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1. Introduction

Acoustic analysis is becoming more commonplace due to the evolution of
suitable analysis techniques and the increase in computational power of
affordable computers. For small acoustic problems, i.e., where the region to be
modelled is not large numbers of acoustic wavelengths in extent, the two most
commonly used methods are finite elements (FE) and boundary elements (BE).
These two techniques both have their advantages and disadvantages, depending
on the problem to be solved. FE are definitely better if the fluid medium has
inhomogeneous properties. BE do not deal as well with natural frequency
calculations. For steady state harmonic response the BE method is better at
exterior problems. For interior problems, either technique could be used - the
author's opinion is that FE has the edge. The relative computational advantage
of the FE will increase with the ratio of boundary to volume, as the geometry
of the problem changes. Ease of mesh creation is another factor to be taken
into account.

This paper considers a method of coupling the FE and BE for steady state
acoustic problems. The intention is to enable an efficient solution for situations
where neither method is ideally suited.

Fluid Equations

For small amplitude oscillations in an irrotational, inviscid, compressible fluid
with no mean flow the pressure distribution satisfies the wave equation.
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where ¢ is the wavespeed. For steady state vibration at frequency @ this
reduces to the Helmholtz equation

Vip+k*p=0 )

where k=— is the acoustic wavenumber. On a boundary with normal
c

displacement u,,, the condition
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where p is the density, is required. For external problems, the total pressure p
can be decomposed as

P=Dr+Ds 4

where p; is the free field incident pressure and p; is the scattered pressure,
which must satisfy the Sommerfield radiation condition to ensure that it consists
only of outgoing waves.

Acoustic Finite Elements
The acoustic FE equations can be derived using weighted residual methods, as

described briefly below, or by applying variational principles. The weighted
residuals statement is
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where W is an arbitrary weighing function, I is the boundary of the fluid region
and the normal » is taken positive into the fluid. Integrating by parts using
divergence theorem, using an interpolation

p=[N}{p} ©

for pressure over a mesh of volume elements and using the Galerkin principle
results in a set of equations which can be put in the form

[M, 145} +1S, }p3 - L INT i T = (0) ™
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where [M,] and [S,] are square symmetric matrices which can be conveniently
computed for each element and merged together for the whole system. These
matrices are sparse.

More detailed derivation of the acoustic FE method together with some
examples of its use is contained in Ref Petyt, Lea & Koopman!.

Acoustic Boundary Elements

The direct formulation of the acoustic BE method is based on the Helmholtz
formula,
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where T’ is the boundary of the fluid region, 47¢ is the solid angle in the fluid
domain for point x and
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is the free space Green's function and r is [x—y|. To obtain numerical

solutions I" is divided into patches R; over which p and % are interpolated

using the same shape functions [N]. Equation (8) becomes
ep(z)—ZI o, N (p) = ZI g[N]dr{”?’}Jr{pI} (10)

where m is the number of patches. Taking x to be at each nodal point in turn, a
set of linear equations arise, which can be expressed in matrix form as

[H1{p} = [G]{%}+{p,} (11

For exterior problems, difficulties arise with the surface Helmholtz formulation
at certain characteristic frequencies. The matrices [H] and [G] become singular
and are ill-conditioned at nearby frequencies. More elaborate methods can be
used to overcome these problems, such as the CHIEF method due to Schenck?
or the Burton-Miller3 formulation.
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Coupling To Structural Finite Elements

An acoustic FE or BE mesh can be coupled to a structural FE mesh. It is
necessary to add a loading term in the structural equations due to the pressure
distribution in the fluid. The usual structural FE equations become modified to

(1S1+i0lC]- P IMY) () +[TT {p} = {F} (12)

where [S], [C] and [M] are the structural stiffness, damping and mass
matrices respectively {u}is a vector of displacements on the structural

mesh, {F} is a vector of externally applied forces and [7] is a coupling matrix
defined by

(1= [ (v, w7 IV ar (13)

where [N,] are the acoustic shape functions and [N,] are structural shape
functions interpolating the displacements u .

For coupling with acoustic FE it is necessary to express the loading term due to
the boundary accelerations in terms of the structural motion. Equation (7)
becomes modified to

([S.1- @M, )){p} + &*[T)u} = {0} (14)

Coupling between structural FE and an acoustic BE requires the construction of
a matrix [E] such that [E]” {u} gives the normal displacements at the degrees
of freedom on the BE mesh. Equation (11) becomes

[H){p) = 0* p[GUEY {u}+{p;} (15)

An example of analyses using structural FE, acoustic FE and acoustic BE is
contained in Ref Macey and Hardie?.

Coupling Acoustic Finite Elements And Boundary Elements

Let the acoustic FE and BE pressure vectors be denoted by {p,} and {p,}

respectively. The latter can be further split into {p,,} and {p,,} where {p,;}
are the pressures on the interface with the acoustic FE mesh and {p,,} are on
the interface with the structural mesh. The accelerations on the boundary T in
equation (7) can be related in part to the surface motion of the structural FE
mesh and in part to the normal pressure gradients on the BE mesh. This results
in the equation
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((S.1- 0 [M, (s} + @[T, 1} +10)(ps} = [ R1{ Py} (16)
where
MF%&muﬁm1ﬂﬁwkwh{mw1 (17)

and T, is the interface between the acoustic FE and BE. The pressures on the
two meshes can be related as:

{po} =Wlps} (18)

where [W¥] just contains rows of shape functions. The full set of equations is

If[S]+zw[C] o’ M) [T Tl” (07 )f ) {F}
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| [o] 7] -1 (0] l[{pbl} {0}
I_ -0? p[E]" (01 [D,] [Dzz]J {pp2}) K M{per}
where [/] is the unit matrix and

[D]1=[HI[GT", [K]=[G]"" (20)

Numerical Results

Three test problems have been used to check the new hybrid formulation, a
piston vibrating in an infinite rigid baffle radiating into a half space, a radially
poled piezoelectric cylinder transducer and three coaxial rigid disks scattering
an axially incident plane wave. Results presented in this paper use axisymmetric
meshes, although the PAFEC acoustics program also permits acoustic FE/BE
coupling for 3D meshes. Quadratic elements are used throughout, so that the
acoustic FE mesh is composed of 8 noded quadrilaterals and 6 noded triangles
and the BE is composed of 3 noded line patches.

The piston problem has an analytical solution for comparison. The piston was
taken to have radius 1m and vibrate with unit velocity. The fluid was taken to
be water with p=1000kgm-3 and c=1500ms-1. Acoustic FE were used to mesh
the space immediately in front of the piston and the BE was used for the rest of
the half space, see figure 1. Figure 2 shows a comparison of pressure computed
at the piston centre with the analytical result.

The details of the cylinder together with the experimental results are given by
Rogers>, Figure 3 shows the FE/BE mesh used. Axisymmetric piezoelectric FE
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were used to model the cylinder. Figure 4 gives a comparison against the
experimental results.

The coaxial disks were taken to have radius 0.75m, thickness 0.25m and
separation of 0.075m. The surrounding fluid was taken to be water with
properties as above. Figure 5 shows the mesh used. Figure 6 compares results
with a pure BE solution at a point on axis, 0.25m before the first disk. The new
hybrid model ran at least twice as fast as the pure BE solution, due to the
reduction in the number of nodes on the BE.

In all cases, the comparison is good.
Conclusion

The hybrid FE/BE formulation has been shown to work correctly. It is able to
reduce the solution time in many cases if the 'amount of boundary' can be
reduced. Another speed enhancement from this method is to model the fluid
around a vibrating structure with FE and use an approximate but faster BE on
the remote boundary, as tried successfully by Hardie®. It will also find
application where the near field fluid is not homogeneous.
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