
Page 1 of 15

Hybrid Natural Language Processing in a
Customer-Care Environment

David Reitter*, Stefan Covaci*, Florin Oltean**, Catalin Bacanu**, Traian Serbanuta**

Abstract
CyMON is an industrial platform for one-to-one customer care
applications. It compromises facilities to implement user-friendly web-
sites with an emotional, learning interface. The CyMON Natural
Language Processing Engine can understand written input and react
accordingly. It is based on hybrid linguistic and statistical algorithms to
analyze natural language input. Each sentence is assigned an
appropriate contextualized meaning representation. This paper
describes the results of an evaluation of basic pattern matching
techniques and argues in favor of their augmentation with more
sophisticated models taken from linguistics and statistics. The natural
language processing techniques applied in CyMON are described in
detail. An overview of related work is provided.

1 Introduction
Agentscape’s natural language processing modules address a broad variety of user interaction:
chatting, informing, data mining and queries to product databases. These tasks contribute
essentially to the functionality of portals, company sites and e-business web sites. These
application areas are subsumed by the term Customer Relationship Management (CRM).
Whenever an organization wishes to provide support to existing customers, raise their value or
acquire new ones via the Internet or other interactive channels, natural language processing (NLP)
is the key for an easy-to-use interface. The CyMON-NLP components incorporate the technology
to understand general written input and quickly generate knowledge bases to support the
implementation of an CRM system in a specific domain.

The NLP modules have been integrated into two platforms: Cyb (Create Your Bot) and CyMON
(Create your match and organizing netware). Cyb is a personal assistant application which runs on
a user’s desktop and assists him in doing recurring tasks and in organizing his documents.
CyMON is an agent-based platform for one-to-one CRM applications. CyMON includes features
such as implicit and explicit profiling (data-mining), profile-matching, session-tracking, context-
driven, reactive and proactive, emotional-driven agent behavior.

2 Initial prototypes
Two major implementations of the predecessor platform Si.MON have been made. One,
www.flirtmaschine.de, is an interactive, web community system with regularly updated content. It
provides user profiling and a profile-driven matching engine. The topics of Flirtmaschine relate to
a virtual flirt and partner-finding platform and are supported by journalistic life-style content.

*Agentscape AG, Berlin, Germany , [d.reitter, s.covaci]@agentscape.de

**Agentscape SRL, Bucharest, Romania, [olf, cba, tse]@agentscape.ro

Page 2 of 15

The second application was an anonymous session-based informational web site for a major
German fashion company (www.puc-online.de). A virtual shop assistant reacts to natural-language
(textual) input and gives advice on, e.g., what kind of clothes to wear, how to remove stains or
how to bind a tie. The functionality includes profiling and generation of reports based on given
market-survey questions.

The natural language understanding component in Si.MON works with 3000 ordered pattern
matching rules. These reference user profile data and the current context (such as the topic of the
page the user was currently viewing). The rules check the input sentence for the occurence of text
patterns (preconditions), which were defined separately. A total of 10 000 such patterns were
defined. Patterns could contain references to other patterns and also disjunctions thereof. The
matching algorithm evaluated each rule separately and stopped on the first hit. The system was
implemented in Java.

2.1 Critical evaluation of the prototypes
A good basis for an evaluation of the initial pattern-matching approach was given by the log files
from the Flirtmaschine project. Around 30.000 distinct input sentences and the system responses
were gathered.

A manual quality-oriented evaluation grouped the question-answer pairs in three categories: 1)
Good. These answers were convincing and implied no hints on the artificial dialog situation. 2)
Acceptable. The system did not seem to understand the question, but gave a reasonable, maybe
pro-active answer in the situation. 3) Wrong. The answer was clearly wrong according to the
judgement of the testers. We counted 54 percent of good and acceptable answers. There were two
prominent reasons for wrong answers.

Over-Generation. The recognition and interaction rules were formulated too lose in many
occasions. This applied to regular phenomena, such as the scope of negation, which could have
been ruled out if some more elaborate form of syntactic and semantic analysis had been used. A
wildcard operator matched all characters except word-separators. It was used to cover suffixes
with formulations like “H\#us\#” (matching Haus, Hauses, Häuser, Häusern..., German for:
house}) turned out to match too many lexical items.

Missing semantic coverage. This was a much smaller problem, because in many cases, when a
user question was not forseen in a specific rule, a more general rule applied. After all, this led to a
lot of acceptable, but not good answers.

Missing lexical coverage. The Si.MON NLP patterns were built manually. Of course, a lot of
synonyms and semantically related words were missing. The round trip time between the user
pushing the enter button to send a question and the system displaying the answer on a client
machine with a 64K internet connection was estimated in the range of several seconds. (The log
files did not contain any time stamp information.)

The manpower needed to assemble the natural language rules and patterns in Flirtmaschine
amounted to 6 man months.

Analyzing the corpus itself, we found that the complexity of the sentences entered into the system
was rather low. In fact, many of the input sentences were not grammatical according to standard
German. Referential expressions and ellipsis constructs were widely used. We found spelling
errors and missing capitalization.

A similar, but more superficial analysis has been done with another corpus gathered via our
Peek&Cloppenburg application. It yielded much more domain-specific questions. The sentences
were longer, more detailed and more often grammatically correct in comparison to the chat-
oriented Flirtmaschine. This underlines the assumption that in serious customer relationship
management applications, users tend to be more explicit and formally correct in their questions.

Page 3 of 15

From these results and from the business-level plans regarding the CyB/CyMON platform, we
enumerated the following requirements for the new NLP component.

Good precision (correctness). The answers of the system should obviously be adequate in an
increased number of cases.

Good recall (domain coverage). The NLP component must provide means to configure it with
reasonable efforts to cover typical aspects of a customer relationship management domain. This
includes product, support and company information, product-specific user profiling, analytical
marketing.

By choosing a tagger which could deal with unknown words, we extended the mechanisms to react
to unknown input. A more efficient grammar writing process could also contribute to broader
coverage. Efficient language engineering. Administrators are usually not trained linguists, but
employees of public relations departments and trainees. They pursue a practical approach to
language and have acquired the target language as mother tongue. An initial training time of a
maximum of three days was expected to be acceptable in order to learn the main features of the
system. To speed up the development, the target user must be able to select and integrate pre-
assembled knowledge components. Linguistic knowledge should be reusable.

This requirement was met by adding:

• a stemming component,
• the CyMON Development Kit, a comfortable visual tool for managing and extending the

semantic grammar,
• a clearer grammar format and compositional semantics.
• On the generation-side of the system, we chose to implement a unification-based selection of

textual reactions.

Multilingual Support. Domain-specific and language-specific capabilities need to be kept separate.
The system has to be extensible in a modular way by means of language packages that provide
basic support for different languages. By separating the concerns and by clearly defining formats
for different databases, this requirement was met. We started with German and English as initial
target languages.

Domain Extendibility. Domain knowledge should be easily extended. The system should be able to
incorporate further recognition and dialog resources. A separation between recognition module
and reaction rules with a semantic representation connecting both led to increased independence of
the two kinds of data and their administration. The CyMON Development Kit also supports
importing data into the semantic grammar. Robustness. Variations in orthography, such as capital
letters, missing or incorrect interpunctuation and spelling mistakes should be ignored to a certain
extent. The system should pursue strategies to give convincing answers even to input with
unknown words or phrases.

To rise to this expectation, Edit-Distance Algorithms to loosen up pattern matching were
integrated as well as normalization of diacritics and capitalization.

Run-time efficiency and scalability. The system is employed in the CyMON platform. As scale it
must handle 2000 simultaneously connected users. Furthermore, several precautions had to be
taken to be able to downgrade the NLP system in order to integrate it also in a desktop-application
with low memory usage and sufficiently fast response times.

To tackle the requirement on the response-time, we implemented the NLP component in C++
using advanced parsing optimization algorithms.

Application Areas. Within the domain of customer relationship management applications, the NLP
had to address two different kinds of tasks: Domain-specific question-answering, Chatting and
data-mining. For chatting, an increased robustness is needed, while for question-answering, a more
detailed analysis of the input question is required.

Page 4 of 15

3 Language technology system architecture

There are two groups of components in CyMON-NLP. The Natural Language Understanding
(NLU) component is responsible for analyzing an input sentence. It returns a semantic
representation of the input. The natural language generation component - the Dialog Manager
selects an appropriate answer dialog from a dialog database to a given semantic stimulus. Other
components such as the Interaction Engine take care of steering the whole system.

To configure the CyMON-NLP system, the following resources have to be supplied:

• Domain-dependent resources: A semantically oriented grammar describing phrases and
sentences to be recognized, and a

• set of dialogs. These files adhere to the XML standard.
• Language-dependent resources: Lexica and language models for tagging and stemming

services. Statistical language models for the language identification.
• A central configuration file.

Workflow diagram of the CyMON
language analysis component

Page 5 of 15

CyMON-NLU follows a hybrid approach. We integrated morpho-syntactic disambiguation and a
lemmatization (stemming) module into a semantically oriented grammar. We were able to convert
much of the patterns and rules written in the Flirtmaschine project. Most of them serve as basis for
the development of new domain knowledge bases.

3.1 Multi-linguality: language detection
Before the morpho-syntactic analysis is started, a statistical language recognizer tries to identify
the language used in the natural language input. It compares parameters such as average word
length and consonants used with language models gained from test corpora. The NLU is
instantiated for each detected language. The CyMON-NLU can be configured to recognize the
language once per session or for every input.

3.2 Morpho-syntactic disambiguation: the tagging service
We decided to assign morpho-syntactic tags to each word of the input for two reasons. Ambiguity
problems arose whenever the grammar rules were not very constrained. Many top-level rules of
the grammar contain immediate-dominance, but not linear-precedence rules, because the word
order of German (the language we started with) varies on regular and irregular bases.
Constraining these rules with syntactic tags could help to decrease parsing errors and increase
parsing speed. Another very important rationale for introducing the tagging were unknown words
in the input. A statistical tagger (here: “guesser”) can assign tags even to unknown words by
looking at their context and, in some cases, at hints from their suffixes.

We implemented a solution inspired by the algorithms described in br00. Brants describes
algorithms for a powerful statistical part-of-speech tagger. He argues that his parser, based on
Markov models, performs better than other approaches, such as finite-state, rule-based or memory-
based taggers.

According to his data, the Markov models yield even better results than more general statistical
Maximum Entropy algorithms.

As a tagset we chose the EAGLES-compliant Stuttgart-Tuebingen tagset STTS, described in
[Schiller 1995]. This tagset contains 54 tags, grouped in 11 classes.

We will shortly outline the data structures used to tag data as described in [Brants 2000]. The
algorithm needs, aside of the tokenized text, two data structures as external resources. The first is a
lexicon containing full forms of words and their ambiguity class. This ambiguity class denotes the
list of tags the words can assume in a syntactic configuration. Furthermore, for each tag in an
ambiguity class of a specific word, its relative probability is stored. This gives the probability a
certain word is found, given a certain tag is encountered (P(w1|t1) with w1 being a word and t1
being a tag). Table 1 shows an example.

The second data structure contains probabilities of the different contexts the tags occur in. The
tagging algorithm needs information on unigram (P(t1)), bigram (P(t2|t1)) and trigram (P(t3|t1,t2)
with t1, t2, t3 being tags occurring sequentially to words in the corpus) probabilities. This is stored
in the language model. Table 2 shows an example.

gehörte ADJA (0.2) VVFIN (0.8)

bewegt ADJD (0.17) VVFIN (0.5) VVPP (0.33)

weniger ADV (0.66) PIAT (0.21) PIS (0.13)

Table 1: Entries from a tagger lexicon. The codes in the table denote, for each word form, an
ambiguity class of morphosyntactic tags. E.g. ‘bewegt’ may by tagged as predicative adjective
(ADJD), finite full verb (VVFIN) or past participle (VVPP). The numbers in parantheses
denote the relative probability of each tag within its ambiguity class.

Page 6 of 15

 frequency tag sequence
unigram 4752 VAFIN
bigram 145 VAFIN - NN
trigram 15 VAFIN - NN - ART

Table 2: Excerpt from a language model for n-gram HMM tagging. A frequency measure is
given for each possible tag sequence. A normalized probability value can easily be derived
from the frequencies.

The lexicon can be augmented independently of the language models without retraining the
corpus, provided the ambiguity classes of the words are known. In this case, the lexical tag
probabilities must be set to a default value.

The guessing part of the tagger relies on a third data structure: probability information regarding
tag assignments. Tags are determined based on suffix detection. The data structures for the tagger
are obtained by a training process, where a (manually) tagged corpus is given. In simple terms, the
system ‘learns’, what common orders of tags are in a sentence of a specific language. In our case,
we used the Flirtmaschine corpus (www.flirtmaschine.de) to train the tagger. After an initial
tagging phase using different language models, the results had to be validated and corrected
manually. Out of 133.000 words contained in the Flirtmaschine corpus, we corrected 4.300 and
trained the tagger. The lexicon was augmented with bigger sources and currently contains around
64.600 entries. The language model contains probabilities for 8270 distinct trigrams. The final
accuracy of the tagger is higher than 96 percent.

We plan to add further entries to the lexicon. The way we want to do this is to automatically assign
ambiguity classes to the words by looking at the their suffixes. Because this is essentially the same
algorithm as the one the guessing module of the tagger uses, this certainly will not improve the
tagging performance. For this reason, additional words will be validated manually.

3.3 Ignoring morphologic alternations: the stemming
service

A brief look into the pattern definitions of the original Flirtmaschine implementation yielded an
efficiency problem.

Inflected wordforms that are semantically equivalent in the given context, had to be dealt with
somehow. The # wildcard operator described above led to over- and under-generation, depending
on how it was employed by the language engineer.

In order to ignore inflection markers, users can rely on a stemming algorithm. It strips suffixes off
from words. Because the stemmer will only normalize words for the purpose of comparison with a
predefined pattern, the stemming service does not need to generate a linguistically proper stem.
The implementation of this functionality relies on the tagger, since the suffixes employed depend -
among other factors - on the P.O.S. category of the word. This information is retrieved from the
tagging lexicon or calculated by the guesser.

As a resource, a list of rewriting rules is available for each tag class. A rewriting rule is a search
and replace pair. The search terms are regular expressions with the replace terms referencing parts
of the matched string. The rewriting rules are applied in their configured order. They are executed
immediately. A feeding relationship of rules is desired, i.e. an earlier rule may provide the context
for a later one. Table stemmrex gives an excerpt from our rewriting rules for German. In the
phrase größere Autos (larger cars), they normalize the adjective to its base form groß. For irregular
forms, a lexicon is queried.

Page 7 of 15

the P.O.S. tags the following rules apply to
[ADJA] [ADJD]

Genus/Case/Number markers
(.*[aeiou].*)(e|er|en|em|es) --> \1

Comparative / Superlative markers
(.*[aeiou].*)(er|rer|st) --> \1

Remove Umlauts
ä --> a
ö --> o
ü --> u

Some simple search&replace regular expressions used to stem German adjectives.

3.4 Identifying phrase and sentence meanings: grammars
To calculate a semantic representation from a sequence of tagged and stemmed tokens, a parser
has to find the proper combination of patterns. As mentioned earlier, CyMON.NLP works with a
two-level grammar.

The first level of rules is a list of productions with decreasing priority. These productions, called
combinations are immediate-dominance (ID) rules. This means, they enumerate a list of other
rules (second level rules, pattern) that have to be contained in the constituent described. They may
also make linear-precedence (LP) statements on the order of rule appearance. Furthermore,
negation is possible. We have four pattern operators that can be evaluated in the combinations:

Contain: a given pattern must be contained in the input.

Match: the given pattern must match the input exactly.

NotContain,NotMatch: Negations of contain and match.

Expressions with these operators may be combined using the AND (conjunction) and OR
(disjunction) boolean operators. It is easy to see that AND combined with Contain leads to ID
rules, while AND combined with Match is an ID/LP statement.

The second level grammar rules are called patterns. These patterns are meant to work at the
phrasal and lexical level. They may reference other patterns and/or raw (terminal) text. Operators
used at this level are concatenation (Concat) and disjunction (Any). Usually, concatenation is used
on the phrasal level; disjunction is meant to group semantically equivalent words or patterns.
Additionally, patterns make use of the Morph operation, which will license morphological
alternation of the words and patterns. The parser will compare only the stems of the words.

The CyMON-NLU parser can be categorized as a top-down look-ahead chart parser. While
evaluating each combination in their respective order, a chart is built with information on the
results of pattern checks. This prevents pattern rules to be analyzed twice. To further optimize the
parsing process, an index is consulted. This index contains all known lexical words and, for each
word, a list those combinations which reference the word. Thus, each word appearing in the input
triggers the check of a set of combinations.

Page 8 of 15

With this data-driven technique, the parser can rule out in the beginning most of combinations.
However, closed-class words (functional categories such as prepositions, auxiliaries, determiners)
had to be excluded from indexing, because they appeared too frequently. This restriction raised no
problems in practice. Each combination must contain at least one positive condition on a word that
is not of a functional category. Another restriction is applied to combinations that make use of
wildcard operators. Those combinations must contain at least one non-functional word. Again, this
restriction is not a problem with real life test sentences.

The interpretation of misspelled words is another problem we were facing. We implemented an
algorithm to calculate a minimal edit distance, which is a sum of all insertions, deletions and
changes of single characters necessary to match the original word and the user input. The resulting
value is normalized to the word length (which effectively allows more spelling errors to occur in
longer words). Furthermore, anticipating that spelling errors occur more often towards the end of a
word, we modified the algorithm to use the position of the character in the word as a weighting
factor when counting the changes.

The edit distance challenges our word index, because misspelled words will not be found in the
index. An alternative solution we are investigating is to calculate a Soundex-like checksum for
each word and use this code has a hash key for the index.

Obviously, the parsing part is the most time-consuming operation of the language analysis system.
It analyzes an average of 7-9 sentences per second (on a Pentium III/600 desktop machine) with
our hard disk based grammar database. Running through all combinations (with indexing turned
off) costs about 13 seconds.

3.5 Building semantic representations
CyMON-NLU semantic representations consist of three classes of elements: atoms, propositions
and semantic terms.

Atoms These are atomic items identifying a concept or an instance in our universe of discourse,
such as “car”, “roadster”, “bmw318i”. They depend largely on the domain CyMON-NLU is
configured for. In a network-based knowledge description, atoms could refer to a concept class or
concept instance node.

How are atomic expressions assigned? In a semantically oriented grammar, a production rule is
used to specify the syntactical construction of a phrase and its semantically equivalent alternatives.
That is why atomic expressions are assigned at the phrasal level, i.e. along with a pattern or part of
a pattern.

In a pattern, one or more semantic variables may be assigned an atomic value. This is how
CyMON-NLU allows to assign more than one atomic identifier to each pattern. This method
should not be mistaken for a chance to introduce alternative meanings in case of semantic
ambiguities, i.e. homonyms. Instead, it is used to structure the meaning of a phrase.

For example, we may include four patterns:

• Pattern 1 matches all expressions for a BMW 318.
Its semantics contain the assignment: prod-id:= bmw318

• Pattern 2 matches all expressions for a Honda Civic.
Semantics: prod-id:= hondaCivic

• Pattern 3 matches all expressions for a roadster.
Semantics: prod-type:= roadster

• Pattern 4 contains a disjunction of Patterns 1, 2.
Semantics: prod-type:= closedcar

• Pattern 5 contains a disjunction of Patterns 3 and 4.
Semantics: prod:= car

Page 9 of 15

After all, each product description has three levels of specialization. Depending on the context it
appears in, the grammar may refer one of the levels. With this mechanism, a hierarchy of concept
classes and concept instances can be build. Even if useful in other applications, an external
semantic network is not necessary at this level.

A slightly different use case of the multi-value phrasal semantics would be to select several slots
specifying properties of the object described. After all, the meaning of a phrase is by no means
necessarily atomic. However, not all users of the CyMON-NLU will build up a hierarchy like that.
Instead, they will rather assign only one atomic meaning to each phrase.

Propositions. Different phrasal semantics are combined into a single proposition. This is done at
the first level of grammar productions, i.e. in combinations. Propositions describe a speech act. For
the semantic representation of a proposition, we use a language-independent structure that contains
a semantic predicate and a set of slot-filler pairs.

Values filling the slots can be atoms or strings.

In an attribute-value matrix (known from unification-based formalisms), each name-value pair
should be considered a restriction. Depending on the predicate, certain pieces of information
should occur in the structure. The predicate specifies the type of the structure. Depending on the
predicate, there is a number of mandatory and optional arguments. In the construction of a
proposition, these arguments (slots) are filled with values from semantic variables, i.e. with the
object identifiers from the phrases of a sentence. Alternatively, direct assertion of a value is
possible. The assignment of strings is discussed later on.

A typical semantic representation for the sentence

Könnten Sie mir bitte ein paar Cabrios zeigen?

looks like this:

While the value of THEME is mandatory, MOOD can be left out if there is no information present
in the sentence. Both arguments are contributed from the semantic content of the patterns. So, the
template constructing this semantic representation is formulated like this:

CyMON-NLU gives language engineers a high degree of freedom to design their own semantic
system. In the accompanying tutorials, we encourage the use of compositional elements whenever

Page 10 of 15

possible. We propose a small set of predicates along with a standardized set of arguments,
oriented towards theta roles in linguistics. However, creating a combination for each single
proposition is possible. Arguments may be avoided; a huge number of distinct predicates will
result. Even though such atomic propositions are easier to understand at a first glance, this will
hinder language engineers to reuse and share parts of their grammars.

Semantic terms. Input sentences can contain more than one proposition. Consider the input

I bought this washing machine the other day, and now it is loosing water!

Essentially, it contains two propositions: The customer bought a washing machine, and: it is
defect, in particular, it has a leak.

To represent these sentences, the complete semantic representation of a sentence is a semantic
term, which is a conjunction of propositions. Other elements known from formal semantics, such
as the disjunction operator or quantifiers have not been necessary in our current applications. Also,
they would ask for proper model-checking when finding an appropriate reaction (see below). The
disjunctive semantics can be evaluated as follows: the system will evaluate each of the
propositions and combine all actions resulting from each single proposition.

Compared to classical methods of representing meaning, one notices that the CyMON terms make
use of ideas from predicate logic, but restrict it in many ways. The most important difference is
that our semantic structures are flat. Thus, this method will not do when representing semantically
complex propositions. Nevertheless it covers a wide range of utterances, and probably all we will
need in customer care domains. Even more importantly, it has proven to be simple enough in order
to be used by non-trained language engineers. The same applies to the way of building up
semantics. While compositional approaches, such as Montague’s Semantics ([Montague 1974]) or
Discourse Representation Theory ([Kamp/Reyle 1993]) provide a maximum of re-usability, the
way modelling is done always calls for trained computational linguists and works a quite restricted
input language.

3.6 Processing unknown input
If an unknown word occurs in a relevant position of the input, it will be matched by a restricted
wildcard. The word is stored in the semantic representation as a value of string type. Thus, the
semantic representation is not restricted to contain only semantic concepts.

User input: Where can I find a(n) +UnknownProduct+/NN?

The wildcard expression in this sentence will match one or more words tagged NN and store the
phrase in a variable named UnknownProduct. This variable can be referred to lateron when
constructing the semantic representation:

So, along with the known semantic content, a phrasal content can be stored. Even though the
system does not know the ‘semantic’ content of a phrase, it is still able to identify its syntactic
function and thus restrict the morphological variation. We expect the user to enter mainly
grammatical phrases. If a neologism is entered here, the system will use it in its answer as well.

Page 11 of 15

This allows for easy construction of ELIZA-like dialogs. For example, a convincing answer for the
situation described above would be

Answer: Unfortunately, we don’t carry %UnknownProduct%. But I can present you a list of
product categories to choose from.

Problems arise if the morpho-syntactic features of the unknown word cannot be guessed. This is a
clear limitation of the system which could be ruled out with a more detailed. First investigations
about this have been made in [Tufis 2000].

3.7 Reaction-finding / generation
The search for a correct reaction is, similar to the ordered evaluation of grammar rules, an iterative
process. The CyMON Dialog Manager tries to compare the given semantic representation of the
input with a basic semantic representation attached to a possible output reaction. The check is done
for all reactions in a list; the first matching one is accepted.

The comparison of both semantic representations, that of the input and the one aligned with the
output, is defined as a subsumption relationship. An input representation SemQ is subsumed an
reaction representation SemA, iff

• The predicates SemQ and SemA are identical
• Each argument of SemA is present in SemQ and has the same value in both representations.

This subsumption check assures that additional information may always be added in the analysis
grammar; so adding information to the query will expand the search space. In contrast, the
representations attached to system reactions are restrictive. So, there may be reaction conditions of
different specificness. As in the semantic grammar, the reactions with the specific conditions are
put first in the list.

Depending on the interaction model, a reaction is defined by a set of further statements, which are
executed by the state-machine reasoning engine. Alternatively, if the neural network is being used,
the triggering semantic representation will activate a network node.

For chat-like conversations, a reaction can be given immediately. For database enquiries, the
respective interaction engine will carry out a predefined sequence of actions. It will access the
arguments from the semantic representation.

Page 12 of 15

Figure 3: For given input semantics, an appropriate reaction is searched. The first satisfied
subsuming reaction condition is R4.

4 CyMON Development Kit

4.1 Grammar editor
Users can create the grammars by means of a graphical user-interface (GUI). It provides a
hierarchy to group and structure production rules. The modular architecture of the CyMON system
is mirrored in the Development Kit. Language-specific data are kept in ready-to-use components
outside of the model. The external modules compromise tagging models and the stemming
algorithms.

The domain-specific semantic grammars can be edited directly in the CDK. A special extension
was created to make knowledge extension as intuitive as possible. A linguistic assistant asks the
user to input a sample sentence. This is analyzed using a tagger and a nominal phrase extractor.
Known grammar rules which apply to parts of the input are recognized. Ambiguities in the
analysis are ruled out manually. For new parts of the input, extra grammar productions are created
automatically.

All components of the system can be configured through a central configuration file.

5 Evaluation of CyMON.NLU
Regarding engineering effort, we verified that an implementation of a test scenario could be done
in about 4 man/weeks. The stemmer led to a significant decrease in the time needed to enter

Page 13 of 15

wordforms; the compositional semantics proved advantages in reusability of patterns. An
evaluation of the new runtime system is still under way. Functional tests of the system will,
however, always be run on an instantiation of the technology, i.e. a domain-specific knowledge
base. To a great extend, the recognition capabilities relate to the knowledge base.

6 Related work

Alicebot ([Wallace 1999], alicebot.org) specifies an open Markup Language, called AIML. It
works with stimulus-response rules, which include pattern-based natural language analysis. Some
morphological alternations are integrated, as well as rewriting-techniques. Regarding natural
language, the specification has a focus on dialog tracking. ALICE has been implemented and used
in various demo applications.

Among the industrial projects, Artificial Life’s WebGuide (www.artificial-life.com) is a a web-
based configurable smart bot for natural language-based user interactions. It can understand
natural language input and integrates emotions.

Autonomy’s Kenjin (www.autonomy.com) is a client-side assistance software that proactively
learns and proposes relevant content to the user. It has the ability to link the user’s personal
knowledge into a dedicated community to find users with similar interests. Autonomy’s approach
is purely statistical. The Portal-in-a-Box package is a related portal platform with knowledge
management capabilities.

The Cyc product family (from Cycorp, www.cyc.com) is based on a big multi-contextual
knowledge base, designed to capture a large portion of what we normally consider consensus
knowledge about the world. At the same time it provides an inference engine, a set of interface
tools, and a number of special-purpose application modules supporting context-based knowledge
management and querying. A dedicated script language is specified as the knowledge
representation language with Cyc. The Cyc products contribute to the creation of intelligent bots.

Network Query Language (www.nqli.com) is an interpreted scripting language that enables rapid
development of bots, spiders and intelligent agents. It provides learning, but no NLP.

Novomind IQ (www.novomind.de) is a development platform for customer care agents. According
to the company’s presentations, the modular architecture should enable the construction of
individually tailored personal agents for different application contexts.

Vista’s Virtual Friends (www.virtual-friends.com) are avatars designed to assist customers in their
shopping activities on a specific web site. The technology has primitive natural language interfaces
(spoken/written).

KiwiLogic (www.kiwilogic.de) offers a Windows-based bot construction kit with a simple, pattern-
matching based Natural-Language-Understanding system.

Several other “light” bots, which reside on a user’s desktop, are available for low prices, such as
BonziBuddy (entertaining agent with internet/calendar utilities, www.bonzi.com) or Agentscape’s
Cyb (multi-purpose, extendible personal desktop assistant, www.cybs-garage.de).

7 Further work
A replacement for the grammar-based analysis engine is currently in development. It will provide
means to find answers in relational databases using graph-theoretic operations on a knowledge
network. Input preprocessing will be done with the existing tagger and a rule-based NP chunker.

Page 14 of 15

8 Conclusions
We have shown how industrial natural language analysis and lingware development can be
improved significantly with an augmentation of pattern matching techniques by parsing with a
simplified semantic grammar, statistical tagging algorithms and rule-based stemming functions.
We have demonstrated a semantic representation formalism that can be used by untrained
language engineers. Finally, we have described a unification-based answer finding technique with
template-based natural language generation.

We believe that linguistic analysis techniques (both rule-based and statistical) provide means to
overcome some of the deficits of pattern-matching based dialog systems.

Acknowledgements

The CyMON-NLU project has been made possible by Agentscape AG, Berlin. The
implementation and unit test of its components were carried out by Catalin Bacanu, Catalin
Iercosan, Florin Oltean and their team at Agentscape S.R.L., Bucharest. Dan Tufis, RACAII
Bucharest, supported us greatly in tagging techniques.

References

[Abney 1996] Abney, Steven: Statistical Methods and Linguistics. In: Judith Klavans and
Philip Resnik (eds.), The Balancing Act. The MIT Press, Cambridge, MA.
1996

[Brants 2000] Brants, Thorsten: TnT - a statistical part of speech tagger. In: Proceedings of
he sixth applied natural language processing conference ANLP-2000, Seattle
2000.

[Kamp/Reyle 1993] Kamp, Hans / Reyle, Uwe: From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Computational Linguistics 21(2):265-268.

[Montague 1974] Montague, Richard (1974). Formal Philosophy: Selected Papers of Richard
Montague. Edited with an introduction by R. H. Thomason. Yale University
Press.

[Schiller 1995] Schiller, Anne / Teufel, Simone / Stöckert, Christiane: Vorläufige Guidelines
für das Tagging deutscher Textcorpora mit STTS. Seminar für
Sprachwissenschaft (Draft), Tübingen 1995.

Page 15 of 15

[Tufis 2000] Tufis, Dan: Using a large set of EAGLES-compliant morpho-syntactic
descriptors as a tagset for probabilistic tagging. In: Proceedings of the
International Conference on language resources and evaluation LREC '2000,
Athens, 2000. pp. 1105-1112

[Volk 1998] Volk, Martin / Schneider, Gerold: Comparing a statistical and a rule-based
tagger for German. In: Proc. of Konvens-98, Bonn 1998

[Wallace 1999] Richard Wallace: The A.L.I.C.E. nexus, 1999. At http://www.alicebot.org/

[Wothke 1993] Wothke, Klaus / Weck-Ulm, I. / Heinecke, J. / Mertineit, O. / Pachunke, T. :
Statistically-Based Automatic Tagging of German Text Corpora with Part-of-
Speech -- Some experiments. IBM TR 75.9302, 1993.

