 

Next 

2-hour 

Next 

3-hour 

Next 

4-hour 
Average 

Hybrid [1,1] 7.35  9.77  11.47  12.80  10.35  

Hybrid [3,3] 6.89  9.11  11.03  12.62  9.91  

Hybrid [5,5] 7.41  9.46  11.30  12.86  10.26  
ConvLSTM 
[3,3] 

6.95  9.27  11.23  12.84  10.07  

CNN-LSTM 9.80  10.63  11.75  12.89  11.27  
LSTM 9.89  11.24  12.48  13.49  11.78  

 
TABLE Ⅳ: COMPARISON OF IOA OF THE DIFFERENT MODEL 

Model 
Next 

1-hour 

Next 

2-hour 

Next 

3-hour 

Next 

4-hour 
Average 

Hybrid [1,1] 0.9654  0.9309  0.8959  0.8624  0.9136  

Hybrid [3,3] 0.9703  0.9415  0.9089  0.8768  0.9244  

Hybrid [5,5] 0.9647  0.9361  0.9038  0.8717  0.9191  
ConvLSTM 
[3,3] 

0.9695  0.9378  0.9028  0.8686  0.9197  

CNN-LSTM 0.9385  0.9240  0.9026  0.8776  0.9107  
LSTM 0.9353  0.9109  0.8840  0.8579  0.8971  
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Among the proposed Hybrid models with different kernel 

size, the Hybrid model with [3,3] kernel size shows the best 

performance in all indicators (RMSE: 14.59, MAE : 9.91, 

IOA : 0.9244) and the Hybrid model with [5,5] kernel size 

(RMSE : 14.93, MAE : 10.26, IOA : 0.9191) shows the better 

performance than the Hybrid model with [1,1] kernel size 

(RMSE : 15.25, MAE : 10.35, IOA : 0.9136.) If the kernel 

size is [1,1], the ConvLSTM layers in the Hybrid model 

cannot extract additional spatial features from the near 

measuring stations. Therefore, the result shows that 

extracting additional spatial features makes the performance 

better. It also represents that considering the inflow of PM by 

wind effect is important. The best kernel size for effectively 

extracting spatial information from the given dataset is not 

[5,5] but [3, 3]. This means that the model with large kernel 

size can cause performance degradation because more distant 

measuring stations used to every time slices input is not 

relevant to predict target measuring stations. 

Compared with all models, Hybrid models and 

ConvLSTM model which keep two-dimensional spatial 

information show better results than CNN-LSTM (RMSE : 

16.48, MAE : 11.27, IOA : 0.9107) and LSTM (RMSE : 

16.89, MAE : 11.78, IOA : 0.8971) which do not keep the 

spatial information through unfold process of input data. This 

result indicates that it is reasonable to keep the spatial 

information in order to estimate the PM concentration of 

many measuring stations from many measuring stations. 

Also, the Hybrid model shows better performance than 

ConvLSTM model having same kernel size on ConvLSTM 

layers. This shows that the combination of 3D CNN layers 

extracting temporal features in parallel can help to improve 

the performance. 

 

IV. CONCLUSION 

In this paper, we proposed a Hybrid model, which 

combines the ConvLSTM model processing spatiotemporal 

information at the same time sequentially and the CNN 

model extracting temporal features in parallel. To evaluate 

the performance of the proposed model, we compared this 

model with other models including LSTM model or 

CNN-LSTM model which maintains temporal information 

for long periods of time, but those are not suitable to process 

spatial data. We used three indicators including RMSE, MAE 

and IOA indicators which are generally used in weather 

forecasting research. Some useful findings can be listed as 

follows:  

1) The Hybrid model and ConvLSTM model which can 
keep and process spatial information exhibited better 
performance than the LSTM-based models which do not 
keep spatial information. 

2) By choosing the appropriate kernel size and using the 
proper number of near measuring stations to every time 
slices input, the model performance could be improved. 

3) Comparing the Hybrid model and ConvLSTM model, 
we demonstrated that combining with CNN can make 
performance better because CNN extracted temporal 
features in parallel. 

For further work, we will extend the coverage of 

measuring stations and use more additional feature data to 

predict longer-term PM concentration. Also, we will improve 

the internal structure of the ConvLSTM layer to simulate 

inflow of PM from near areas by the wind effect better. 
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