
Hybrid Models with Deep and Invertible Features

Eric Nalisnick * 1 Akihiro Matsukawa * 1 Yee Whye Teh 1 Dilan Gorur 1 Balaji Lakshminarayanan 1

Abstract

We propose a neural hybrid model consisting of

a linear model defined on a set of features com-

puted by a deep, invertible transformation (i.e. a

normalizing flow). An attractive property of our

model is that both p(features), the density

of the features, and p(targets|features),
the predictive distribution, can be computed ex-

actly in a single feed-forward pass. We show

that our hybrid model, despite the invertibility

constraints, achieves similar accuracy to purely

predictive models. Yet the generative component

remains a good model of the input features despite

the hybrid optimization objective. This offers ad-

ditional capabilities such as detection of out-of-

distribution inputs and enabling semi-supervised

learning. The availability of the exact joint density

p(targets,features) also allows us to com-

pute many quantities readily, making our hybrid

model a useful building block for downstream

applications of probabilistic deep learning.

1. Introduction

In the majority of applications, deep neural networks model

conditional distributions of the form p(y|x), where y de-

notes a label and x features or covariates. However, model-

ing just the conditional distribution is insufficient in many

cases. For instance, if we believe that the model may be

subjected to inputs unlike those of the training data, a model

for p(x) can possibly detect an outlier before it is passed

to the conditional model for prediction. Thus modeling the

joint distribution p(y,x) provides a richer and more useful

representation of the data. Models defined by combining

a predictive model p(y|x) with a generative one p(x) are

known as hybrid models (Jaakkola & Haussler, 1999; Raina

et al., 2004; Lasserre et al., 2006; Kingma et al., 2014).

Hybrid models have been shown to be useful for novelty

*Equal contribution 1DeepMind. Correspondence to: Balaji
Lakshminarayanan <balajiln@google.com>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

detection (Bishop, 1994), semi-supervised learning (Druck

et al., 2007), and information regularization (Szummer &

Jaakkola, 2003).

Crafting a hybrid model usually requires training two mod-

els, one for p(y|x) and one for p(x), that share a subset

(Raina et al., 2004) or possibly all (McCallum et al., 2006)

of their parameters. Unfortunately, training a high-fidelity

p(x) model alone is difficult, especially in high dimensions,

and good performance requires using a large neural network

(Brock et al., 2019). Yet principled probabilistic inference

is hard to implement with neural networks since they do

not admit closed-form solutions and running Markov chain

Monte Carlo takes prohibitively long. Variational inference

then remains as the final alternative, and this now introduces

a third model, which usually serves as the posterior ap-

proximation and/or inference network (Kingma & Welling,

2014; Kingma et al., 2014). To make matters worse, the

p(y|x) model may require a separate approximate inference

scheme, leading to additional computation and parameters.

In this paper, we propose a neural hybrid model that over-

comes many of the aforementioned computational chal-

lenges. Most crucially, our model supports exact inference

and evaluation of p(x). Furthermore, in the case of regres-

sion, Bayesian inference for p(y|x) is exact and available in

closed-form as well. Our model is made possible by lever-

aging recent advances in deep invertible generative models

(Rezende & Mohamed, 2015; Dinh et al., 2017; Kingma &

Dhariwal, 2018). These models are defined by composing

invertible functions, and therefore the change-of-variables

formula can be used to compute exact densities. Moreover,

these invertible models have been shown to be expressive

enough to perform well on prediction tasks (Gomez et al.,

2017; Jacobsen et al., 2018). We use the invertible function

as a natural feature extractor and define a linear model at the

level of the latent representation, which is memory-efficient

as the bulk of the parameters are shared between p(x) and

p(y|x). Furthermore, with just one feed-forward pass we

can obtain both p(x) and p(y|x), with the only additional

cost being the log-determinant-Jacobian term required by

the change of variables. While this term could be expensive

to compute for general functions, much recent work has

been done on defining expressive invertible neural networks

with easy-to-evaluate volume elements (Dinh et al., 2015;

2017; Kingma & Dhariwal, 2018; Grathwohl et al., 2019).

Hybrid Models with Deep and Invertible Features

In summary, our contributions are:

• Defining a neural hybrid model with exact inference

and evaluation of p(y,x), which can be computed in

one feed-forward pass and without any Monte Carlo

approximations.

• Evaluating the model’s predictive accuracy and uncer-

tainty on both classification and regression problems.

• Using the model’s natural ‘reject’ rule based on the

generative component p(x) to filter out-of-distribution

(OOD) inputs.

• Showing that our hybrid model performs well at semi-

supervised classification.

2. Background

We begin by establishing notation and reviewing the neces-

sary background material. We denote matrices with upper-

case and bold letters (e.g. X), vectors with lower-case

and bold (e.g. x), and scalars with lower-case and no

bolding (e.g. x). Let the collection of all observations

be denoted D = {X,y} = {(xn, yn)
N
n=1} with x repre-

senting a vector containing features and y a scalar repre-

senting the corresponding label. We define a predictive

model’s density function to be p(y|x;θ) and a genera-

tive density to be p(x;θ), where θ ∈ Θ are the shared

model parameters. Let the joint likelihood be denoted

p(y,X;θ) =
∏N

n=1 p(yn|xn;θ)p(xn;θ).

2.1. Invertible Generative Models

Deep invertible transformations are the first key building

block in our approach. These are simply high-capacity,

bijective transformations with a tractable Jacobian matrix

and inverse. The best known models of this class are the

real non-volume preserving (RNVP) transform (Dinh et al.,

2017) and its recent extension, the Glow transform (Kingma

& Dhariwal, 2018). The bijective nature of these transforms

is crucial as it allows us to employ the change-of-variables

formula for exact density evaluation:

log px(x) = log pz(f(x;φ)) + log

∣

∣

∣

∣

∂fφ
∂x

∣

∣

∣

∣

(1)

where f(·;φ) denotes the transform with parameters φ,

|∂f/∂x| the determinant of the Jacobian of the transform,

and pz(z = f(·;φ)) a distribution on the latent variables

computed from the transform. The modeler is free to choose

pz , and therefore it is often set as a factorized standard

Gaussian for computational simplicity. The affine coupling

layer (ACL) (Dinh et al., 2017) is the key building block

used by RNVP and Glow to define f(·;φ). It consists of

transforming half of the representation with translation and

scaling operations and copying the other half forward to

the output. See Appendix A in the supplementary material

for a detailed description of the ACL. Glow (Kingma &

Dhariwal, 2018) introduces 1 × 1 convolutions between

ACLs. The parameters φ are estimated via maximizing the

exact log-likelihood log p(X;φ).

While the invertibility requirements imposed on f may seem

too restrictive to define an expressive model, recent work

using invertible transformations for classification Jacobsen

et al. (2018) reports metrics comparable to non-invertible

residual networks, even on challenging benchmarks such as

ImageNet, and recent work by Kingma & Dhariwal (2018)

has shown that invertible generative models can produce

sharp samples. Sampling from a flow is done by first sam-

pling from the latent distribution and then passing that sam-

ple through the inverse transform: ẑ ∼ pz, x̂ = f−1(ẑ).

2.2. Generalized Linear Models

Generalized linear models (GLMs) (Nelder & Baker, 1972)

are the second key building block that we employ. They

model the expected response y as follows:

E[yn|zn] = g−1
(

βTzn

)

(2)

where E[y|z] denotes the expected value of yn, β a R
d

vector of parameters, zn the covariates, and g−1(·) a link

function such that g−1 : R 7→ µy|z . For notational conve-

nience, we assume a scalar bias β0 has been subsumed into

β. A Bayesian GLM could be defined by specifying a prior

p(β) and computing the posterior p(β|y,Z). When the link

function is the identity (i.e. simple linear regression) and

β ∼ N(0,Λ−1), then the posterior distribution is available

in closed-form:

p(β|y,X) = N

(

XTy

XTX + σ2
0Λ

,
σ2
0

XTX + σ2
0Λ

)

(3)

where σ0 is the response noise. In the case of logistic regres-

sion, the posterior is no longer conjugate but can be closely

approximated (Jaakkola & Jordan, 1997).

3. Combining Deep Invertible Transforms

and Generalized Linear Models

We propose a neural hybrid model consisting of a deep in-

vertible transform coupled with a GLM. Together the two

define a deep predictive model with both the ability to com-

pute p(x) and p(y|x) exactly, in a single feed-forward pass.

The model defines the following joint distribution over a

label-feature pair (yn,xn):

p(yn,xn;θ) = p(yn|xn;β,φ) p(xn;φ)

= p(yn|f(xn;φ);β) pz(f(xn;φ))

∣

∣

∣

∣

∂fφ
∂xn

∣

∣

∣

∣

(4)

where zn = f(xn,φ) is the output of the invertible trans-

formation, pz(z) is the latent distribution (also referred to

Hybrid Models with Deep and Invertible Features

x

z = fφ(x)

y = g(βT z)

p(y|x)

p(x)

Invertible mapping

GLM

Figure 1. Model Architecture. The diagram above shows the

DIGLM’s computational pipeline, which is comprised of a GLM

stacked on top of an invertible generative model. The model param-

eters are θ = {φ,β} of which φ is shared between the generative

and predictive model, and β denotes parametrizes the GLM in the

predictive model.

as the prior or base distribution), and p(yn|f(xn;φ);β)
is a GLM with the latent variables serving as its input

features. For simplicity, we assume a factorized latent

distribution p(z) =
∏

d p(zd), following previous work

(Dinh et al., 2017; Kingma & Dhariwal, 2018). Note that

φ = {φt,l,φs,l}
L
l=1 are the parameters of the generative

model and that θ = {φ,β} are the parameters of the joint

model. Sharing φ between both components allows the con-

ditional distribution to influence the generative distribution

and vice versa. We term the proposed neural hybrid model

the deep invertible generalized linear model (DIGLM).

Given labeled training data {(xn, yn)}
N
n=1 sampled from

the true distribution of interest p∗(x, y), the DIGLM can be

trained by maximizing the exact joint log-likelihood, i.e.

J (θ) = log p(y,X;θ) =
N
∑

n=1

log p(yn,xn;θ),

via gradient ascent. As per the theory of maximum

likelihood, maximizing this log probability is equiv-

alent to minimizing the Kullback-Leibler (KL) diver-

gence between the true joint distribution and the model:

DKL

(

p∗(x, y)‖pθ(x, y)
)

.

Figure 1 shows a diagram of the DIGLM. We see that the

computation pipeline is essentially that of a traditional neu-

ral network but one defined by stacking ACLs. The input x

first passes through fφ, and the latent representation and the

stored Jacobian terms are enough to compute p(x). In par-

ticular, evaluating pz(f(xn;φ)) has an O(D) run-time cost

for factorized distributions, and |∂fφ/∂xn| has a O(LD)
run-time for RNVP architectures, where L is the number

of affine coupling layers and D is the input dimensional-

ity. Evaluating the predictive model adds another O(D)
cost in computation, but this cost will be dominated by the

prerequisite evaluation of fφ.

Weighted Objective In practice we found the DIGLM’s

performance improved by introducing a scaling factor on

the contribution of p(x). The factor helps control for the

effect of the drastically different dimensionalities of y and

x. We denote this modified objective as:

Jλ(θ) =

N
∑

n=1

(

log p(yn|xn;β,φ) + λ log p(xn;φ)
)

(5)

where λ is the scaling constant. Weighted losses are com-

monly used in hybrid models (Lasserre et al., 2006; Mc-

Callum et al., 2006; Kingma et al., 2014; Tulyakov et al.,

2017). Yet in our particular case, we can interpret the

down-weighting as encouraging robustness to input vari-

ations. In other words, down-weighting the contribution of

log p(xn;φ) can be considered a Jacobian-based regular-

ization penalty. To see this, notice that the joint likelihood

rewards maximization of |∂fφ/∂xn|, thereby encouraging

the model to increase the ∂fd/∂xd derivatives (i.e. the di-

agonal terms). This optimization objective stands in direct

contrast to a long history of gradient-based regularization

penalties (Girosi et al., 1995; Bishop, 1995; Rifai et al.,

2011), which add the Frobenius norm of the Jacobian as a

penalty to a loss function (or negative log-likelihood). Thus,

we can interpret the de-weighting of |∂fφ/∂xn| as adding

a Jacobian regularizer with weight λ̃ = (1−λ). If the latent

distribution term is, say, a factorized Gaussian, the variance

can be scaled by a factor of 1/λ to introduce regularization

only to the Jacobian term.

3.1. Semi-supervised learning

As mentioned in the introduction, having a representation

of the joint density enables the model to be trained on data

sets that do not have a label for every feature vector—i.e.

semi-supervised data sets. When a label is not present, the

principled approach to the situation is to integrate out the

variable:

∫

y

p(y,x;θ,φ) dy = p(x;φ)

∫

y

p(y|x;θ) dy = p(x;φ).

(6)

Thus, we should use the unpaired x observations to train

just the generative component.

3.2. Selective Classification

Equation 6 above also suggests a strategy for evaluating

the model in real-world situations. One can imagine the

DIGLM being deployed as part of a user-facing system and

that we wish to have the model ‘reject’ inputs that are unlike

the training data. In other words, the inputs are anomalous

Hybrid Models with Deep and Invertible Features

with respect to the training distribution, and we cannot ex-

pect the p(y|x) component to make accurate predictions

when x is not drawn from the training distribution. In this

setting we have access only to the user-provided features x∗,

and thus should evaluate by way of Equation 6 again, com-

puting p(x∗;φ). This observation then leads to the natural

rejection rule:

if p(x∗;φ) < τ, then reject x∗ (7)

where τ is some threshold, which we propose setting as

τ = minx∈D p(x;φ)− c where the minimum is taken over

the training set and c is a free parameter providing slack in

the margin. When rejecting a sample, we output the uncon-

ditional p(y), e.g. uniform probabilities for classification

problems, hence the prediction for x∗ is given by

p(y) 1[p(x∗;φ) < τ] + p(y|x∗) 1[p(x∗;φ) ≥ τ] (8)

where 1[·] denotes an indicator function. Similar generative-

model-based rejection rules have been proposed previously

(Bishop, 1994). This idea is also known as selective clas-

sification or classification with a reject option (Hellman,

1970; Cordella et al., 1995; Fumera & Roli, 2002; Herbei &

Wegkamp, 2006; Geifman & El-Yaniv, 2017).

4. Bayesian Treatment

We next describe a Bayesian treatment of the DIGLM, deriv-

ing some closed-form quantities of interest and discussing

connections to Gaussian processes. The Bayesian DIGLM

(B-DIGLM) is defined as follows:

f(x;φ) ∼ p(z), β ∼ p(β), yn ∼ p(yn|f(xn;φ),β).

The material difference from the earlier formulation is that a

prior p(β) is now placed on the regression parameters. The

B-DIGLM defines the joint distribution of three variables—

p(yn,xn,β;φ)—and to perform proper Bayesian inference,

we should marginalize over p(β) when training, resulting

in the modified objective:

p(yn,xn;φ) =

∫

β

p(yn,xn,β;φ) dβ

=

∫

β

p(yn|xn;φ,β)p(β) dβ p(xn;φ)

= p(yn|f(xn;φ)) pz(f(xn;φ))

∣

∣

∣

∣

∂fφ
∂xn

∣

∣

∣

∣

(9)

where p(yn|f(xn;φ)) is the marginal likelihood of the re-

gression model.

While p(yn|f(xn;φ)) is not always available in closed-

form, it is in some cases. For instance, if we assume that

the likelihood model is Gaussian as in linear regression, and

that β is given a zero-mean Gaussian prior, i.e.

p(yn|zn,β) = N(yn;β
Tzn, σ

2
0), β ∼ N(0, λ−1

I)

then the marginal likelihood can be written as:

log p(yn|f(xn;φ))

= logN
(

y; 0, σ2
0I+ λ−1ZφZ

T
φ

)

(10)

∝ −yT (σ2
0I+ λ−1ZφZ

T
φ)

−1y − log
∣

∣σ2
0I+ λ−1ZφZ

T
φ

∣

∣

where Zφ is the matrix of all latent representations, which

we subscript with φ to emphasize that it depends on the

invertible transform’s parameters.

Connection to Gaussian Processes From Equation 10

we see that B-DIGLMs are related to Gaussian processes

(GPs) (Rasmussen & Williams, 2006). GPs are defined

through their kernel function k(xi,xj ;ψ), which in turn

characterizes the class of functions represented. The

marginal likelihood under a GP is defined as

log p(yn|xn;ψ) ∝ −yT (σ2
0I+Kψ)

−1y − log
∣

∣σ2
0I+Kψ

∣

∣

with ψ denoting the kernel parameters. Comparing

this equation to the B-DIGLM’s marginal likelihood in

Equation 10, we see that they become equal by setting

Kψ = λ−1ZφZ
T
φ , and thus we have the implied kernel

k(xi,xj) = λ−1f(xi;φ)
T f(xj ;φ). Perhaps there are

even deeper connections to be made via Fisher kernels

(Jaakkola & Haussler, 1999) or probability product ker-

nels (Jebara et al., 2004)—kernel functions derived from

generative models—but we leave this investigation to future

work.

Approximate Inference If the marginal likelihood is not

available in closed form, then we must resort to approximate

inference. In this case, understandably, our model loses the

ability to compute exact marginal likelihoods. We can use

one of the many lower bounds developed for variational

inference to bypass the intractability. Using the usual varia-

tional Bayes evidence lower bound (ELBO) (Jordan et al.,

1999), we have

log p(yn|f(xn;φ)) ≥ Eq(β) [p(yn|xn;φ,β)]

− KLD [q(β)||p(β)]
(11)

where q(β) is a variational approximation to the true poste-

rior. We leave thorough investigation of approximate infer-

ence to future work, and in the experiments we use either

conjugate Bayesian inference or point estimates for β.

One may ask: why stop the Bayesian treatment at the pre-

dictive component? Why not include a prior on the flow’s

parameters as well? This could be done, but Riquelme

et al. (2018) showed that Bayesian linear regression with

deep features (i.e. computed by a deterministic neural net-

work) is highly effective for contextual bandit problems,

which suggests that capturing the uncertainty in prediction

parameters β is more important than the uncertainty in the

representation parameters φ.

Hybrid Models with Deep and Invertible Features

(a) Gaussian Process (b) B-DIGLM p(y|x) (c) B-DIGLM p(x)

Figure 2. 1-dimensional Regression Task. We construct a toy regression task by sampling x-observations from a Gaussian mixture model

and then assigning responses y = x3 + ǫ with ǫ being heteroscedastic noise. Subfigure (a) shows the function learned by a Gaussian

process and (b) shows the function learned by the Bayesian DIGLM. Subfigure (c) shows the p(x) density learned by the same DIGLM

(black line) and compares it to a KDE (gray shading).

5. Related Work

We are unaware of any work that uses normalizing flows as

the generative component of a hybrid model. The most re-

lated work is the class conditional variant of Glow (Kingma

& Dhariwal, 2018, Appendix D). For this model, Kingma &

Dhariwal (2018) use class-conditional latent distributions

and introduce a (down weighted) classification loss to the

penultimate layer of the flow. However, they do not evaluate

the model for its predictive capabilities and instead (qualita-

tively) evaluate its class-conditional generative abilities.

While several works have studied the trade-offs between gen-

erative and predictive models (Efron, 1975; Ng & Jordan,

2002), Jaakkola & Haussler (1999) were perhaps the first

to meaningfully combine the two, using a generative model

to define a kernel function that could then be employed by

classifiers such as SVMs. Raina et al. (2004) took the idea

a step further, training a subset of a naive Bayes model’s pa-

rameters with an additional predictive objective. McCallum

et al. (2006) extended this framework to train all parameters

with both generative and predictive objectives. Lasserre

et al. (2006) showed that a simple convex combination of

the generative and predictive objectives does not necessar-

ily represent a unified model and proposed an alternative

prior that better couples the parameters. Druck et al. (2007)

empirically compared Lasserre et al. (2006)’s and McCal-

lum et al. (2006)’s hybrid objectives specifically for semi-

supervised learning. Recent advances in deep generative

models and stochastic variational inference have allowed the

aforementioned frameworks to include neural networks as

the predictive and/or generative components. Deep neural

hybrid models haven been defined by (at least) Kingma et al.

(2014), Maaløe et al. (2016), Kuleshov & Ermon (2017),

Tulyakov et al. (2017), and Gordon & Hernández-Lobato

(2017). However, these models, unlike ours, require approx-

imate inference to obtain the p(x) component.

As mentioned in the introduction, invertible residual net-

works have been shown to perform as well as non-invertible

architectures on popular image benchmarks (Gomez et al.,

2017; Jacobsen et al., 2018). While the change-of-variables

formula could be calculated for these models, it is computa-

tionally difficult to do so, which prevents their application

to generative modeling. The concurrent work of Behrmann

et al. (2019) shows how to preserve invertibility in general

residual architectures and describes a stochastic approxima-

tion of the volume element to allow for high-dimensional

generative modeling. Hence their work could be used to

define a hybrid model similar to ours, which they mention

as area for future work.

6. Experiments

We now report experimental findings for a range of regres-

sion and classification tasks. Unless otherwise stated, we

used the Glow architecture (Kingma & Dhariwal, 2018)

to define the DIGLM’s invertible transform and factorized

standard Gaussian distributions as the latent prior p(z).

6.1. Regression on Simulated Data

We first report a one-dimensional regression task to pro-

vide an intuitive demonstration of the DIGLM. We draw

x-observations from a Gaussian mixture with parameters

µ = {−4, 0,+4}, σ = {.4, .6, .4}, and equal compo-

nent weights. We simulate responses with the function

y = x3 + ǫ(k) where ǫ(k) denotes observation noise as a

function of the mixture component k. Specifically we chose

ǫ(k) ∼ 1[k ∈ {1, 3}]N(0, 3) + 1[k = 2]N(0, 20). We

train a B-DIGLM on 250 observations sampled in this way,

use standard Normal priors for p(z) and p(β), and three

planar flows (Rezende & Mohamed, 2015) to define f(x).
We compare this model to a Gaussian process (GP) and

a kernel density estimate (KDE), which both use squared

exponential kernels.

Figure 2(a) shows the predictive distribution learned by

the GP, and Figure 2(b) shows the DIGLM’s predictive

Hybrid Models with Deep and Invertible Features

distribution. We see that the models produce similar results,

with the only conspicuous difference being the GP has a

stronger tendency to revert to its mean at the plot’s edges.

Figure 2(c) shows the p(x) density learned by the DIGLM’s

flow component (black line), and we plot it against the KDE

(gray shading) for comparison. The single B-DIGLM is

able to achieve comparable results to the separate GP and

KDE models.

Thinking back to the rejection rule defined in Equation 7,

this result, albeit on a toy example, suggests that density

thresholding would work well in this case. All data obser-

vations fall within x ∈ [−5, 6], and we see from Figure

2(c) that the DIGLM’s generative model smoothly decays

to the left and right of this range, meaning that there does

not exist an x∗ that lies outside the training support but has

p(x∗) ≥ minx∈D p(x).

6.2. Regression on Flight Delay Data Set

Next we evaluate the model on a large-scale regression

task using the flight delay data set (Hensman et al., 2013).

The goal is to predict how long flights are delayed based

on eight attributes. Following Deisenroth & Ng (2015),

we train using the first 5 million data points and use the

following 100, 000 as test data. We picked this split not

only to illustrate the scalability of our method, but also

due to the fact that the test distribution is known to be

slightly different from training, which poses challenges of

non-stationarity. We evaluate the performance by measuring

the root mean squared error (RMSE) and the negative log-

likelihood (NLL).

One could model heteroscedasticity in GLMs using random

effects (see Appendix C for a discussion), however as a

simpler alternative, we follow the solution proposed by Lak-

shminarayanan et al. (2017) for heteroscedastic regression

and set p(y|z) to be a two-headed model that predicts both

the mean and variance. We use a RNVP transform as the

invertible function where the RNVP blocks use 1-layer net-

work with 100 hidden units, and train using Adam optimizer

for 10 epochs with learning rate 10−3 and batch size 100.

To the best of our knowledge, the state-of-the-art (SOTA)

performance on this data set is a test RMSE of 38.38 and a

test NLL of 6.91 (Lakshminarayanan et al., 2016). Our hy-

brid model achieves a slightly worse test RMSE of 40.46 but

achieves a markedly better test NLL of 5.07. We believe

that this superior NLL stems from the hybrid model’s ability

to detect the non-stationarity of the data. Figure 3 shows a

histogram of the log p(x) evaluations for the training data

(blue bars) and test data (red bars). The leftward shift in the

red bars confirms that the test data points indeed have lower

density under the flow than the training points.

Figure 3. Histogram of log p(x) on the flight delay data set. The

leftward shift in the test set (red) shows that our DIGLM model is

able to detect covariate shift.

6.3. MNIST Classification

Moving on to classification, we train a DIGLM on MNIST

using 16 Glow blocks (1 × 1 convolution followed by a

stack of ACLs) to define the invertible function. Inside of

each ACL, we use a 3-layer Highway network (Srivastava

et al., 2015) with 200 hidden units to define the transla-

tion t(·;φs) and scaling s(·;φs) operations. We use batch

normalization in the networks for simplicity in distributed

coordination rather than actnorm as was used by Kingma &

Dhariwal (2018). We use dropout (Srivastava et al., 2014)

before passing z to the GLM, and tune dropout rate on the

validation set. Optimization was done via Adam (Kingma

& Ba, 2014) with a 10−4 initial learning rate for 100k steps,

then decayed by half at iterations 800k and 900k.

We compare the DIGLM to its discriminative component,

which is obtained by setting the generative weight to zero

(i.e. λ = 0). We report test classification error, NLL, and

entropy of the predictive distribution. Following Lakshmi-

narayanan et al. (2017), we evaluate on both the MNIST

test set and the NotMNIST test set, using the latter as an

out-of-distribution (OOD) set. The OOD test is a proxy

for testing if the model would be robust to anomalous in-

puts when deployed in a user-facing system. The results

are shown in Table 1. Looking at the MNIST results, the

discriminative model achieves slightly lower test error, but

the hybrid model achieves better NLL and entropy. As ex-

pected, λ controls the generative-discriminative trade-off

with lower values favoring discriminative performance and

higher values favoring generative performance.

Model
MNIST NotMNIST

BPD ↓ error ↓ NLL ↓ BPD ↑ NLL ↓ Entropy ↑

Discriminative (λ = 0) 81.80* 0.67% 0.082 87.74* 29.27 0.130

Hybrid (λ = 0.01/D) 1.83 0.73% 0.035 5.84 2.36 2.300

Hybrid (λ = 1.0/D) 1.26 2.22% 0.081 6.13 2.30 2.300

Hybrid (λ = 10.0/D) 1.25 4.01% 0.145 6.17 2.30 2.300

‘

Table 1. Results on MNIST comparing hybrid model to discrimi-

native model. Arrows indicate which direction is better.

Hybrid Models with Deep and Invertible Features

(a) Discriminative Model (λ = 0) (b) Hybrid Model (c) Latent Space Interpolations

Figure 4. Histogram of log p(x) on classification experiments on MNIST. The hybrid model is able to successfully distinguish between

in-distribution (MNIST) and OOD (NotMNIST) test inputs. Subfigure (c) shows latent space interpolations.

Next, we compare the generative density p(x) of the hybrid

model1 to that of the pure discriminative model (λ = 0),

quantifying the results in bits-per-dimension (BPD). Since

the discriminative variant was not optimized to learn p(x),
we expect it to have a high BPD for both in- and out-of

distribution sets. This experiment is then a sanity check

that a discriminative objective alone is insufficient for OOD

detection and a hybrid objective is necessary. First examin-

ing the discriminative models’ BPD in Table 1, we see that

it assigns similar values to MNIST and NotMNIST: 81.8
vs 87.74 respectively. While at first glance this difference

suggests OOD detection is possible, a closer inspection of

the per instance log p(x) histogram—which we provide in

Subfigure 4(a)—shows that the distribution of train and test

set densities are heavily overlapped. Subfigure 4(b) shows

the same histograms for the DIGLM trained with a hybrid

objective. We now see conspicuous separation between the

NotMNIST (red) and MNIST (blue) sets, which suggests

the threshold rejection rule would work well in this case.

Using the selective classification setup described earlier in

equation 8, we use p(y|x) head when p(x) > τ where

the threshold τ = minx∈Xtrain
p(x) and p(y) estimated

using the label counts. The results are shown in Table 1.

As expected, the hybrid model exhibits higher uncertainty

and achieves better NLL and entropy on NotMNIST. To

demonstrate that the hybrid model learns meaningful repre-

sentations, we compute convex combinations of the latent

variables z = αz1 + (1 − α)z2. Figure 4(c) shows these

interpolations in the MNIST latent space.

6.4. SVHN Classification

We move on to natural images, performing a similar eval-

uation on SVHN. For these experiments we use a larger

1We report results for λ = 0.01/D; higher values are qualita-
tively similar.

network of 24 Glow blocks and employ multi-scale factor-

ing (Dinh et al., 2017) every 8 blocks. We use a larger

Highway network containing 300 hidden units. In order to

preserve the visual structure of the image, we apply only

a 3 pixel random translation as data augmentation during

training. The rest of the training details are the same as

those used for MNIST. We use CIFAR-10 for the OOD set.

Table 2 summarizes the classification results, reporting the

same metrics as for MNIST. The trends are qualitatively

similar to what we observe for MNIST: the λ = 0 model

has the best classification performance, but the hybrid model

is competitive. Figure 5(a) reports the log p(x) evaluations

for SVHN vs CIFAR-10. We see from the clear separation

between the SVHN (blue) and CIFAR-10 (red) histograms

that the hybrid model can detect the OOD CIFAR-10 sam-

ples. Figure 5(b) visualizes interpolations in latent space,

again showing that the model learns coherent representa-

tions. Figure 5(c) shows confidence versus accuracy plots

(Lakshminarayanan et al., 2017), using the selective clas-

sification rule described in Section 3.2, when tested on in-

distribution and OOD, which shows that the hybrid model

is able to successfully reject OOD inputs.

Model
SVHN CIFAR-10

BPD ↓ error ↓ NLL ↓ BPD ↑ NLL ↓ Entropy ↑

Discriminative (λ = 0) 15.40* 4.26% 0.225 15.20* 4.60 0.998

Hybrid (λ = 0.1/D) 3.35 4.86% 0.260 7.06 5.06 1.153

Hybrid (λ = 1.0/D) 2.40 5.23% 0.253 6.16 4.23 1.677

Hybrid (λ = 10.0/D) 2.23 7.27% 0.268 7.03 2.69 2.143

Table 2. Results on SVHN comparing hybrid model to discrimina-

tive model. Arrows indicate which direction is better.

6.5. Semi-Supervised Learning

As discussed in Section 3.1, one advantage of the hybrid

model is the ability to leverage unlabeled data. We first

performed a sanity check on simulated data, using inter-

Hybrid Models with Deep and Invertible Features

(a) Histogram of SVHN vs CIFAR-10 densities (b) Latent Space Interpolations (c) Confidence vs. Accuracy

Figure 5. Subfigure (a) shows the histogram of log p(x) on SVHN experiments. The hybrid model is able to successfully distinguish

between in-distribution (SVHN) and OOD (CIFAR-10) test inputs. Subfigure (b) shows latent space interpolations. Subfigure (c) shows

confidence versus accuracy plots and shows that the hybrid model is able to successfully reject OOD inputs.

leaved half moons. Figure 6 shows the decision boundaries

when the model is trained without unlabeled data (left) and

with unlabeled data (right). The rightmost figure shows a

noticeably smoother boundary that better respects the half

moon shape.

(a) Fully Supervised (b) With Unlabeled Data

Figure 6. Half Moons Simulation. The decision boundary is shown

for the DIGLM trained with just labeled data (left) and with unsu-

pervised data (right). The red and blue points are the instances that

have been labeled for each class.

Next we present results on MNIST when training with only

1000 labeled points (2% of the data set) and using the rest

as unlabeled data. For the unlabeled points, we maximize

log p(x) in the usual way and minimize the entropy for

the p(y|x) head, corresponding to entropy minimization

(Grandvalet & Bengio, 2005). We also use virtual adversar-

ial training (VAT) (Miyato et al., 2018), which we found

to boost performance. We chose weights on the generative

model and on the VAT objective by performing grid sweeps

on a validation set, see Appendix B for details. Table 3

shows the results. We see that incorporating the unlabeled

data results in an improvement from 6.61% error to 0.99%
error, which is competitive with other SOTA approaches

such as ladder networks (Rasmus et al., 2015) (0.84%) and

GANs (Springenberg, 2015) (1.73%).

Model MNIST-error ↓ MNIST-NLL ↓

1000 labels only 6.61% 0.276

1000 labels + unlabeled 0.99% 0.069

All labeled 0.73% 0.035

Table 3. Results of hybrid model for semi-supervised learning on

MNIST. Arrows indicate which direction is better.

7. Discussion

We have presented a neural hybrid model created by com-

bining deep invertible features and GLMs. We have shown

that this model is competitive with discriminative models

in terms of predictive performance but more robust to out-

of-distribution inputs and non-stationary problems. The

availability of exact p(x, y) allows us to simulate additional

data, as well as compute many quantities readily, which

could be useful for downstream applications of generative

models, including but not limited to semi-supervised learn-

ing, active learning, and domain adaptation.

There are several interesting avenues for future work. Firstly,

recent work has shown that deep generative models can as-

sign higher likelihood to OOD inputs (Nalisnick et al., 2019;

Choi & Jang, 2018), meaning that our rejection rule is not

guaranteed to work in all settings. This is a challenge not

just for our method but for all deep hybrid models. The

DIGLM’s abilities may also be improved by considering

flows constructed in other ways than stacking ACLs. Re-

cently proposed continuous-time flows (Grathwohl et al.,

2019) and invertible residual networks (Behrmann et al.,

2019) may prove to be more powerful that the Glow trans-

form that we use, thereby improving our results. Lastly,

we have only considered KL-divergence-based training in

this paper. Alternative training criteria such as Wasserstein

distance could potentially further improve performance.

Hybrid Models with Deep and Invertible Features

ACKNOWLEDGEMENTS

We thank Danilo Rezende for helpful feedback.

References

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud,

D., and Jacobsen, J.-H. Invertible Residual Networks. In

International Conference on Machine Learning (ICML),

2019.

Bishop, C. M. Novelty Detection and Neural Network

Validation. IEE Proceedings-Vision, Image and Signal

processing, 141(4):217–222, 1994.

Bishop, C. M. Training with Noise is Equivalent to

Tikhonov Regularization. Neural Computation, 1995.

Brock, A., Donahue, J., and Simonyan, K. Large Scale

GAN Training for High Fidelity Natural Image Synthesis.

In International Conference on Learning Representations

(ICLR), 2019.

Choi, H. and Jang, E. Generative Ensembles for Robust

Anomaly Detection. ArXiv e-Prints, 2018.

Cordella, L. P., De Stefano, C., Tortorella, F., and Vento,

M. A Method for Improving Classification Reliability of

Multilayer Perceptrons. IEEE Transactions on Neural

Networks, 1995.

Deisenroth, M. P. and Ng, J. W. Distributed Gaussian Pro-

cesses. In International Conference on Machine Learning

(ICML), 2015.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-Linear

Independent Components Estimation. ICLR Workshop

Track, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density Esti-

mation Using Real NVP. In International Conference on

Learning Representations (ICLR), 2017.

Druck, G., Pal, C., McCallum, A., and Zhu, X.

Semi-Supervised Classification with Hybrid Genera-

tive/Discriminative Methods. In Proceedings of the 13th

ACM SIGKDD international conference on Knowledge

discovery and data mining, 2007.

Efron, B. The Efficiency of Logistic Regression Compared

to Normal Discriminant Analysis. Journal of the Ameri-

can Statistical Association, 70(352):892–898, 1975.

Fumera, G. and Roli, F. Support Vector Machines with

Embedded Reject Option. In Pattern Recognition with

Support Vector Machines, pp. 68–82. Springer, 2002.

Geifman, Y. and El-Yaniv, R. Selective classification for

deep neural networks. In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

Girosi, F., Jones, M., and Poggio, T. Regularization Theory

and Neural Networks Architectures. Neural Computation,

1995.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The

Reversible Residual Retwork: Backpropagation without

Storing Activations. In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

Gordon, J. and Hernández-Lobato, J. M. Bayesian Semisu-

pervised Learning with Deep Generative Models. ArXiv

e-Prints, 2017.

Grandvalet, Y. and Bengio, Y. Semi-Supervised Learning

by Entropy Minimization. In Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2005.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., and Duve-

naud, D. Scalable Reversible Generative Models with

Free-form Continuous Dynamics. In International Con-

ference on Learning Representations (ICLR), 2019.

Hellman, M. E. The Nearest Neighbor Classification Rule

with a Reject Option. IEEE Transactions on Systems

Science and Cybernetics, 1970.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian

Processes for Big Data. In Conference on Uncertainty in

Artificial Intelligence (UAI), 2013.

Herbei, R. and Wegkamp, M. H. Classification with Reject

Option. Canadian Journal of Statistics, 2006.

Jaakkola, T. and Haussler, D. Exploiting Generative Models

in Discriminative Classifiers. In Advances in Neural

Information Processing Systems (NeurIPS), 1999.

Jaakkola, T. and Jordan, M. A Variational Approach to

Bayesian Logistic Regression Models and their Exten-

sions. In Sixth International Workshop on Artificial Intel-

ligence and Statistics, volume 82, pp. 4, 1997.

Jacobsen, J.-H., Smeulders, A. W., and Oyallon, E. i-

RevNet: Deep Invertible Networks. In International

Conference on Learning Representations, 2018.

Jebara, T., Kondor, R., and Howard, A. Probability Product

Kernels. Journal of Machine Learning Research, 5(Jul):

819–844, 2004.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,

L. K. An Introduction to Variational Methods for Graphi-

cal Models. Machine Learning, 37(2):183–233, 1999.

Kingma, D. and Ba, J. Adam: A Method for Stochastic

Optimization. International Conference on Learning

Representations (ICLR), 2014.

Hybrid Models with Deep and Invertible Features

Kingma, D. P. and Dhariwal, P. Glow: Generative Flow

with Invertible 1x1 Convolutions. In Advances in Neural

Information Processing Systems (NeurIPS), 2018.

Kingma, D. P. and Welling, M. Auto-Encoding Variational

Bayes. International Conference on Learning Represen-

tations (ICLR), 2014.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling,

M. Semi-Supervised Learning with Deep Generative

Models. In Advances in Neural Information Processing

Systems (NeurIPS), 2014.

Kuleshov, V. and Ermon, S. Deep Hybrid Models: Bridging

Discriminative and Generative Approaches. In Confer-

ence on Uncertainty in Artificial Intelligence (UAI), 2017.

Lakshminarayanan, B., Roy, D. M., and Teh, Y. W. Mon-

drian Forests for Large Scale Regression when Uncer-

tainty Matters. In International Conference on Artificial

Intelligence and Statistics (AISTATS), 2016.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple

and Scalable Predictive Uncertainty Estimation Using

Deep Ensembles. In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

Lasserre, J. A., Bishop, C. M., and Minka, T. P. Principled

Hybrids of Generative and Discriminative Models. In

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2006.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther,

O. Auxiliary Deep Generative Models. In International

Conference on Machine Learning (ICML), 2016.

McCallum, A., Pal, C., Druck, G., and Wang, X. Multi-

Conditional Learning: Generative / Discriminative Train-

ing for Clustering and Classification. In AAAI, 2006.

Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. Vir-

tual Adversarial Training: A Regularization Method for

Supervised and Semi-Supervised Learning. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

2018.

Nalisnick, E., Matsukawa, A., Whye Teh, Y., Gorur, D.,

and Lakshminarayanan, B. Do Deep Generative Mod-

els Know What They Don’t Know? In International

Conference on Learning Representations (ICLR), 2019.

Nelder, J. A. and Baker, R. J. Generalized Linear Models.

Wiley Online Library, 1972.

Ng, A. Y. and Jordan, M. I. On Discriminative vs Gener-

ative Classifiers: A Comparison of Logistic Regression

and Naive Bayes. In Advances in Neural Information

Processing Systems (NeurIPS), 2002.

Raina, R., Shen, Y., Mccallum, A., and Ng, A. Y. Classifi-

cation with Hybrid Generative / Discriminative Models.

In Advances in Neural Information Processing Systems

(NeurIPS), 2004.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and

Raiko, T. Semi-Supervised Learning with Ladder Net-

works. In Advances in Neural Information Processing

Systems (NeurIPS), pp. 3546–3554, 2015.

Rasmussen, C. E. and Williams, C. K. Gaussian Processes

for Machine Learning. MIT Press, 2006.

Rezende, D. and Mohamed, S. Variational Inference with

Normalizing Flows. In International Conference on Ma-

chine Learning (ICML), 2015.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio,

Y. Contractive Auto-Encoders: Explicit Invariance Dur-

ing Feature Extraction. In International Conference on

Machine Learning (ICML), 2011.

Riquelme, C., Tucker, G., and Snoek, J. Deep Bayesian Ban-

dits Showdown: An Empirical Comparison of Bayesian

Deep Networks for Thompson Sampling. In International

Conference on Learning Representations (ICLR), 2018.

Springenberg, J. T. Unsupervised and Semi-Supervised

Learning with Categorical Generative Adversarial Net-

works. International Conference on Learning Represen-

tations (ICLR), 2015.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, 2014.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Training

Very Deep Networks. In Advances in Neural Information

Processing Systems (NeurIPS), 2015.

Szummer, M. and Jaakkola, T. S. Information Regulariza-

tion with Partially Labeled Data. In Advances in Neural

Information Processing Systems (NeurIPS), 2003.

Tulyakov, S., Fitzgibbon, A., and Nowozin, S. Hybrid VAE:

Improving Deep Generative Models Using Partial Obser-

vations. In Advances in Neural Information Processing

Systems (NeurIPS), 2017.

