
Hybrid Network-on-Chip Architectures for Accelerating Deep
Learning Kernels on Heterogeneous Manycore Platforms

Wonje Choi*, Karthi Duraisamy*, Ryan Gary Kim†, Janardhan Rao Doppa*, Partha Pratim
Pande*, Radu Marculescu†, Diana Marculescu†

*School of EECS

 Washington State University
 Pullman, WA 99164, U.S.A.

{wchoi1, kduraisa, jana, pande}@eecs.wsu.edu

†ECE Department

Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

{rgkim, radum, dianam}@cmu.edu

Abstract

In recent years, designing specialized manycore heterogeneous

architectures for deep learning kernels has become an area of great

interest. However, the typical on-chip communication

infrastructures employed on conventional manycore platforms are

unable to handle both CPU and GPU communication requirements

efficiently. Hence, in this paper, our aim is to enhance the

performance of heterogeneous manycore architectures through the

design of a hybrid NoC consisting of both wireline and wireless

links. To this end, we specifically target the resource-intensive

backpropagation algorithm commonly used as the training method

in deep learning. For backpropagation, the proposed hybrid NoC

achieves 1.9X reduction in network latency and improves the

network throughput by a factor of 2 with respect to a highly

optimized mesh NoC. These network level improvements translate

into 25% savings in full system energy-delay-product (EDP). This

demonstrates the capability of the proposed hybrid and

heterogeneous manycore architecture in accelerating deep learning

kernels in an energy-efficient manner.

CCS Concepts

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:

Interconnection architectures, I.5.1 [Computing Methodologies]:

Neural Networks, C.2.1 [Network Architecture and Design]:

Wireless communication.

Keywords

Manycore, Heterogeneous, NoC, Deep learning, Backpropagation

1. Introduction
Deep learning techniques have seen great success in diverse

application domains including speech processing, computer vision,

natural language processing, and even mastering the game of Go

[1][2]. While the fundamental ideas of deep learning have been

around since the mid-1980s [3], the two main reasons for their

recent success are: 1) availability of large-scale training data; and

2) advances in computer architecture to efficiently train large-scale

neural networks using this training data.

Deep learning refers to a class of machine learning algorithms,

where the goal is to train a non-linear function approximator

represented as a neural network architecture by using input-output

pairs of training data. Backpropagation (short for “backward

propagation of errors'') is a fundamental part of deep learning that

is used to train various types of neural networks [3].

Backpropagation is an iterative optimization algorithm; at each

iteration, it first computes the predicted output by forwarding the

input data through the network using the current weights (forward

pass). Then, it passes the gradient of the prediction error backwards

through the network (backward pass). Lastly, backpropagation

updates the weights of the network using the gradient(s) from the

prediction error through a variant of the stochastic gradient descent

(SGD) optimization [3].

In the backpropagation algorithm, the computations associated

with different neurons in the same layer exhibit high parallelism.

By exploiting this parallelism, the data-intensive operations

associated with backpropagation can be significantly accelerated

using GPU cores [4]. However, the execution of the

backpropagation algorithm also involves high volumes of data

exchanges between the CPUs and GPU accelerators [5]. In a

discrete GPU system, the communication between the CPUs and

GPUs is carried out by using off-chip interconnects that exhibit

high data-transfer latency and high power consumption [6][7][8].

A heterogeneous single chip multiprocessor (CMP) solution in

which the CPUs and GPUs are interconnected through the on-chip

network will avoid such expensive off-chip data transfers and lead

to improved system performance.

We note that conventionally, data centers and high performance

computing (HPC) clusters are employed to solve deep learning

applications. However, the design of data centers and HPC clusters

is dominated by power, thermal, and area constraints. Hence, we

envision a Datacenter-on-Chip (DoC) architecture specifically

targeting deep learning applications where the entire system (or a

large part thereof) can be designed using a heterogeneous

manycore-based single-chip architecture. It is well understood that

with this massive level of integration, traditional Network-on-Chip

(NoC) architectures, e.g., mesh, tree, ring, cannot provide a

scalable, low latency and energy-efficient communication

backbone, which is essential for solving the deep learning problems

targeted in this work [9]. On the other hand, wireless NoCs

(WiNoCs) are capable of achieving an energy–efficient and low-

latency communication infrastructure for massive manycore chips

[10][11]. It is already demonstrated that WiNoC outperforms

conventional wireline NoC architectures in terms of achievable

bandwidth and energy dissipation [12]. Consequently, inspired by

the successes of WiNoC, as our main contributions: i) we explore

heterogeneous (i.e., combination of CPUs and GPUs) systems

combined with hybrid (i.e., combination of wired and wireless

links) NoC architectures for deep learning, and ii) present a generic

design methodology that can be instantiated for any combination

of neural networks and application domains.

The remainder of the paper is organized as follows. In Section

2, we present some of the relevant works and highlight our novel

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.
CASES '16, October 01-07, 2016, Pittsburgh, PA, USA

© 2016 ACM. ISBN 978-1-4503-4482-1/16/10…$15.00

DOI: http://dx.doi.org/10.1145/2968455.2968510

contributions. In Section 3, we explain the salient features of the

backpropagation benchmark considered in this work. In Section 4,

we explain the necessary characteristics of the NoC architecture

required to efficiently execute the backpropagation algorithm on

the heterogeneous platform considered here. Section 5 discusses

the experimental results to demonstrate the efficiency of the

proposed NoC over the traditional wireline counterparts. Finally,

Section 6 concludes the paper by summarizing the findings and

pointing toward future directions.

2. Related Work and Novel Contribution
NoC-enabled homogeneous CMP architectures targeting

neuroscience applications have already been explored. For

instance, a massively parallelized CMP platform incorporating a

customized NoC architecture was used to implement spiking neural

networks [13]. Multicast-aware mesh NoC architectures have been

proposed for reconfigurable neural networks [14][15]. Due to the

highly parallelizable nature of the neural networks, these

applications have already been demonstrated to be more efficient

on discrete GPU systems rather than traditional multi-CPU CMPs

[4][16]. The design of a Commodity Off-The-Shelf (COTS) system

for HPC targeting deep learning was proposed in [17]: a cluster of

GPU servers with Infiniband interconnects and a message-passing

interface (MPI) show promise over large CPU-only based systems.

Recently, the architecture of a machine learning “supercomputer”
[16] that achieves higher performance and lower energy dissipation

than a modern GPU-based system was also proposed. The system

relies on a multichip design, where each node is significantly

cheaper than a typical GPU while achieving comparable or higher

number of operations per unit time in a smaller package.

Prior work on discrete GPU platforms has been focused on

improving the system performance by enhancing their NoC

architectures [18][19][20]. In a GPU system, processes executed

in each GPU core are usually independent of other GPUs’
processes, resulting in low inter-GPU communication [18].

Typically, GPUs only communicate with a few shared memory

controllers (MC), causing a many-to-few traffic pattern (i.e., many

GPU cores communicating with a few MCs) [18][19][20]. In this

case, MCs can potentially become traffic hotspots and lead to

performance bottlenecks. Prior research demonstrated that suitable

placement of the MCs can help alleviate the associated traffic

congestion [18][19]. To prevent traffic imbalance among the links,

a checkerboard mesh NoC with a suitable routing strategy was

recently proposed [18]. Similarly, to avoid link traffic overlap

between requests and their replies, an asymmetric virtual channel

partitioning and monopolization technique for the discrete GPU

NoC was proposed [19]. The advantage of using a clustered mesh

NoC (with 4 L1s per cluster) over non-clustered mesh and crossbar

architectures (i.e., all L1s in a single cluster) for discrete GPU

systems was demonstrated [20].

As explained above, backpropagation involves heavy CPU-

GPU communication that is best suited for a NoC-enabled

heterogeneous CPU-GPU CMP platform rather than a traditional

discrete-GPU system with expensive off-chip CPU-GPU data

transfers [8]. Due to the differences in the thread-level parallelism

of CPUs and GPUs, the NoC employed for heterogeneous systems

is expected to handle traffic patterns with varying Quality of

Service (QoS) constraints [21]. CPUs are highly sensitive to the

memory access times and hence, communications involving CPUs

require low-latency data exchanges. On the other hand, GPU

communication demands high bandwidth [21]. Modern NoC

designs for discrete GPU systems typically attempt to only

maximize the overall bandwidth of the system. Consequently, these

NoC designs are unsuitable for heterogeneous CMP architectures

incorporating multiple CPUs and GPUs on the same die. It has been

shown that the shared memory resources in a heterogeneous system

are often monopolized by the GPUs, leading to significant

degradation in CPU memory access latency and high execution

time penalties [22]. Hence, an efficient on-chip network designed

for heterogeneous CMPs should balance and fulfill the different

QoS standards required for both CPU and GPU communications.

The NoC design for CPU-GPU heterogeneous systems have yet

to be studied thoroughly. A system-level discussion regarding the

NoC design for CPU-GPU heterogeneous architectures was

presented in [21]. However, this work only considered a ring

interconnect that is known to be inefficient for large-scale systems.

A virtual channel partitioning scheme was proposed in order to

achieve low-latency CPU-related memory accesses in the presence

of largely latency-insensitive GPU communication [23]. However,

this strategy can affect the GPU throughput by partitioning the

physical resources. As we will explain later, our work employs

wireless links dedicated for CPU-MC communication to avoid such

network contention without affecting GPU throughput.

Thus far, most of the NoCs targeting discrete GPU systems are

based on conventional wired NoC architectures. The achievable

performance benefit from the proposed strategies is restricted due

to the inherent limitations associated with these NoCs. Traditional

wireline NoCs (such as mesh) use multi-hop, packet-switched

communication that leads to high network latencies [9]. To

overcome these limitations, small-world network-inspired wireless

NoC architectures have been proposed [10][11]. Indeed, by

employing a few long-range wireless shortcuts, these architectures

enable low latency communication even among the computing

cores that are physically far apart. Previous works [24][25][26]

have investigated the feasibility of the on-chip wireless

communication. The viability of on-chip wireless communication

has been demonstrated through prototypes [12]. Photonic network

architectures for high bandwidth on-chip communication have also

been proposed [27]. However, on-chip photonic networks have yet

to be successfully integrated into large-scale systems. In addition,

a recent study on emerging on-chip interconnects concluded that

the Radio-Frequency (RF) links, e.g., mm-wave wireless and

surface-wave interconnects, are more power and cost efficient than

on-chip optical links [28]. Between the two RF interconnects, on-

chip wireless technology is more mature and fully CMOS

compatible [11][28].

In this work we improve the state-of-the-art by presenting a

hybrid (wireline + wireless) on-chip interconnection architecture

that can meet the communication demands of a heterogeneous

CMP platform consisting of both CPU and GPU cores.

3. Backpropagation Benchmark
In this section, we briefly outline the features of the CUDA-based

implementation of the backpropagation algorithm from the Rodinia

benchmark suite [5]. We describe the neural network model and its

instantiation for the image recognition task1 that is part of the

benchmark; how to make predictions with given network weights;

and how to learn the network weights from a given training set

using the backpropagation learning algorithm.

Neural network model: A neural network is a graph with nodes

and edges. It can be seen as a non-linear function approximator that

is parameterized by the weights associated with the edges

(commonly referred to as “network weights”). The Rodinia

backpropagation benchmark implements a fully-connected feed-

1For the image recognition task associated with the

benchmark, the input corresponds to the facial image of a

person and the output is a discrete label identifying the person.

forward neural network with a hidden layer. It includes an input

layer I consisting of input units (say m); hidden layer H consisting

of hidden units (say n); output layer O consisting of output units

(say p); and directed edges connecting each input unit and hidden

unit pair, and each hidden unit and output unit pair (total of m*n +

n*p edges). The number of input units for the considered image

recognition task is same as the number of pixels in the image, and

the number of output units is only one (a discrete label). There is a

weight w (parameter) associated with each edge of the network, and

each node takes the weighted sum of its inputs and computes the

output using a non-linear activation function 𝛾. This computation

is highly data-intensive and easily parallelizable using GPU cores.

This neural network model is very expressive as every bounded

continuous function can be approximated with little error [29].

Since the backpropagation training works only when each and

every function node is differentiable, the activation function γ

should be chosen accordingly. The Rodinia benchmark employs

the sigmoid function:

 γ (𝑣) = 1(1+𝑒−𝑣) (1)

where v is the weighted sum of the input edges at a function node.

Prediction with given network weights: Given an input image x

and network weights W, we propagate the input forward through

the network, compute the output activation of every hidden unit;

and then, compute the output of the network to predict output 𝑦̂.

Learning network weights: Given a set of T training input-output

pairs (𝑥𝑘, 𝑦𝑘), we want to learn the weights of the network such

that the error of the predicted outputs of the neural network (as

described above) is very small. The benchmark employs an

iterative optimization training algorithm (backpropagation) to learn

the network weights. At each iteration, for each input example 𝑥𝑘

from the training data, we make a prediction 𝑦̂𝑘 by making a

forward pass through the network using the current network

weights (as described above); we then compare the predicted output 𝑦̂𝑘 with the correct output 𝑦𝑘 to see if there is an error, and if there

is an error, we make a backward pass through the network to

compute the gradient vector 𝛿𝑘. Finally, we perform a weight
update using the cumulative gradient as follows:

 𝛿 = ∑ 𝛿𝑘𝑇𝑘=1 (2)

 𝑊 = 𝑊 + 𝜂 ∗ 𝛿 (3)

where 𝜂 is the learning rate and W is the weight vector

corresponding to network weights. It is clear that during both the

forward and backward passes, a lot of parallelism exists within the

computation between two layers that can be exploited while

designing hardware accelerators. Moreover, the data propagation

between the layers causes significant amount of network traffic.

The computation and communication patterns between any two

consecutive layers of a neural network will follow patterns similar

to that observed in the Rodinia benchmark suite described above.

Hence, the findings of this work are generalizable for any neural

network with multiple layers.

4. NoCs for Heterogeneous Platforms
In CPU-GPU heterogeneous manycore architectures, the NoC

mainly handles many-to-few communication patterns. Each

processing core in the system maintains its own L1 cache. The L1

caches mainly exchange data with a limited number of memory

controller (MC) blocks. Also, inter-GPU traffic is insignificant in

comparison to the L1 to MC communication volume [18][20]. Each

MC incorporates a Last Level Cache (LLC) and a mechanism to

access the main memory. Fig. 1 illustrates a CPU-GPU

heterogeneous architecture2 with 4 CPUs, 28 GPUs, and 4 MCs.

As shown in Fig. 1, in order to perform efficient many-to-few

communication, we attach multiple GPUs to a single router (called

concentration) [20]. With concentration, multiple L1 banks connect

to a single router, which is then connected to the MC blocks. The

concentration lowers the inter-router hop count between the L1s

and MCs and hence reduces the network latency. Moreover,

concentration lowers the number of NoC routers needed, leading to

lower area overheads and reduced wiring complexities [20].

In a heterogeneous CMP, the traffic requirements vary

depending on the type of the nodes involved in the data exchange.

The CPU-MC communications are primarily latency-sensitive

while the GPU-MC communications are more throughput-sensitive

[21]. In CPUs, long waits for memory accesses lead to stalled

processor cycles resulting in execution time penalties. On the other

hand, GPU’s low-cost context switching makes GPUs less

susceptible to GPU-MC communication latency. However, each

GPU core consists of multiple thread execution units, requiring

large streams of data exchanges between the GPU and MC, leading

to high throughput requirements [21]. Considering the above-

mentioned facts, an NoC designed for heterogeneous CPU-GPU

systems must be optimized to ensure that the CPU-MC

communication latency is minimized while the overall NoC

throughput is maximized. Hence, in this work, we consider these

two objectives and jointly optimize them while designing the

overall interconnection architecture.

4.1 Mesh NoC
It was shown that on a mesh NoC for handling many-to-few

communication patterns, placing the MCs closer to the middle

rather than along the chip edges reduces traffic congestion in the

links and ensures better overall NoC throughput [18]. However,

this mesh NoC was designed for a homogeneous GPU-based

system. In the case of the heterogeneous architecture, which is the

focus of this work, we need to consider the placement of the CPU

cores in addition to the placement of the MCs to achieve both low

latency CPU-MC communication and high NoC throughput.

However, as we will show in Fig. 7, even in a mesh optimized for

both CPU and MC placements, there exist a few links that are

heavily utilized when compared to the rest of the links present in

the NoC. During high traffic, such links will become bandwidth

bottlenecks, negatively affecting the overall system performance.

2 It should be noted that the tile locations in this heterogeneous

architecture figure are just for illustration purposes. They are

not optimized for any specific performance metric.

Fig. 1. Illustration of a heterogeneous architecture incorporating

CPUs, GPUs, and MCs. Each tile contains a network router enabling

NoC interconnections. Because of L1 concentration, GPU tiles

incorporate 4 GPU cores and 4 L1s in each tile.

The presence of these bandwidth bottlenecks can be attributed to

the multi-hop nature of the mesh NoC architecture, which leads to

high traffic aggregation in the intermediate routers and links.

In order to address the inherent multi-hop nature of mesh NoCs,

design of wireless NoCs (WiNoCs) has been proposed [10][11].

The salient feature of the WiNoC is that the wireless links establish

single-hop shortcuts between physically distant cores, thereby

improving the hop-count and subsequently, the latency, throughput

and energy dissipation of the whole system. Hence, our aim is to

design a customized low-hop WiNoC targeted for the

heterogeneous architecture under consideration.

4.2 Proposed Hybrid NoC
In this section, we highlight the design principles of a hybrid NoC

architecture comprising of both wireline and wireless links

customized for the CPU-GPU heterogeneous computing platform.

We call this proposed NoC a Wireless-enabled Heterogeneous NoC

(WiHetNoC). In this network, we intend to use single-hop wireless

links between the CPUs and MCs. The GPU-MC communication

is handled through a combination of wireline and wireless links that

are tailored to the traffic pattern. Aside from enabling low latency

CPU-MC data exchanges, the use of dedicated wireless links for

CPU-MC communication makes the WiHetNoC design agnostic of

the CPU and the MC placements. This is because the wireless links

are able to guarantee direct single-hop communication regardless

of the physical distance between the transceivers as long as they are

within the communication range.

In the following subsections, we describe the overall network

design methodology for the WiHetNoC. We also describe the

insertion of wireless links as long-range shortcuts and the

communication protocols that are employed in WiHetNoC.

4.2.1 Optimizing Network Connectivity
To maximize the throughput of a NoC with a given number of links,

the network connectivity should be established such that the

average inter-router hop count is minimized while the system is

free from bandwidth bottlenecks.

For an NoC with R routers and L links, we can find Uk, the

expected utilization of a link k by using the following equation: 𝑈𝑘 = ∑ ∑ 𝑓𝑖𝑗𝑝𝑖𝑗𝑘𝑅𝑗=1 ,𝑅𝑖=1 𝑝𝑖𝑗𝑘 = {1, 𝑖𝑓 𝑖, 𝑗 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑘 𝑘0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)

where, 𝑝𝑖𝑗𝑘 indicates which links are used for the communication

from router i to router j. The 𝑝𝑖𝑗𝑘 value can be found by using the

network connectivity and NoC routing protocol. The value 𝑓𝑖𝑗

denotes the frequency of interaction between routers i and j.

In our WiHetNoC, we establish the network connectivity such

that both the mean link utilization (𝑈̅) and the standard deviation

among the link utilizations (𝜎) are minimized. Essentially, our

main objective is to find d* in (5).

 𝑑∗ = arg 𝑚𝑖𝑛𝑑∈𝐷 𝑓(𝑈̅(𝑑), 𝜎(𝑑)) (5)

where D is the set of all wireline connectivity possible under given

constraints, and d* is the connectivity obtained from minimizing 𝑈̅

and 𝜎. For the sake of completeness, we show the formulae for

determining 𝑈̅ and 𝜎 below. 𝑈̅ = 1𝐿 ∑ 𝑈𝑘 = 1𝐿 ∑ (∑ ∑ 𝑓𝑖𝑗𝑝𝑖𝑗𝑘)𝑅𝑗=1𝑅𝑖=1𝐿𝑘=1𝐿𝑘=1 = 1𝐿 ∑ ∑ (𝑓𝑖𝑗𝑅𝑗=1𝑅𝑖=1 ∑ 𝑝𝑖𝑗𝑘𝐿𝑘=1) = 1𝐿 ∑ ∑ 𝑓𝑖𝑗ℎ𝑖𝑗𝑅𝑗=1𝑅𝑖=1 (6)

 𝜎 = √1𝐿 ∑ (𝑈𝑘 − 𝑈̅)2𝐿𝑘=1 (7)

Here, hij denotes the minimum distance in number of hops from

router i to router j with the given network connection. Intuitively,

ℎ𝑖𝑗 is equal to the total number of links used in the communication

between router i and router j.

As it can be observed from the above equations, 𝑈̅ is directly

proportional to the traffic weighted hop count (given by ∑ ∑ 𝑓𝑖𝑗ℎ𝑖𝑗𝑅𝑗𝑅𝑖). Thus, minimizing 𝑈̅ also minimizes the inter-router

hop count, leading to high network throughput. On the other hand,

minimizing 𝜎 ensures that the link utilizations in the WiHetNoC

are well balanced. Unlike the mesh NoC in which only a few MC

links are highly active, all the incoming and outgoing links are

almost equally utilized in WiHetNoC. This in turn ensures that the

NoC is free from the bandwidth bottlenecks.

Since minimizing both 𝑈̅ and 𝜎 together is a multi-objective

optimization (MOO), here we employ the Archived Multi-

Objective Simulated Annealing (AMOSA) [30] to solve (5).

AMOSA is a simulated annealing (SA) based algorithm in which

the optimization process is guided with the help of an archive of

solutions [30]. In AMOSA, during each optimization step, a

perturbation is created in one of the archived solutions to generate

a new configuration. Depending on the comparative quality of this

new configuration over all the solutions in the archive, AMOSA

then updates the archive [30]. Thus, on completion of AMOSA, we

obtain a set of archived candidate configurations.

We note that although the AMOSA-based optimization has

been used in this work as an example, any other MOO technique

can be utilized in place of AMOSA. Exploring the best possible

MOO for heterogeneous architectures is out of the scope of this

paper and is a part of our future investigations.

In this work, our aim is to create an application-specific

WiHetNoC architecture by optimizing the traffic weighted hop

count. Hence, the overall connectivity is irregular in nature, i.e., all

routers and link characteristics are entirely dependent on the

application's traffic pattern. However, while establishing the link

connectivity in the WiHetNoC, we need to follow certain

restrictions. First, we limit the average number of inter-tile

communication ports per router (Kavg) to four so that the

WiHetNoC does not introduce any additional router port overhead

when compared to a conventional mesh. Next, we need to restrict

the maximum number of ports in a router (Kmax) so that no

particular router becomes unrealistically large. It was already noted

that the MCs in a heterogeneous NoC are traffic hotspots with

heavy volumes of incoming and outgoing messages. Increasing

Kmax allows the number of router ports attached to an MC to

increase, and hence improves the MC router bandwidths. However,

high Kmax values can lead to large routers, which result in high

network energy consumptions. Moreover, large routers make the

whole system highly vulnerable to failures. Consequently, in this

Fig. 2. Illustration of WiHetNoC Connectivity.

work, we consider a Kmax range of 4 to 7. First, for each Kmax value,

we create a candidate network set through AMOSA for minimizing

both the mean link utilization and the standard deviation among the

link utilizations. Then, among all these candidate networks, we

choose the network with the lowest energy delay product (EDP) as

the optimum wireline connectivity for the WiHetNoC.

4.2.2 Wireless Link Placement
In WiHetNoC, the CPU-MC communication is handled using

dedicated millimeter (mm)-wave and sub-THz on-chip wireless

links operating in the 10-220 GHz range. Moreover, as we illustrate

in Fig. 2, in this WiHetNoC there are several long wireline

interconnections. As these links are extremely costly in terms of

power and delay, we employ the wireless links to connect the GPU

and MC routers that are separated by long distances. In practice,

depending upon the available wireless resources, we can only make

a limited number of the longest links wireless, while the other links

need to remain wireline. Current state-of-the-art WiNoCs employ

wireless channels working in the mm-wave range of 10-100 GHz

[11]. In order to achieve simultaneous wireless transmissions and

maximize the usage of the wireless medium, we need to have

multiple non-overlapping wireless channels. It has been shown that

it is possible to create three non-overlapping channels working in

the 30, 60 and 90 GHz within the mm-wave range [11]. However,

considering the data-intensive application at hand, to increase the

wireless throughput, we increased the wireless channel range to the

Sub-THz frequencies. By enhancing the frequency range of

operation, we are able to create two more additional non-

overlapping channels working at 140 and 220 GHz. It should be

noted that by using the current CMOS technology both the

frequency range and number of channels could be increased

further. However, the proposed design methodology presented in

this work is oblivious to these physical design parameters, i.e., the

number of wireless channels can be increased or decreased without

modifying the proposed algorithm. Using these five channels we

overlay the wireline connectivity with the wireless links such that

a few routers get an additional wireless port. The wireless ports

have a wireless interface (WI) tuned to one of the five different

frequency channels.

Given the total number of WIs allowed (NWI), we use a WI

placement strategy that focuses on minimizing traffic-weighted

hop-count [32]. Following this methodology and by varying NWI,

we find both the optimum number of wireless interfaces and the

best locations in the WiHetNoC. The optimum value of NWI is

discussed later in Section 5, experimental results.

To summarize, the overall design flow to create the WiHetNoC

architecture is shown in Fig. 3.

4.2.3 Components of the Wireless Interface
The two principal components of a wireless interface are the

antenna and the transceiver. WiHetNoC uses a metal zigzag

antenna that has been demonstrated to provide the best power gain

with the smallest area overhead [11]. A detailed description of the

transceiver circuit is out of the scope of this paper. The wireless

interface is completely CMOS compatible and no new technology

is needed for its implementation. In the 28nm technology node, for

data rates of 16 Gbps, wireless links dissipate 1.3 pJ/bit over a

20mm communication range.

4.2.4 Communication Protocols
In this section, we explain the routing and the wireless medium

access control (MAC) protocols that are adopted for the proposed

WiHetNoC. The proposed NoC principally has an irregular

application-specific topology and requires a topology agnostic

routing method. We follow ALASH (Adaptive Layered Shortest

Path) routing [10]. ALASH is built upon the layered shortest path

(LASH) algorithm [31]. The ALASH protocol improves the LASH

layering function by considering the expected traffic patterns. We

follow the priority layering function explained in [10]. Priority

layering allocates as many virtual layers as possible to source-

destination pairs with high traffic intensities. This improves the

adaptability of messages under high traffic intensities by providing

greater routing flexibility. We employ a distributed MAC protocol

to resolve the channel access contention among the wireless nodes

present in WiHetNoC [32].

5. Experimental Results and Analysis
We employ gem5-gpu, a heterogeneous full system simulator to

obtain processor- and network-level information [33]. The gem5-

gpu combines two well-known simulators; Gem5, a manycore CPU

simulator and GPGPU-sim, a detailed GPGPU simulator. The

gem5-gpu provides flexible network configurations and supports

inter-CPU-GPU cache coherence protocols. The gem5-gpu also

provides a customizable interconnection model through the Garnet

network[34]. We have modified this Garnet network topology to

implement the WiHetNoC architecture. We use gem5-gpu in the

full-system simulation mode. In the full-system simulations we

consider a NVIDIA Fermi-like architecture for GPU cores and the

Parameters Configuration

GPU / Shader Core clock

SIMT width

GPU Private L1 I cache

GPU Private L1 D cache

0.7GHz / 1.4GHz

8

64kB

64kB

CPU Clock

CPU Private L1 I cache

CPU Private L1 D cache

2.5GHz

64kB

64kB

Shared L2 cache size

DRAM

1MB per MC

2GB
Table 1. System configurations

Fig. 3. WiHetNoC design flow. Required input parameters and the objective functions optimized in the creation of WiHetNoC are also shown.

standard x86 architectures for CPU cores. We employ MESI two-

level cache coherence protocol. Each CPU and GPU streaming

multiprocessor (SM) is provided with private L1 data and

instruction caches. The considered memory system also

incorporates four LLCs that are shared among all the CPUs and

SMs. Table 1 provides detailed configurations of the architecture

considered in this work. We use GPUWattch to obtain detailed

processor power profiles from the gem5-gpu statistics [35]. We use

a generic three-stage router architecture for all NoCs under

consideration. The delay of each stage is constrained within one

clock cycle. For routers with more than 4 inter-tile router ports, the

output arbitration has one more pipeline stage and the delay of this

stage is also constrained within one clock cycle. This is accounted

for while determining the latency and energy of HetNoC and

WiHetNoC. Moreover, it should be noted that the proposed NoC

design and optimization methodology is valid for router

architectures with any number of stages.

First, we investigate the optimum number of CPUs for the

benchmark at hand. Fig. 4 shows the application run time with

different number of CPUs in the system with a traditional mesh

NoC. We observed a similar trend with the WiHetNoC. It is evident

that beyond four CPU cores there is no improvement in the run

time. Hence, we consider four CPU cores in our experiments. This

trend in execution time can be attributed to the fact that for the

given application, the CPU execution portion does not scale well

beyond four parallel threads. On the other hand, the GPU

computations are highly parallelized and the optimum number of

streaming multiprocessors (SMs) for the backpropagation

application is mainly dependent on the given input problem size.

Hence, without loss of generality, in this work, we consider a

heterogeneous architecture with 112 SMs. For these SMs, we

consider a concentration factor of two (i.e., two SMs and their

associated L1s are connected to one GPU router). Thus, the

considered architecture consists of 56 SM tiles, 4 CPUs and 4 MCs.

This gives rise to a system size of 64 tiles, which are arranged in an

8 × 8 configuration.

5.1 Characterization of Mesh NoC
In this section, we analyze the characteristics of the conventional

wireline mesh NoC architecture running the backpropagation

application. Following the discussions in Section 4, for a mesh NoC

with a given number of tiles, we identify the positions of the CPUs

and MCs such that the CPU-MC communication latency is

minimized while the overall NoC throughput is maximized to

enable efficient GPU-MC data exchange (under the many-to-few

communication pattern).

5.1.1 Determining CPU & MC Placements in Mesh
We employ the AMOSA algorithm (mentioned in Section 4.2) to

determine the optimal positions of CPUs and MCs in a mesh NoC

(with GPU nodes occupying the remaining tiles) to jointly optimize

CPU-MC communication latency and the overall NoC throughput.

On completion of the AMOSA optimization, we obtain a final set

of candidate configurations, each with a different (CPU-MC

communication latency, NoC throughput) pair. From Fig. 5, we can

observe that there is a latency-throughput trade-off among the five

mesh NoC candidate configurations, denoted as C1-C5 (the

configuration with the best CPU-MC communication latency has

the worst NoC throughput and vice versa). In order to observe the

effect this trade-off has on the system performance, we execute the

backpropagation application with all different candidate

configurations. We also consider two non-optimized mesh

configurations to provide a comparative performance evaluation

with respect to the optimized mesh candidate solution set. In these

two non-optimized configurations the MCs and the CPUs are

simply placed along the edges. The first configuration is called TB

where the CPUs and the MCs are located on two opposite edges,

e.g., top and bottom of the die. In the second configuration, denoted

as BOT, all CPUs and MCs are placed at the bottom of chip. Fig. 6

shows the application run times of the following seven NoC

configurations; five optimized mesh candidate configurations

(denoted as C1-C5), TB mesh and BOT mesh. It can be observed

from Fig. 6 that the C3 configuration achieves the least application

run time. Hence, in all further analyses, we consider the C3

configuration for mesh NoC. We should also note that the two non-

optimized configurations TB and BOT have higher run times than

all of the optimized configurations. However, the execution time

improvement of optimized mesh is limited compared to BOT mesh

since we are only optimizing the locations of the MCs and CPU

tiles here. As we will discuss in Section 5.3, we are able to greatly

increase the achievable gain over BOT mesh by using a WiHetNoC

(Section 4.2) designed with AMOSA. This is due to the fact that in

the design of WiHetNoC we also optimize the underlying network

topology and hence the achievable performance gain is much more.

5.1.2 Link Utilization in Mesh
Figure 7 shows the locations of the CPU and MC tiles in the final

optimized (C3 configuration) mesh NoC. We can observe from

Fig. 7 that in the optimized mesh NoC, the MCs and CPUs are

clustered in the middle so that the CPU-MC communication latency

is minimized. Moreover, placing the MCs closer to the middle

Fig. 4. Execution times of the considered backpropagation benchmark

with varying number of CPUs.

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

N
o

rm
a

li
ze

d

e
x

e
cu

ti
o

n
 t

im
e

s

w
.r

.t
 S

in
g

le
 C

P
U

Number of CPUs

Fig. 5. Latency and throughput trade-off among the candidate

configurations (C1-C5) for the mesh NoC.

1

1.05

1.1

1.15

1.2

1

1.2

1.4

1.6

1.8

C1 C2 C3 C4 C5

N
o

rm
a

li
ze

d
 (

T
h

ro
u

h
p

u
t)

-1

N
o

rm
a

li
ze

d
 C

P
U

-M
C

La
te

n
cy

CPU-MC latency 1/Throughput

Fig. 6. Application runtimes for candidate configurations (C1-C5) of

the optimized mesh NoC along with two non-optimized

configurations (BOT, TB).

ensures that handling of GPU-MC traffic is distributed among

multiple MC ports, leading to higher NoC throughput.

In Fig. 7, we also show the link utilizations in the optimized

mesh NoC. All link utilizations are normalized with respect to the

mean link utilization. It is evident that even in this optimized NoC

a few links are more heavily utilized when compared to the rest of

the links. This happens due to the XY routing mechanism

traditionally considered for mesh NoCs. The incoming vertical and

outgoing horizontal links associated with the MCs have 300% to

400% higher traffic densities than the overall average.

In order to alleviate the traffic congestion caused by

aggregation of traffic along the mesh NoC links, one can also adopt

a combination of minimal XY and minimal YX routing as proposed

in [19]. However, such an approach cannot eliminate the bandwidth

bottlenecks from the optimized mesh NoC under the heterogeneous

computing induced traffic patterns. To elaborate more, Fig. 8

shows the average traffic weighted hop count and the standard

deviation among the link utilizations for all the following NoC

configurations: optimal mesh, TB mesh, BOT mesh, and four

different WiHetNoC candidate architectures (these WiHetNoC

candidates are explained later in detail). As it can be observed from

this figure, the optimal mesh NoC (with both XY and the XY+YX

routing protocols) shows lower standard deviation among the link

utilizations and lower traffic weighted hop count than the non-

optimized mesh configurations. However, when compared with

WiHetNoC candidates, both the standard deviation and the traffic

weighted hop count of the optimized mesh NoC are at least 2X

higher and this indicates the presence of traffic hotspots that can

lead to bandwidth bottlenecks.

It can be observed from Fig. 7 that in the optimized mesh NoC,

since the MCs are placed around the CPU cluster, the CPU tile

routers also act as intermediate routers forwarding the GPU-MC

traffic. With continuous streams of data flowing from MCs towards

GPUs, the above-mentioned traffic forwarding causes traffic

congestion in the CPU tile routers leading to undesired increase in

the CPU-MC communication latency. To resolve this issue, the

MCs can be placed away from the CPUs such that the CPU tiles are

not involved in the GPU-MC traffic forwarding. However, due to

the lack of long-range shortcuts in mesh NoC, placing the MCs

away from the CPUs increases the number of hops required for

CPU-MC communication leading to network latency penalties.

Hence, our target is to design an application-specific heterogeneous

NoC architecture with suitable long-range shortcuts to improve

both CPU-MC latency and the overall NoC throughput. Since the

wireless links make the CPU-MC latency agnostic of their

placements, we keep the CPUs at the center of the system like the

mesh NoC and distribute the four MCs to the center tiles in each of

the four quadrants of the system. All the other tiles are occupied by

the GPU cores surrounding the CPUs and MCs. The whole system

is integrated using the WiHetNoC framework. In the following

section we determine the various network parameters of this

WiHetNoC.

5.2 Determining WiHetNoC Parameters
In this section, we determine the overall architecture and the

network parameters of WiHetNoC.

5.2.1 Router Port Upper Bound
In the WiHetNoC design process, we first find the optimum value

of 𝑘𝑚𝑎𝑥 (maximum number of inter-tile communication ports in a

router). As we discussed in Section 4.2.1, we start with a 𝑘𝑚𝑎𝑥

range of 4 to 7. For each 𝑘𝑚𝑎𝑥 value we use the above-mentioned

AMOSA optimization to find a final candidate solution set. Fig. 9

Fig. 10. Variation in network EDP for different router port upper

bounds (Kmax).

0.8

0.9

1

1.1

1.2

4 5 6 7

N
o

rm
a

li
ze

d
 F

li
t

E
D

P

Kmax

Fig. 7. The central 6×5 portion of the optimized Mesh NoC indicating

the link utilizations and the locations of CPUs and MCs. All link

utilizations are normalized with respect to the mean link utilization.

The red arrows indicate the bandwidth bottlenecks whose utilization

is at least 100% more than the mean.

Fig. 8. Traffic-weighted hop count and standard deviation among the

link utilizations for the optimized mesh (denoted as OPT), TB mesh,

BOT mesh, and WiHetNoCs (for each considered Kmax). For mesh NoCs

we show the results for both XY and XY+YX routing schemes.

0

0.5

1

1.5

2

X
Y

 O
P

T

X
Y

 +
 Y

X
 O

P
T

X
Y

 B
O

T

X
Y

 +
 Y

X
 B

O
T

X
Y

 T
B

X
Y

 +
 Y

X
 T

B

K
m

a
x

=
4

K
m

a
x

=
5

K
m

a
x

=
6

K
m

a
x

=
7

Mesh WiHetNoC

N
o

rm
a

li
ze

d
 w

.r
.t

 o
p

ti
m

iz
e

d

X
Y

 m
e

sh

Traffic weighted hop count
Standard deviation among link utilization

Fig. 9. Normalized traffic-weighted hop count and standard deviation

among the link utilizations of various candidate wireline

configurations for WiHetNoC (Kmax values ranging from 4 to 7).

0.9

1

1.1

1.2

1.3

1.4

0.95 1 1.05 1.1 1.15 1.2 1.25

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

a
m

o
n

g
 li

n
k

 u
ti

li
za

ti
o

n
s

Traffic weighted hop count

Kmax=4 Kmax=5 Kmax=6 Kmax=7

shows the mean link utilization (𝑈̅) and the standard deviation

among the link utilizations (𝜎) for all the solutions in the final

candidate set corresponding to each 𝑘𝑚𝑎𝑥 value. All the values in

this figure are normalized with respect to the final WiHetNoC

configuration. As it can be observed from the graph, as the 𝑘𝑚𝑎𝑥

value is increased, the 𝑈̅ and 𝜎 values are lowered. This happens

because with higher Kmax values, more inter-router connections are

allowed in each MC, leading to lower average hop counts between

GPUs and the MCs. It can also be observed that the solutions

corresponding to Kmax=6 and Kmax=7 overlap with each other while

the solutions corresponding to Kmax=5 and Kmax=6 can be clearly

distinguished from each other (in Fig. 9). This demonstrates that

increasing Kmax leads to diminishing gains in hop count reductions

and there is no gain in exploring beyond Kmax=7. As explained in

Section 4.3.1, the final WiHetNoC wireline connectivity is

identified from the candidate networks by comparing their network

Energy-Delay-Products (EDP). Average message latency and

average message energy values are used in this EDP computation.

Fig. 10 shows the EDPs of the optimal networks corresponding to

each Kmax, (thus a total of four optimal networks are shown

corresponding to Kmax values ranging from 4 to 7). From Fig. 10 it

is evident that the optimal value for 𝑘𝑚𝑎𝑥 is 6. Beyond this value

of Kmax, the EDP increases steadily due to higher router energy

consumptions without significant gains in network latency and hop

count. Hence, we select the network corresponding to Kmax=6 as the

optimal wireline connectivity for WiHetNoC.

In Fig. 8, we compare the average traffic-weighted hop-count

and the standard deviation among the link utilizations for various

mesh configurations and the four optimal WiHetNoC architectures

(for the four considered Kmax values). From this figure, we can

observe that WiHetNoC enables at least 50% traffic weighted hop

count reduction over mesh. Moreover, the standard deviation

among the link utilizations for WiHetNoC is low indicating that the

traffic is well distributed among WiHetNoC links and hence, the

opportunity for experiencing bandwidth bottlenecks is highly

reduced in WiHetNoC when compared to mesh.

5.2.2 Number of WIs
Next, we identify the number of WIs needed for the GPU-MC

communication in the WiHetNoC architecture. As mentioned

earlier, we are able to create five non-overlapping channels. We

dedicate one channel to achieve single-hop CPU-MC

communications. Hence, four wireless channels are available for

GPU-MC communication.

Fig. 11 shows the variation in EDP and wireless utilization

observed with varying WI counts. The wireless utilization

parameter represents the percentage of total messages that are using

the wireless channels. As observed from this figure, the EDP

initially reduces as the WI count increases as higher number of

wireless shortcuts improves the wireless utilization and hence

lowers the overall network latency. However, beyond a WI count

of 24, with more than six WIs allocated on a single wireless

channel, the MAC overhead (and hence the channel access latency)

starts to increase [27]. This in turn increases the network EDP for

the WiHetNoC when more than 24 WIs (Fig. 11) are used. Hence,

in our WiHetNoC, we employ 24 WIs for GPU-MC

communication (4 channels are used with 6 WIs operating on each

channel). Fig. 12 shows the effects of adding wireless channels for

GPU-MC communication on the performance of the WiHetNoC.

With increasing number of wireless channels, the amount of data

using wireless medium increases and the overall EDP improves.

However, the enhancement in wireless utilization and subsequent

improvement in EDP slows down beyond a certain number of

wireless channels. For the 64-tile system size, increasing the

number of wireless channels beyond 4 does not enhance the system

performance noticeably as the opportunity for more wireless

utilization diminishes.

Since each WI transceiver occupies an area of 0.25mm2, the

additions of WIs introduce a total of 1.82% silicon area overhead

for a die with dimensions of 20 mm×20mm.

5.2.3 Characteristics of WiHetNoC
Fig. 13 compares the CPU-MC communication latency and

network throughput achieved with the optimized WiHetNoC

against all the solutions available in the final candidate set for the

optimized mesh (explained earlier in Section 5.1). From this graph,

Fig. 11. EDP and Wireless utilization for various WI counts.

0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28

N
o

rm
a

li
ze

d
 W

ir
e

le
ss

U
ti

li
za

ti
o

n

N
o

rm
a

li
ze

d
 F

li
t

E
D

P

WI Count

Normalized Flit EDP Normalized WI Utilization

Fig. 12. EDP and WI utilization with various number of channels.

0

0.2

0.4

0.6

0.8

1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

N
o

rm
a

li
ze

d
 W

I

u
ti

li
za

ti
o

n

N
o

rm
a

li
ze

d
 F

li
t

E
D

P

Number of Channels

Normalized Flit EDP Normalized WI Utilization

Fig. 13. CPU-MC communication latency and inverse of overall NoC

throughput for various candidate configurations (C1-C5) of the mesh

NoC and the optimized WiHetNoC.

0.7

1

1.3

1.6

1.9

2.2

2.5

2.8

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

N
o

rm
a

li
ze

d
 (

T
h

ro
u

g
h

p
u

t)
-1

CPU-MC communication latency

mesh candidates WiHetNoC

WiHetNoC

C1

C2
C3 C4 C5

Fig. 14. Cumulative Distribution Function (CDF) of link utilizations

for the WiHetNoC, XY mesh, and XY-YX mesh architectures.

0%

20%

40%

60%

80%

100%

0 0.5 1 1.5 2 2.5 3 3.5

P
e

rc
e

n
ta

g
e

 o
f

Li
n

k
s

Link Utilization normalized w.r.t mean liink utilization

of XY-Mesh

WiHetNoC XY+YX MESH XY MESH

we can observe that WiHetNoC achieves both a higher NoC

throughput and a lower CPU-MC communication latency than all

the optimized mesh candidate solutions with similar

implementation overhead. The WiHetNoC improves the

throughput by a factor of 2 compared to the optimized mesh

configuration (C3). This demonstrates the effectiveness of the

proposed methodology in designing NoC architectures for

heterogeneous platforms with many-to-few communication

patterns.

In Fig. 14 and Fig. 15, we show the Cumulative Distribution

Function (CDF) and Probability Density Function (PDF) of the link

utilizations for the WiHetNoC and the mesh architectures. The

utilizations in this figure are normalized with respect to the mean

link utilization observed in mesh NoC with XY routing (U=1

represents this mean utilization). For both XY and XY+YX routing

schemes, 15% of the optimized mesh NoC links have at least 2x

higher utilization when compared to the mean utilization. The

XY+YX routing scheme is only helpful in achieving moderate

reductions in the number of very highly utilized links. As an

example, the percentage of links that have at least 3x higher

utilization when compared to the mean is reduced from 6% in XY

routing to 4% in XY+YX routing scheme. It is also clear from this

figure that for WiHetNoC, more than 90% of the links fall under

the mean link utilization of the mesh NoC. Generally, when

compared to mesh NoC, the WiHetNoC CDF curve is shifted left

indicating a reduction in overall link utilizations, which is obtained

through lowered inter-router hop counts. Moreover, as shown in

Fig. 15, unlike mesh, WiHetNoC has no links with very high

utilizations (no links with U>2). Thus, WiHetNoC is relatively

bandwidth bottleneck free.

5.3 Comparative Performance Evaluation
In this section, we present the performance of the WiHetNoC

compared to the optimized mesh NoC architecture. In this

comparative performance evaluation, we also consider the

characteristics of HetNoC: an architecture that uses pipelined long-

range metal wires instead of the WiHetNoC’s wireless links. Thus,

the HetNoC architecture is an exact fully-wireline equivalent of the

WiHetNoC architecture.

We first present the network-level analyses showing both the

network latency and EDP. Fig. 16 shows the network latency and

the EDP of WiHetNoC, HetNoC, and mesh. HetNoC reduces the

network latency and EDP by 35% and 56% respectively, when

compared to the mesh. With the use of long-range shortcuts

between physically remote nodes, the HetNoC enables a lower

average hop count than the optimized mesh NoC, and hence,

achieves significant reductions in intermediate flit counts.

However, as we stated in Section 4.3, the long wireline links of the

HetNoC suffer from high link latency and energy consumption. In

the WiHetNoC architecture, many of these long-range wireline

links are replaced with energy efficient wireless links, and hence,

WiHetNoC enables 18% more latency improvement and 31.5%

more EDP improvement when compared to the HetNoC. From Fig.

16, it is evident that the WiHetNoC achieves 47% lower network

latency, and saves the EDP by 70% compared to the mesh

architecture.

Next, we consider the application execution time and the full-

system EDP. Fig. 17 shows the execution time and full-system EDP

for WiHetNoC, HetNoC, and mesh architectures. The HetNoC

achieves 4.5% execution time improvement over the mesh while

the WiHetNoC shows 12.1% improvement over the mesh NoC.

The dedicated wireless channel for CPUs on the WiHetNoC

enables a highly efficient data transfer between CPU and MC. Also,

the use of wireless shortcuts helps in achieving high-bandwidth and

low-latency GPU-MC communications. These benefits translate to

a 25% and 15% full-system EDP reduction for WiHetNoC when

compared to the mesh and HetNoC architectures respectively.

6. Conclusion
In this paper, we have proposed the design of a hybrid NoC-enabled

single-chip heterogeneous computing platform for energy-

efficiently accelerating an important deep learning kernel. The

proposed NoC architecture is able to fulfill the communication

requirements of both CPU and GPU cores. We also highlight the

inherent limitations of a traditional mesh-based NoC in handling

the traffic patterns arising from deep learning kernels. By virtue of

using single-hop wireless links, the proposed WiHetNoC

architecture achieves much better throughput and latency

compared to a highly optimized mesh. For the considered

backpropagation application, WiHetNoC achieves 25% lower full

system energy-delay-product (EDP) with respect to the mesh and

15% lower full system EDP when compared to a fully wireline

application-specific architecture. It should be noted that this full

system EDP improvement comes only from the network level

innovation.

Fig. 17. Execution time and full-system EDP of mesh, HetNoC, and

WiHetNoC architectures.

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time EDP

N
o

rm
a

li
ze

d
 w

.r
.t

m
e

sh

Mesh HetNoC WiHetNoC

Fig. 16. Network latency and EDP of mesh, HetNoC, and WiHetNoC.

0

0.2

0.4

0.6

0.8

1

Latency EDP

N
o

rm
a

li
ze

d
 w

.r
.t

 M
e

sh

Mesh HetNoC WiHetNoC

Fig. 15. Probability Density Function (PDF) of the link utilizations in WiHetNoC, XY mesh, and XY+YX mesh architectures.

0%

10%

20%

30%

40%

50%

60%

 U <= 0.5 0.5 < U <= 1.0 1.0 < U <= 1.5 1.5 < U <= 2.0 2.0 < U <= 2.5 2.5 < U <= 3.0 U > 3.0

P
e

rc
e

n
ta

g
e

 o
f

Li
n

k
s

WiHetNoC XY+YX MESH XY MESH

The full system EDP will improve even further when the

WiHetNoC design is complemented with suitable core-level task

and power management strategies, which is the focus of our future

investigation. In addition, we plan to evaluate the characteristics of

the proposed architecture for other deep learning workloads.

7. Acknowledgments
This work was supported in part by the US national Science

Foundation (NSF) grants CCF-1514269, CCF-1162202, CCF-

1314876, CCF-1514206 and CCF-1331804.

8. References
[1] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. Nature

521: 436–444. 2015.

[2] D. Silver et al. “Mastering the game of Go with deep neural

networks and tree search”. Nature 529, 484–489. 2016.

[3] D. Rumelhard, G. Hinton, and R. Willians. “Learning

representations by back-propagating errors”. Nature 323

(6088): 533–536.

[4] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and
Scalability of GPU-Based Convolutional Neural Networks,”
Proc. Euromicro Int’l Conf. Parallel, Distributed and
Network-Based Processing, IEEE, 317-324, 2010.

[5] S. Che et al, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload

Characterization, 44–54, 2009.

[6] J. Power et al. “Heterogeneous system coherence for
integrated CPU-GPU systems.” In Proc. of the 46th Int’l
Symp. on Microarchitecture, 2013. 457–467.

[7] M.J. Schulte et al, “Achieving Exascale Capabilities through
Heterogeneous Computing”, IEEE Micro, vol. 35, no.4, 26-

36, Aug, 2015.

[8] J. Hestness, S.W. Keckler, D.A. Wood. “GPU Computing
Pipeline Inefficiencies and Optimization Opportunities in

Heterogeneous CPU-GPU Processors”. IISWC: 87-97, 2015.

[9] U. Y. Ogras and R. Marculescu, ' "It’s a small world after all":
NoC Performance Optimization via Long-range Link

Insertion, ' in IEEE Trans. on Very Large Scale Integration

Systems, Vol.14, No.7, 2006.
[10] P. Wettin et al., “Design Space Exploration for wireless NoCs

Incorporating Irregular Network Routing”, IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 33, Issue 11, 1732-1745, 2014.
[11] S. Deb et al., “Wireless NoC as Interconnection Backbone for

Multicore Chip: Promises and Challenges”, IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, Vol.

2, No. 2, 228-239, 2012.
[12] S. Deb et al., (2013, December). “Design of an energy

efficient CMOS-compatible NoC architecture with

millimeter-wave wireless interconnects,” IEEE Transactions
on Computers, 62(12), pp.2382-2396.

[13] E. Painkras et al., “SpiNNaker: A 1-W 18-core system-on-

chip for massively-parallel neural network simulation,” IEEE

J. Solid-State Circuits, vol. 48, no. 8, 1943–1953

[14] V. Dmitri and R. Ginosar. “Network-on-chip architectures for

neural networks.”. Proc of the 2010 Fourth ACM/IEEE

International Symposium on Networks-on-Chip, 135-144.

[15] A. Firuzan, M. Modarressi, and M. Daneshtalab, M.

“Reconfigurable communication fabric for efficient

implementation of neural networks”. in Proc., of IEEE

ReCoSoC, 1-8. 2015.

[16] Y. Chen et al., “DaDianNao: A Machine Learning

Supercomputer,” Proc. 47th Ann. IEEE/ACM Int’l Symp.
Microarchitecture, 609–622, 2014.

[17] A. Coates et al., “Deep learning with COTS HPC systems”,
Proceedings of the 30th International Conference on Machine

Learning, Atlanta, Georgia, USA, 2013.

[18] A. Bakhoda, J. Kim, and T.M. Aamodt, “Throughput-
Effective On-Chip Networks for Manycore Accelerators,”
Proc. of 46th Int’l Symp. Microarchitecture, 457–467, 2013.

[19] H. Jang et al., “Bandwidth-efficient on-chip interconnect

designs for GPGPUs” Design Automation Conference (DAC),

2015 52nd ACM/EDAC/IEEE,San Francisco,CA.1-6.

[20] A. Ziabari et al., “Asymmetric NoC Architectures for GPU
Systems” Proc. Of the 9th International Symposium on

Network-on-Chip. Article No. 25, 2015.

[21] J. Lee, S. Li, H. Kim, and S.Yalamanchilli, “Design Space
Exploration of On-chip Ring Interconnection for a CPU-GPU

Heterogeneous Architecture,” JPDC, 2013.

[22] O. Kayiran et al., “Managing GPU concurrency in
heterogeneous architectures”. Proc. 47th Int’l Symp.
Microarchitecture, 1–13, 2014.

[23] J. Lee, et al. "Adaptive virtual channel partitioning for

network-on-chip in heterogeneous architectures." ACM

Transactions on Design Automation of Electronic Systems

(TODAES) 18.4 (2013): 48.

[24] J-J. Lin et al., (2007, August). “Communication Using
Antennas Fabricated in Silicon Integrated Circuits,” IEEE

Journal of Solid-State Circuits, 42(8), pp.1678-1687.

[25] Y. P. Zhang, Z. M. Chen, and M. Sun, (2007, October).

“Propagation Mechanisms of Radio Waves Over Intra-Chip

Channels with Integrated Antennas: Frequency-Domain

Measurements and Time-Domain Analysis,” Transactions on

Antennas and Propagation, 55(10), pp.2900-2906.

[26] J. Branch, et al., (2005, April). “Wireless communication in
a flip-chip package using integrated antennas on silicon

substrates,” Electron Device Letters, 26(2), pp.115-117.

[27] W. Bogaerts, M. Fiers, P. Dumon, “Design Challenges in

Silicon Photonics,” IEEE Journal of Selected Topics in

Quantum Electronics, vol.20, no.4, 1-8, 2014.

[28] A. Karkar, T. Mak, K. F. Tong, and A. Yakovlev, “A Survey
of Emerging Interconnects for On-Chip Efficient Multicast

and Broadcast in Many-Cores”. IEEE Circuits and Systems

Magazine, vol. 16, no. 1, 58-72, 2016.

[29] A. Baroon. Universal approximation bounds for

superpositions of a sigmoidal function. IEEE Transactions on

Information Theory, Vol. 39, no.3, 930–945, 1993.

[30] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb, “A
simulated annealing-based multi-objective optimization

algorithm: AMOSA,” IEEE Transactions on Evolutionary

Computation, vol. 12, no. 3, 269–283, 2008.

[31] O. Lysne, T. Skeie, S.-A. Reinemo and I. Theiss, “Layered
routing in irregular networks”, IEEE Trans. On Parallel

Distributed Systems, 2006, 17(1), 1 -65.

[32] K. Duraisamy, R. Kim, P. Pande, “Enhancing Performance of

Wireless NoCs with Distributed MAC Protocols”, in Proc., of

ISQED, 2015, 406 – 411.

[33] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-

gpu: A Heterogeneous CPU-GPU Simulator,” Computer

Architecture Letters, vol. 13, no. 1, 2014.

[34] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET:
A Detailed On-chip Network Model inside a Full-system

Simulator”, In Proceedings of International Symposium on

Performance Analysis of Systems and Software, Apr. 2009

[35] J. Leng et al., “GPUWattch: enabling energy optimizations in

GPGPUs,” in International Symposium on Computer

Architecture, 487–498, 2013.

