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Abstract 

In recent years, designing specialized manycore heterogeneous 

architectures for deep learning kernels has become an area of great 

interest. However, the typical on-chip communication 

infrastructures employed on conventional manycore platforms are 

unable to handle both CPU and GPU communication requirements 

efficiently. Hence, in this paper, our aim is to enhance the 

performance of heterogeneous manycore architectures through the 

design of a hybrid NoC consisting of both wireline and wireless 

links. To this end, we specifically target the resource-intensive 

backpropagation algorithm commonly used as the training method 

in deep learning. For backpropagation, the proposed hybrid NoC 

achieves 1.9X reduction in network latency and improves the 

network throughput by a factor of 2 with respect to a highly 

optimized mesh NoC. These network level improvements translate 

into 25% savings in full system energy-delay-product (EDP). This 

demonstrates the capability of the proposed hybrid and 

heterogeneous manycore architecture in accelerating deep learning 

kernels in an energy-efficient manner. 

CCS Concepts 

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: 

Interconnection architectures, I.5.1 [Computing Methodologies]: 

Neural Networks, C.2.1 [Network Architecture and Design]: 

Wireless communication. 
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1. Introduction 
Deep learning techniques have seen great success in diverse 

application domains including speech processing, computer vision, 

natural language processing, and even mastering the game of Go 

[1][2]. While the fundamental ideas of deep learning have been 

around since the mid-1980s [3], the two main reasons for their 

recent success are: 1) availability of large-scale training data; and 

2) advances in computer architecture to efficiently train large-scale 

neural networks using this training data. 

Deep learning refers to a class of machine learning algorithms, 

where the goal is to train a non-linear function approximator 

represented as a neural network architecture by using input-output 

pairs of training data. Backpropagation (short for “backward 

propagation of errors'') is a fundamental part of deep learning that 

is used to train various types of neural networks [3]. 

Backpropagation is an iterative optimization algorithm; at each 

iteration, it first computes the predicted output by forwarding the 

input data through the network using the current weights (forward 

pass). Then, it passes the gradient of the prediction error backwards 

through the network (backward pass). Lastly, backpropagation 

updates the weights of the network using the gradient(s) from the 

prediction error through a variant of the stochastic gradient descent 

(SGD) optimization [3].  

In the backpropagation algorithm, the computations associated 

with different neurons in the same layer exhibit high parallelism. 

By exploiting this parallelism, the data-intensive operations 

associated with backpropagation can be significantly accelerated 

using GPU cores [4]. However, the execution of the 

backpropagation algorithm also involves high volumes of data 

exchanges between the CPUs and GPU accelerators [5]. In a 

discrete GPU system, the communication between the CPUs and 

GPUs is carried out by using off-chip interconnects that exhibit 

high data-transfer latency and high power consumption [6][7][8]. 

A heterogeneous single chip multiprocessor (CMP) solution in 

which the CPUs and GPUs are interconnected through the on-chip 

network will avoid such expensive off-chip data transfers and lead 

to improved system performance.  

We note that conventionally, data centers and high performance 

computing (HPC) clusters are employed to solve deep learning 

applications. However, the design of data centers and HPC clusters 

is dominated by power, thermal, and area constraints. Hence, we 

envision a Datacenter-on-Chip (DoC) architecture specifically 

targeting deep learning applications where the entire system (or a 

large part thereof) can be designed using a heterogeneous 

manycore-based single-chip architecture. It is well understood that 

with this massive level of integration, traditional Network-on-Chip 

(NoC) architectures, e.g., mesh, tree, ring, cannot provide a 

scalable, low latency and energy-efficient communication 

backbone, which is essential for solving the deep learning problems 

targeted in this work [9]. On the other hand, wireless NoCs 

(WiNoCs) are capable of achieving an energy–efficient and low-

latency communication infrastructure for massive manycore chips 

[10][11]. It is already demonstrated that WiNoC outperforms 

conventional wireline NoC architectures in terms of achievable 

bandwidth and energy dissipation [12].  Consequently, inspired by 

the successes of WiNoC, as our main contributions: i) we explore 

heterogeneous (i.e., combination of CPUs and GPUs) systems 

combined with hybrid (i.e., combination of wired and wireless 

links) NoC architectures for deep learning, and ii) present a generic 

design methodology that can be instantiated for any combination 

of neural networks and application domains.  

The remainder of the paper is organized as follows. In Section 

2, we present some of the relevant works and highlight our novel 
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contributions. In Section 3, we explain the salient features of the 

backpropagation benchmark considered in this work. In Section 4, 

we explain the necessary characteristics of the NoC architecture 

required to efficiently execute the backpropagation algorithm on 

the heterogeneous platform considered here. Section 5 discusses 

the experimental results to demonstrate the efficiency of the 

proposed NoC over the traditional wireline counterparts. Finally, 

Section 6 concludes the paper by summarizing the findings and 

pointing toward future directions. 

2. Related Work and Novel Contribution 
NoC-enabled homogeneous CMP architectures targeting 

neuroscience applications have already been explored. For 

instance, a massively parallelized CMP platform incorporating a 

customized NoC architecture was used to implement spiking neural 

networks [13]. Multicast-aware mesh NoC architectures have been 

proposed for reconfigurable neural networks [14][15]. Due to the 

highly parallelizable nature of the neural networks, these 

applications have already been demonstrated to be more efficient 

on discrete GPU systems rather than traditional multi-CPU CMPs 

[4][16]. The design of a Commodity Off-The-Shelf (COTS) system 

for HPC targeting deep learning was proposed in [17]: a cluster of 

GPU servers with Infiniband interconnects and a message-passing 

interface (MPI) show promise over large CPU-only based systems. 

Recently, the architecture of a machine learning “supercomputer” 
[16] that achieves higher performance and lower energy dissipation 

than a modern GPU-based system was also proposed. The system 

relies on a multichip design, where each node is significantly 

cheaper than a typical GPU while achieving comparable or higher 

number of operations per unit time in a smaller package. 

Prior work on discrete GPU platforms has been focused on 

improving the system performance by enhancing their NoC 

architectures [18][19][20].  In a GPU system, processes executed 

in each GPU core are usually independent of other GPUs’ 
processes, resulting in low inter-GPU communication [18]. 

Typically, GPUs only communicate with a few shared memory 

controllers (MC), causing a many-to-few traffic pattern (i.e., many 

GPU cores communicating with a few MCs) [18][19][20]. In this 

case, MCs can potentially become traffic hotspots and lead to 

performance bottlenecks. Prior research demonstrated that suitable 

placement of the MCs can help alleviate the associated traffic 

congestion [18][19]. To prevent traffic imbalance among the links, 

a checkerboard mesh NoC with a suitable routing strategy was 

recently proposed [18]. Similarly, to avoid link traffic overlap 

between requests and their replies, an asymmetric virtual channel 

partitioning and monopolization technique for the discrete GPU 

NoC was proposed [19]. The advantage of using a clustered mesh 

NoC (with 4 L1s per cluster) over non-clustered mesh and crossbar 

architectures (i.e., all L1s in a single cluster) for discrete GPU 

systems was demonstrated [20]. 

As explained above, backpropagation involves heavy CPU-

GPU communication that is best suited for a NoC-enabled 

heterogeneous CPU-GPU CMP platform rather than a traditional 

discrete-GPU system with expensive off-chip CPU-GPU data 

transfers [8]. Due to the differences in the thread-level parallelism 

of CPUs and GPUs, the NoC employed for heterogeneous systems 

is expected to handle traffic patterns with varying Quality of 

Service (QoS) constraints [21]. CPUs are highly sensitive to the 

memory access times and hence, communications involving CPUs 

require low-latency data exchanges. On the other hand, GPU 

communication demands high bandwidth [21]. Modern NoC 

designs for discrete GPU systems typically attempt to only 

maximize the overall bandwidth of the system. Consequently, these 

NoC designs are unsuitable for heterogeneous CMP architectures 

incorporating multiple CPUs and GPUs on the same die. It has been 

shown that the shared memory resources in a heterogeneous system 

are often monopolized by the GPUs, leading to significant 

degradation in CPU memory access latency and high execution 

time penalties [22]. Hence, an efficient on-chip network designed 

for heterogeneous CMPs should balance and fulfill the different 

QoS standards required for both CPU and GPU communications.  

The NoC design for CPU-GPU heterogeneous systems have yet 

to be studied thoroughly. A system-level discussion regarding the 

NoC design for CPU-GPU heterogeneous architectures was 

presented in [21]. However, this work only considered a ring 

interconnect that is known to be inefficient for large-scale systems. 

A virtual channel partitioning scheme was proposed in order to 

achieve low-latency CPU-related memory accesses in the presence 

of largely latency-insensitive GPU communication [23]. However, 

this strategy can affect the GPU throughput by partitioning the 

physical resources. As we will explain later, our work employs 

wireless links dedicated for CPU-MC communication to avoid such 

network contention without affecting GPU throughput. 

Thus far, most of the NoCs targeting discrete GPU systems are 

based on conventional wired NoC architectures. The achievable 

performance benefit from the proposed strategies is restricted due 

to the inherent limitations associated with these NoCs. Traditional 

wireline NoCs (such as mesh) use multi-hop, packet-switched 

communication that leads to high network latencies [9]. To 

overcome these limitations, small-world network-inspired wireless 

NoC architectures have been proposed [10][11]. Indeed, by 

employing a few long-range wireless shortcuts, these architectures 

enable low latency communication even among the computing 

cores that are physically far apart. Previous works [24][25][26] 

have investigated the feasibility of the on-chip wireless 

communication. The viability of on-chip wireless communication 

has been demonstrated through prototypes [12]. Photonic network 

architectures for high bandwidth on-chip communication have also 

been proposed [27]. However, on-chip photonic networks have yet 

to be successfully integrated into large-scale systems. In addition, 

a recent study on emerging on-chip interconnects concluded that 

the Radio-Frequency (RF) links, e.g., mm-wave wireless and 

surface-wave interconnects, are more power and cost efficient than 

on-chip optical links [28]. Between the two RF interconnects, on-

chip wireless technology is more mature and fully CMOS 

compatible [11][28].  

In this work we improve the state-of-the-art by presenting a 

hybrid (wireline + wireless) on-chip interconnection architecture 

that can meet the communication demands of a heterogeneous 

CMP platform consisting of both CPU and GPU cores. 

3. Backpropagation Benchmark  
In this section, we briefly outline the features of the CUDA-based 

implementation of the backpropagation algorithm from the Rodinia 

benchmark suite [5]. We describe the neural network model and its 

instantiation for the image recognition task1 that is part of the 

benchmark; how to make predictions with given network weights; 

and how to learn the network weights from a given training set 

using the backpropagation learning algorithm. 

Neural network model: A neural network is a graph with nodes 

and edges. It can be seen as a non-linear function approximator that 

is parameterized by the weights associated with the edges 

(commonly referred to as “network weights”). The Rodinia 

backpropagation benchmark implements a fully-connected feed-

1For the image recognition task associated with the 

benchmark, the input corresponds to the facial image of a 

person and the output is a discrete label identifying the person. 



forward neural network with a hidden layer. It includes an input 

layer I consisting of input units (say m); hidden layer H consisting 

of hidden units (say n); output layer O consisting of output units 

(say p); and directed edges connecting each input unit and hidden 

unit pair, and each hidden unit and output unit pair (total of m*n + 

n*p edges). The number of input units for the considered image 

recognition task is same as the number of pixels in the image, and 

the number of output units is only one (a discrete label).  There is a 

weight w (parameter) associated with each edge of the network, and 

each node takes the weighted sum of its inputs and computes the 

output using a non-linear activation function 𝛾. This computation 

is highly data-intensive and easily parallelizable using GPU cores.  

This neural network model is very expressive as every bounded 

continuous function can be approximated with little error [29]. 

Since the backpropagation training works only when each and 

every function node is differentiable, the activation function γ 

should be chosen accordingly. The Rodinia benchmark employs 

the sigmoid function: 

                                  γ (𝑣) = 1(1+𝑒−𝑣)                                         (1) 

where v is the weighted sum of the input edges at a function node.   

Prediction with given network weights: Given an input image x 

and network weights W, we propagate the input forward through 

the network, compute the output activation of every hidden unit; 

and then, compute the output of the network to predict output �̂�.  

Learning network weights: Given a set of T training input-output 

pairs (𝑥𝑘, 𝑦𝑘), we want to learn the weights of the network such 

that the error of the predicted outputs of the neural network (as 

described above) is very small. The benchmark employs an 

iterative optimization training algorithm (backpropagation) to learn 

the network weights. At each iteration, for each input example 𝑥𝑘 

from the training data, we make a prediction �̂�𝑘 by making a 

forward pass through the network using the current network 

weights (as described above); we then compare the predicted output �̂�𝑘 with the correct output 𝑦𝑘 to see if there is an error, and if there 

is an error, we make a backward pass through the network to 

compute the gradient vector 𝛿𝑘. Finally, we perform a weight 
update using the cumulative gradient as follows: 

                                    𝛿 =  ∑ 𝛿𝑘𝑇𝑘=1                                            (2)    

                                 𝑊 = 𝑊 +  𝜂 ∗ 𝛿                                       (3) 

where 𝜂 is the learning rate and W is the weight vector 

corresponding to network weights. It is clear that during both the 

forward and backward passes, a lot of parallelism exists within the 

computation between two layers that can be exploited while 

designing hardware accelerators. Moreover, the data propagation 

between the layers causes significant amount of network traffic. 

The computation and communication patterns between any two 

consecutive layers of a neural network will follow patterns similar 

to that observed in the Rodinia benchmark suite described above. 

Hence, the findings of this work are generalizable for any neural 

network with multiple layers.  

4. NoCs for Heterogeneous Platforms  
In CPU-GPU heterogeneous manycore architectures, the NoC 

mainly handles many-to-few communication patterns. Each 

processing core in the system maintains its own L1 cache. The L1 

caches mainly exchange data with a limited number of memory 

controller (MC) blocks. Also, inter-GPU traffic is insignificant in 

comparison to the L1 to MC communication volume [18][20]. Each 

MC incorporates a Last Level Cache (LLC) and a mechanism to 

access the main memory. Fig. 1 illustrates a CPU-GPU 

heterogeneous architecture2 with 4 CPUs, 28 GPUs, and 4 MCs. 

As shown in Fig. 1, in order to perform efficient many-to-few 

communication, we attach multiple GPUs to a single router (called 

concentration) [20]. With concentration, multiple L1 banks connect 

to a single router, which is then connected to the MC blocks. The 

concentration lowers the inter-router hop count between the L1s 

and MCs and hence reduces the network latency. Moreover, 

concentration lowers the number of NoC routers needed, leading to 

lower area overheads and reduced wiring complexities [20].  

In a heterogeneous CMP, the traffic requirements vary 

depending on the type of the nodes involved in the data exchange. 

The CPU-MC communications are primarily latency-sensitive 

while the GPU-MC communications are more throughput-sensitive 

[21]. In CPUs, long waits for memory accesses lead to stalled 

processor cycles resulting in execution time penalties. On the other 

hand, GPU’s low-cost context switching makes GPUs less 

susceptible to GPU-MC communication latency. However, each 

GPU core consists of multiple thread execution units, requiring 

large streams of data exchanges between the GPU and MC, leading 

to high throughput requirements [21]. Considering the above-

mentioned facts, an NoC designed for heterogeneous CPU-GPU 

systems must be optimized to ensure that the CPU-MC 

communication latency is minimized while the overall NoC 

throughput is maximized. Hence, in this work, we consider these 

two objectives and jointly optimize them while designing the 

overall interconnection architecture. 

4.1 Mesh NoC  
It was shown that on a mesh NoC for handling many-to-few 

communication patterns, placing the MCs closer to the middle 

rather than along the chip edges reduces traffic congestion in the 

links and ensures better overall NoC throughput [18]. However, 

this mesh NoC was designed for a homogeneous GPU-based 

system. In the case of the heterogeneous architecture, which is the 

focus of this work, we need to consider the placement of the CPU 

cores in addition to the placement of the MCs to achieve both low 

latency CPU-MC communication and high NoC throughput. 

However, as we will show in Fig. 7, even in a mesh optimized for 

both CPU and MC placements, there exist a few links that are 

heavily utilized when compared to the rest of the links present in 

the NoC. During high traffic, such links will become bandwidth 

bottlenecks, negatively affecting the overall system performance. 

2 It should be noted that the tile locations in this heterogeneous 

architecture figure are just for illustration purposes. They are 

not optimized for any specific performance metric. 

 
Fig. 1. Illustration of a heterogeneous architecture incorporating 

CPUs, GPUs, and MCs.  Each tile contains a network router enabling 

NoC interconnections. Because of L1 concentration, GPU tiles 

incorporate 4 GPU cores and 4 L1s in each tile.   



The presence of these bandwidth bottlenecks can be attributed to 

the multi-hop nature of the mesh NoC architecture, which leads to 

high traffic aggregation in the intermediate routers and links.  

In order to address the inherent multi-hop nature of mesh NoCs, 

design of wireless NoCs (WiNoCs) has been proposed [10][11]. 

The salient feature of the WiNoC is that the wireless links establish 

single-hop shortcuts between physically distant cores, thereby 

improving the hop-count and subsequently, the latency, throughput 

and energy dissipation of the whole system. Hence, our aim is to 

design a customized low-hop WiNoC targeted for the 

heterogeneous architecture under consideration.  

4.2 Proposed Hybrid NoC  
In this section, we highlight the design principles of a hybrid NoC 

architecture comprising of both wireline and wireless links 

customized for the CPU-GPU heterogeneous computing platform. 

We call this proposed NoC a Wireless-enabled Heterogeneous NoC 

(WiHetNoC). In this network, we intend to use single-hop wireless 

links between the CPUs and MCs. The GPU-MC communication 

is handled through a combination of wireline and wireless links that 

are tailored to the traffic pattern. Aside from enabling low latency 

CPU-MC data exchanges, the use of dedicated wireless links for 

CPU-MC communication makes the WiHetNoC design agnostic of 

the CPU and the MC placements. This is because the wireless links 

are able to guarantee direct single-hop communication regardless 

of the physical distance between the transceivers as long as they are 

within the communication range.  

In the following subsections, we describe the overall network 

design methodology for the WiHetNoC. We also describe the 

insertion of wireless links as long-range shortcuts and the 

communication protocols that are employed in WiHetNoC. 

4.2.1 Optimizing Network Connectivity 
To maximize the throughput of a NoC with a given number of links, 

the network connectivity should be established such that the 

average inter-router hop count is minimized while the system is 

free from bandwidth bottlenecks.  

For an NoC with R routers and L links, we can find Uk, the 

expected utilization of a link k by using the following equation:  𝑈𝑘 = ∑ ∑ 𝑓𝑖𝑗𝑝𝑖𝑗𝑘𝑅𝑗=1 ,𝑅𝑖=1  𝑝𝑖𝑗𝑘 = {1, 𝑖𝑓 𝑖, 𝑗 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑒 𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑘 𝑘0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)      

where, 𝑝𝑖𝑗𝑘 indicates which links are used for the communication 

from router i to router j. The 𝑝𝑖𝑗𝑘 value can be found by using the 

network connectivity and NoC routing protocol. The value 𝑓𝑖𝑗  

denotes the frequency of interaction between routers i and j.  

In our WiHetNoC, we establish the network connectivity such 

that both the mean link utilization (�̅�) and the standard deviation 

among the link utilizations (𝜎) are minimized. Essentially, our 

main objective is to find d* in (5). 

          𝑑∗ =  arg 𝑚𝑖𝑛𝑑∈𝐷 𝑓(�̅�(𝑑), 𝜎(𝑑))                       (5) 

where D is the set of all wireline connectivity possible under given 

constraints, and d* is the connectivity obtained from minimizing �̅� 

and 𝜎. For the sake of completeness, we show the formulae for 

determining �̅� and 𝜎 below.              �̅� = 1𝐿 ∑ 𝑈𝑘 = 1𝐿 ∑ (∑ ∑ 𝑓𝑖𝑗𝑝𝑖𝑗𝑘)𝑅𝑗=1𝑅𝑖=1𝐿𝑘=1𝐿𝑘=1 =                     1𝐿 ∑ ∑ (𝑓𝑖𝑗𝑅𝑗=1𝑅𝑖=1 ∑ 𝑝𝑖𝑗𝑘𝐿𝑘=1 )  = 1𝐿 ∑ ∑ 𝑓𝑖𝑗ℎ𝑖𝑗𝑅𝑗=1𝑅𝑖=1  (6)                                       

          𝜎 = √1𝐿 ∑ (𝑈𝑘 − �̅�)2𝐿𝑘=1                                      (7) 

Here, hij denotes the minimum distance in number of hops from 

router i to router j with the given network connection. Intuitively, 

ℎ𝑖𝑗 is equal to the total number of links used in the communication 

between router i and router j.  

As it can be observed from the above equations, �̅� is directly 

proportional to the traffic weighted hop count (given by ∑ ∑ 𝑓𝑖𝑗ℎ𝑖𝑗𝑅𝑗𝑅𝑖 ). Thus, minimizing �̅� also minimizes the inter-router 

hop count, leading to high network throughput. On the other hand, 

minimizing 𝜎 ensures that the link utilizations in the WiHetNoC 

are well balanced. Unlike the mesh NoC in which only a few MC 

links are highly active, all the incoming and outgoing links are 

almost equally utilized in WiHetNoC. This in turn ensures that the 

NoC is free from the bandwidth bottlenecks.  

Since minimizing both �̅� and 𝜎 together is a multi-objective 

optimization (MOO), here we employ the Archived Multi-

Objective Simulated Annealing (AMOSA) [30] to solve (5). 

AMOSA is a simulated annealing (SA) based algorithm in which 

the optimization process is guided with the help of an archive of 

solutions [30]. In AMOSA, during each optimization step, a 

perturbation is created in one of the archived solutions to generate 

a new configuration. Depending on the comparative quality of this 

new configuration over all the solutions in the archive, AMOSA 

then updates the archive [30]. Thus, on completion of AMOSA, we 

obtain a set of archived candidate configurations.  

We note that although the AMOSA-based optimization has 

been used in this work as an example, any other MOO technique 

can be utilized in place of AMOSA. Exploring the best possible 

MOO for heterogeneous architectures is out of the scope of this 

paper and is a part of our future investigations.  

In this work, our aim is to create an application-specific 

WiHetNoC architecture by optimizing the traffic weighted hop 

count. Hence, the overall connectivity is irregular in nature, i.e., all 

routers and link characteristics are entirely dependent on the 

application's traffic pattern. However, while establishing the link 

connectivity in the WiHetNoC, we need to follow certain 

restrictions. First, we limit the average number of inter-tile 

communication ports per router (Kavg) to four so that the 

WiHetNoC does not introduce any additional router port overhead 

when compared to a conventional mesh. Next, we need to restrict 

the maximum number of ports in a router (Kmax) so that no 

particular router becomes unrealistically large. It was already noted 

that the MCs in a heterogeneous NoC are traffic hotspots with 

heavy volumes of incoming and outgoing messages. Increasing 

Kmax allows the number of router ports attached to an MC to 

increase, and hence improves the MC router bandwidths. However, 

high Kmax values can lead to large routers, which result in high 

network energy consumptions. Moreover, large routers make the 

whole system highly vulnerable to failures.  Consequently, in this 

 
Fig. 2.  Illustration of WiHetNoC Connectivity. 



work, we consider a Kmax range of 4 to 7. First, for each Kmax value, 

we create a candidate network set through AMOSA for minimizing 

both the mean link utilization and the standard deviation among the 

link utilizations. Then, among all these candidate networks, we 

choose the network with the lowest energy delay product (EDP) as 

the optimum wireline connectivity for the WiHetNoC.  

4.2.2 Wireless Link Placement 
In WiHetNoC, the CPU-MC communication is handled using 

dedicated millimeter (mm)-wave and sub-THz on-chip wireless 

links operating in the 10-220 GHz range. Moreover, as we illustrate 

in Fig. 2, in this WiHetNoC there are several long wireline 

interconnections. As these links are extremely costly in terms of 

power and delay, we employ the wireless links to connect the GPU 

and MC routers that are separated by long distances. In practice, 

depending upon the available wireless resources, we can only make 

a limited number of the longest links wireless, while the other links 

need to remain wireline. Current state-of-the-art WiNoCs employ 

wireless channels working in the mm-wave range of 10-100 GHz 

[11]. In order to achieve simultaneous wireless transmissions and 

maximize the usage of the wireless medium, we need to have 

multiple non-overlapping wireless channels. It has been shown that 

it is possible to create three non-overlapping channels working in 

the 30, 60 and 90 GHz within the mm-wave range [11]. However, 

considering the data-intensive application at hand, to increase the 

wireless throughput, we increased the wireless channel range to the 

Sub-THz frequencies. By enhancing the frequency range of 

operation, we are able to create two more additional non-

overlapping channels working at 140 and 220 GHz. It should be 

noted that by using the current CMOS technology both the 

frequency range and number of channels could be increased 

further. However, the proposed design methodology presented in 

this work is oblivious to these physical design parameters, i.e., the 

number of wireless channels can be increased or decreased without 

modifying the proposed algorithm. Using these five channels we 

overlay the wireline connectivity with the wireless links such that 

a few routers get an additional wireless port. The wireless ports 

have a wireless interface (WI) tuned to one of the five different 

frequency channels.  

Given the total number of WIs allowed (NWI), we use a WI 

placement strategy that focuses on minimizing traffic-weighted 

hop-count [32]. Following this methodology and by varying NWI, 

we find both the optimum number of wireless interfaces and the 

best locations in the WiHetNoC. The optimum value of NWI is 

discussed later in Section 5, experimental results.  

To summarize, the overall design flow to create the WiHetNoC 

architecture is shown in Fig. 3.  

4.2.3 Components of the Wireless Interface 
The two principal components of a wireless interface are the 

antenna and the transceiver. WiHetNoC uses a metal zigzag 

antenna that has been demonstrated to provide the best power gain 

with the smallest area overhead [11]. A detailed description of the 

transceiver circuit is out of the scope of this paper. The wireless 

interface is completely CMOS compatible and no new technology 

is needed for its implementation. In the 28nm technology node, for 

data rates of 16 Gbps, wireless links dissipate 1.3 pJ/bit over a 

20mm communication range. 

4.2.4 Communication Protocols 
In this section, we explain the routing and the wireless medium 

access control (MAC) protocols that are adopted for the proposed 

WiHetNoC. The proposed NoC principally has an irregular 

application-specific topology and requires a topology agnostic 

routing method. We follow ALASH (Adaptive Layered Shortest 

Path) routing [10]. ALASH is built upon the layered shortest path 

(LASH) algorithm [31]. The ALASH protocol improves the LASH 

layering function by considering the expected traffic patterns. We 

follow the priority layering function explained in [10]. Priority 

layering allocates as many virtual layers as possible to source-

destination pairs with high traffic intensities. This improves the 

adaptability of messages under high traffic intensities by providing 

greater routing flexibility. We employ a distributed MAC protocol 

to resolve the channel access contention among the wireless nodes 

present in WiHetNoC [32].  

5. Experimental Results and Analysis  
We employ gem5-gpu, a heterogeneous full system simulator to 

obtain processor- and network-level information [33]. The gem5-

gpu combines two well-known simulators; Gem5, a manycore CPU 

simulator and GPGPU-sim, a detailed GPGPU simulator. The 

gem5-gpu provides flexible network configurations and supports 

inter-CPU-GPU cache coherence protocols. The gem5-gpu also 

provides a customizable interconnection model through the Garnet 

network[34]. We have modified this Garnet network topology to 

implement the WiHetNoC architecture. We use gem5-gpu in the 

full-system simulation mode. In the full-system simulations we 

consider a NVIDIA Fermi-like architecture for GPU cores and the 

Parameters Configuration 

GPU / Shader Core clock 

SIMT width 

GPU Private L1 I cache 

GPU Private L1 D cache 

0.7GHz / 1.4GHz 

8 

64kB 

64kB 

CPU Clock 

CPU Private L1 I cache 

CPU Private L1 D cache 

2.5GHz 

64kB 

64kB 

Shared L2 cache size 

DRAM 

1MB per MC 

2GB 
Table 1. System configurations 

 
Fig. 3. WiHetNoC design flow. Required input parameters and the objective functions optimized in the creation of WiHetNoC are also shown.  



standard x86 architectures for CPU cores. We employ MESI two-

level cache coherence protocol. Each CPU and GPU streaming 

multiprocessor (SM) is provided with private L1 data and 

instruction caches. The considered memory system also 

incorporates four LLCs that are shared among all the CPUs and 

SMs. Table 1 provides detailed configurations of the architecture 

considered in this work. We use GPUWattch to obtain detailed 

processor power profiles from the gem5-gpu statistics [35]. We use 

a generic three-stage router architecture for all NoCs under 

consideration. The delay of each stage is constrained within one 

clock cycle. For routers with more than 4 inter-tile router ports, the 

output arbitration has one more pipeline stage and the delay of this 

stage is also constrained within one clock cycle. This is accounted 

for while determining the latency and energy of HetNoC and 

WiHetNoC. Moreover, it should be noted that the proposed NoC 

design and optimization methodology is valid for router 

architectures with any number of stages. 

First, we investigate the optimum number of CPUs for the 

benchmark at hand.  Fig. 4 shows the application run time with 

different number of CPUs in the system with a traditional mesh 

NoC. We observed a similar trend with the WiHetNoC. It is evident 

that beyond four CPU cores there is no improvement in the run 

time. Hence, we consider four CPU cores in our experiments. This 

trend in execution time can be attributed to the fact that for the 

given application, the CPU execution portion does not scale well 

beyond four parallel threads. On the other hand, the GPU 

computations are highly parallelized and the optimum number of 

streaming multiprocessors (SMs) for the backpropagation 

application is mainly dependent on the given input problem size. 

Hence, without loss of generality, in this work, we consider a 

heterogeneous architecture with 112 SMs. For these SMs, we 

consider a concentration factor of two (i.e., two SMs and their 

associated L1s are connected to one GPU router). Thus, the 

considered architecture consists of 56 SM tiles, 4 CPUs and 4 MCs. 

This gives rise to a system size of 64 tiles, which are arranged in an 

8 × 8 configuration.  

5.1 Characterization of Mesh NoC 
In this section, we analyze the characteristics of the conventional 

wireline mesh NoC architecture running the backpropagation 

application. Following the discussions in Section 4, for a mesh NoC 

with a given number of tiles, we identify the positions of the CPUs 

and MCs such that the CPU-MC communication latency is 

minimized while the overall NoC throughput is maximized to 

enable efficient GPU-MC data exchange (under the many-to-few 

communication pattern).  

5.1.1 Determining CPU & MC Placements in Mesh 
We employ the AMOSA algorithm (mentioned in Section 4.2) to 

determine the optimal positions of CPUs and MCs in a mesh NoC 

(with GPU nodes occupying the remaining tiles) to jointly optimize 

CPU-MC communication latency and the overall NoC throughput. 

On completion of the AMOSA optimization, we obtain a final set 

of candidate configurations, each with a different (CPU-MC 

communication latency, NoC throughput) pair. From Fig. 5, we can 

observe that there is a latency-throughput trade-off among the five 

mesh NoC candidate configurations, denoted as C1-C5 (the 

configuration with the best CPU-MC communication latency has 

the worst NoC throughput and vice versa). In order to observe the 

effect this trade-off has on the system performance, we execute the 

backpropagation application with all different candidate 

configurations. We also consider two non-optimized mesh 

configurations to provide a comparative performance evaluation 

with respect to the optimized mesh candidate solution set. In these 

two non-optimized configurations the MCs and the CPUs are 

simply placed along the edges. The first configuration is called TB 

where the CPUs and the MCs are located on two opposite edges, 

e.g., top and bottom of the die. In the second configuration, denoted 

as BOT, all CPUs and MCs are placed at the bottom of chip. Fig. 6 

shows the application run times of the following seven NoC 

configurations; five optimized mesh candidate configurations 

(denoted as C1-C5), TB mesh and BOT mesh. It can be observed 

from Fig. 6 that the C3 configuration achieves the least application 

run time. Hence, in all further analyses, we consider the C3 

configuration for mesh NoC. We should also note that the two non-

optimized configurations TB and BOT have higher run times than 

all of the optimized configurations. However, the execution time 

improvement of optimized mesh is limited compared to BOT mesh 

since we are only optimizing the locations of the MCs and CPU 

tiles here. As we will discuss in Section 5.3, we are able to greatly 

increase the achievable gain over BOT mesh by using a WiHetNoC 

(Section 4.2) designed with AMOSA. This is due to the fact that in 

the design of WiHetNoC we also optimize the underlying network 

topology and hence the achievable performance gain is much more. 

5.1.2 Link Utilization in Mesh 
Figure 7 shows the locations of the CPU and MC tiles in the final 

optimized (C3 configuration) mesh NoC.  We can observe from 

Fig. 7 that in the optimized mesh NoC, the MCs and CPUs are 

clustered in the middle so that the CPU-MC communication latency 

is minimized. Moreover, placing the MCs closer to the middle 

 
Fig. 4. Execution times of the considered backpropagation benchmark 

with varying number of CPUs. 
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Fig. 5. Latency and throughput trade-off among the candidate 

configurations (C1-C5) for the mesh NoC. 

1

1.05

1.1

1.15

1.2

1

1.2

1.4

1.6

1.8

C1 C2 C3 C4 C5

N
o

rm
a

li
ze

d
 (

T
h

ro
u

h
p

u
t)

-1

N
o

rm
a

li
ze

d
 C

P
U

-M
C

 

La
te

n
cy

CPU-MC latency 1/Throughput

 
Fig. 6. Application runtimes for candidate configurations (C1-C5) of 

the optimized mesh NoC along with two non-optimized 

configurations (BOT, TB). 



ensures that handling of GPU-MC traffic is distributed among 

multiple MC ports, leading to higher NoC throughput.  

In Fig. 7, we also show the link utilizations in the optimized 

mesh NoC. All link utilizations are normalized with respect to the 

mean link utilization. It is evident that even in this optimized NoC 

a few links are more heavily utilized when compared to the rest of 

the links. This happens due to the XY routing mechanism 

traditionally considered for mesh NoCs. The incoming vertical and 

outgoing horizontal links associated with the MCs have 300% to 

400% higher traffic densities than the overall average. 

In order to alleviate the traffic congestion caused by 

aggregation of traffic along the mesh NoC links, one can also adopt 

a combination of minimal XY and minimal YX routing as proposed 

in [19]. However, such an approach cannot eliminate the bandwidth 

bottlenecks from the optimized mesh NoC under the heterogeneous 

computing induced traffic patterns. To elaborate more, Fig. 8 

shows the average traffic weighted hop count and the standard 

deviation among the link utilizations for all the following NoC 

configurations: optimal mesh, TB mesh, BOT mesh, and four 

different WiHetNoC candidate architectures (these WiHetNoC 

candidates are explained later in detail). As it can be observed from 

this figure, the optimal mesh NoC (with both XY and the XY+YX 

routing protocols) shows lower standard deviation among the link 

utilizations and lower traffic weighted hop count than the non-

optimized mesh configurations. However, when compared with 

WiHetNoC candidates, both the standard deviation and the traffic 

weighted hop count of the optimized mesh NoC are at least 2X 

higher and this indicates the presence of traffic hotspots that can 

lead to bandwidth bottlenecks.  

It can be observed from Fig. 7 that in the optimized mesh NoC, 

since the MCs are placed around the CPU cluster, the CPU tile 

routers also act as intermediate routers forwarding the GPU-MC 

traffic. With continuous streams of data flowing from MCs towards 

GPUs, the above-mentioned traffic forwarding causes traffic 

congestion in the CPU tile routers leading to undesired increase in 

the CPU-MC communication latency. To resolve this issue, the 

MCs can be placed away from the CPUs such that the CPU tiles are 

not involved in the GPU-MC traffic forwarding. However, due to 

the lack of long-range shortcuts in mesh NoC, placing the MCs 

away from the CPUs increases the number of hops required for 

CPU-MC communication leading to network latency penalties. 

Hence, our target is to design an application-specific heterogeneous 

NoC architecture with suitable long-range shortcuts to improve 

both CPU-MC latency and the overall NoC throughput. Since the 

wireless links make the CPU-MC latency agnostic of their 

placements, we keep the CPUs at the center of the system like the 

mesh NoC and distribute the four MCs to the center tiles in each of 

the four quadrants of the system. All the other tiles are occupied by 

the GPU cores surrounding the CPUs and MCs. The whole system 

is integrated using the WiHetNoC framework. In the following 

section we determine the various network parameters of this 

WiHetNoC.    

5.2 Determining WiHetNoC Parameters 
In this section, we determine the overall architecture and the 

network parameters of WiHetNoC.  

5.2.1 Router Port Upper Bound  
In the WiHetNoC design process, we first find the optimum value 

of 𝑘𝑚𝑎𝑥 (maximum number of inter-tile communication ports in a 

router). As we discussed in Section 4.2.1, we start with a 𝑘𝑚𝑎𝑥 

range of 4 to 7. For each 𝑘𝑚𝑎𝑥 value we use the above-mentioned 

AMOSA optimization to find a final candidate solution set. Fig. 9 

 
Fig. 10. Variation in network EDP for different router port upper 

bounds (Kmax). 
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Fig. 7. The central 6×5 portion of the optimized Mesh NoC indicating 

the link utilizations and the locations of CPUs and MCs. All link 

utilizations are normalized with respect to the mean link utilization.  

The red arrows indicate the bandwidth bottlenecks whose utilization 

is at least 100% more than the mean. 

 

Fig. 8. Traffic-weighted hop count and standard deviation among the 

link utilizations for the optimized mesh (denoted as OPT), TB mesh, 

BOT mesh, and WiHetNoCs (for each considered Kmax). For mesh NoCs 

we show the results for both XY and XY+YX routing schemes. 
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Fig. 9. Normalized traffic-weighted hop count and standard deviation 

among the link utilizations of various candidate wireline 

configurations for WiHetNoC (Kmax values ranging from 4 to 7). 
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shows the mean link utilization (�̅�) and the standard deviation 

among the link utilizations (𝜎) for all the solutions in the final 

candidate set corresponding to each 𝑘𝑚𝑎𝑥 value. All the values in 

this figure are normalized with respect to the final WiHetNoC 

configuration. As it can be observed from the graph, as the 𝑘𝑚𝑎𝑥 

value is increased, the �̅� and 𝜎 values are lowered. This happens 

because with higher Kmax values, more inter-router connections are 

allowed in each MC, leading to lower average hop counts between 

GPUs and the MCs. It can also be observed that the solutions 

corresponding to Kmax=6 and Kmax=7 overlap with each other while 

the solutions corresponding to Kmax=5 and Kmax=6 can be clearly 

distinguished from each other (in Fig. 9). This demonstrates that 

increasing Kmax leads to diminishing gains in hop count reductions 

and there is no gain in exploring beyond Kmax=7. As explained in 

Section 4.3.1, the final WiHetNoC wireline connectivity is 

identified from the candidate networks by comparing their network 

Energy-Delay-Products (EDP). Average message latency and 

average message energy values are used in this EDP computation.  

Fig. 10 shows the EDPs of the optimal networks corresponding to 

each Kmax, (thus a total of four optimal networks are shown 

corresponding to Kmax values ranging from 4 to 7). From Fig. 10 it 

is evident that the optimal value for 𝑘𝑚𝑎𝑥 is 6. Beyond this value 

of Kmax, the EDP increases steadily due to higher router energy 

consumptions without significant gains in network latency and hop 

count. Hence, we select the network corresponding to Kmax=6 as the 

optimal wireline connectivity for WiHetNoC. 

In Fig. 8, we compare the average traffic-weighted hop-count 

and the standard deviation among the link utilizations for various 

mesh configurations and the four optimal WiHetNoC architectures 

(for the four considered Kmax values). From this figure, we can 

observe that WiHetNoC enables at least 50% traffic weighted hop 

count reduction over mesh. Moreover, the standard deviation 

among the link utilizations for WiHetNoC is low indicating that the 

traffic is well distributed among WiHetNoC links and hence, the 

opportunity for experiencing bandwidth bottlenecks is highly 

reduced in WiHetNoC when compared to mesh.  

5.2.2 Number of WIs 
Next, we identify the number of WIs needed for the GPU-MC 

communication in the WiHetNoC architecture. As mentioned 

earlier, we are able to create five non-overlapping channels. We 

dedicate one channel to achieve single-hop CPU-MC 

communications. Hence, four wireless channels are available for 

GPU-MC communication.  

Fig. 11 shows the variation in EDP and wireless utilization 

observed with varying WI counts. The wireless utilization 

parameter represents the percentage of total messages that are using 

the wireless channels. As observed from this figure, the EDP 

initially reduces as the WI count increases as higher number of 

wireless shortcuts improves the wireless utilization and hence 

lowers the overall network latency. However, beyond a WI count 

of 24, with more than six WIs allocated on a single wireless 

channel, the MAC overhead (and hence the channel access latency) 

starts to increase [27]. This in turn increases the network EDP for 

the WiHetNoC when more than 24 WIs (Fig. 11) are used. Hence, 

in our WiHetNoC, we employ 24 WIs for GPU-MC 

communication (4 channels are used with 6 WIs operating on each 

channel). Fig. 12 shows the effects of adding wireless channels for 

GPU-MC communication on the performance of the WiHetNoC. 

With increasing number of wireless channels, the amount of data 

using wireless medium increases and the overall EDP improves. 

However, the enhancement in wireless utilization and subsequent 

improvement in EDP slows down beyond a certain number of 

wireless channels. For the 64-tile system size, increasing the 

number of wireless channels beyond 4 does not enhance the system 

performance noticeably as the opportunity for more wireless 

utilization diminishes.  

Since each WI transceiver occupies an area of 0.25mm2, the 

additions of WIs introduce a total of 1.82% silicon area overhead 

for a die with dimensions of 20 mm×20mm.  

5.2.3 Characteristics of WiHetNoC  
Fig. 13 compares the CPU-MC communication latency and 

network throughput achieved with the optimized WiHetNoC 

against all the solutions available in the final candidate set for the 

optimized mesh (explained earlier in Section 5.1). From this graph, 

 
Fig. 11. EDP and Wireless utilization for various WI counts. 
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Fig. 12. EDP and WI utilization with various number of channels. 
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Fig. 13. CPU-MC communication latency and inverse of overall NoC 

throughput for various candidate configurations (C1-C5) of the mesh 

NoC and the optimized WiHetNoC. 
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Fig. 14. Cumulative Distribution Function (CDF) of link utilizations 

for the WiHetNoC, XY mesh, and XY-YX mesh architectures. 
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we can observe that WiHetNoC achieves both a higher NoC 

throughput and a lower CPU-MC communication latency than all 

the optimized mesh candidate solutions with similar 

implementation overhead. The WiHetNoC improves the 

throughput by a factor of 2 compared to the optimized mesh 

configuration (C3). This demonstrates the effectiveness of the 

proposed methodology in designing NoC architectures for 

heterogeneous platforms with many-to-few communication 

patterns.   

In Fig. 14 and Fig. 15, we show the Cumulative Distribution 

Function (CDF) and Probability Density Function (PDF) of the link 

utilizations for the WiHetNoC and the mesh architectures. The 

utilizations in this figure are normalized with respect to the mean 

link utilization observed in mesh NoC with XY routing (U=1 

represents this mean utilization). For both XY and XY+YX routing 

schemes, 15% of the optimized mesh NoC links have at least 2x 

higher utilization when compared to the mean utilization. The 

XY+YX routing scheme is only helpful in achieving moderate 

reductions in the number of very highly utilized links. As an 

example, the percentage of links that have at least 3x higher 

utilization when compared to the mean is reduced from 6% in XY 

routing to 4% in XY+YX routing scheme. It is also clear from this 

figure that for WiHetNoC, more than 90% of the links fall under 

the mean link utilization of the mesh NoC. Generally, when 

compared to mesh NoC, the WiHetNoC CDF curve is shifted left 

indicating a reduction in overall link utilizations, which is obtained 

through lowered inter-router hop counts. Moreover, as shown in 

Fig. 15, unlike mesh, WiHetNoC has no links with very high 

utilizations (no links with U>2). Thus, WiHetNoC is relatively 

bandwidth bottleneck free.  

5.3 Comparative Performance Evaluation 
In this section, we present the performance of the WiHetNoC 

compared to the optimized mesh NoC architecture. In this 

comparative performance evaluation, we also consider the 

characteristics of HetNoC: an architecture that uses pipelined long-

range metal wires instead of the WiHetNoC’s wireless links. Thus, 

the HetNoC architecture is an exact fully-wireline equivalent of the 

WiHetNoC architecture.  

We first present the network-level analyses showing both the 

network latency and EDP. Fig. 16 shows the network latency and 

the EDP of WiHetNoC, HetNoC, and mesh. HetNoC reduces the 

network latency and EDP by 35% and 56% respectively, when 

compared to the mesh. With the use of long-range shortcuts 

between physically remote nodes, the HetNoC enables a lower 

average hop count than the optimized mesh NoC, and hence, 

achieves significant reductions in intermediate flit counts. 

However, as we stated in Section 4.3, the long wireline links of the 

HetNoC suffer from high link latency and energy consumption. In 

the WiHetNoC architecture, many of these long-range wireline 

links are replaced with energy efficient wireless links, and hence, 

WiHetNoC enables 18% more latency improvement and 31.5% 

more EDP improvement when compared to the HetNoC. From Fig. 

16, it is evident that the WiHetNoC achieves 47% lower network 

latency, and saves the EDP by 70% compared to the mesh 

architecture. 

Next, we consider the application execution time and the full-

system EDP. Fig. 17 shows the execution time and full-system EDP 

for WiHetNoC, HetNoC, and mesh architectures. The HetNoC 

achieves 4.5% execution time improvement over the mesh while 

the WiHetNoC shows 12.1% improvement over the mesh NoC. 

The dedicated wireless channel for CPUs on the WiHetNoC 

enables a highly efficient data transfer between CPU and MC. Also, 

the use of wireless shortcuts helps in achieving high-bandwidth and 

low-latency GPU-MC communications. These benefits translate to 

a 25% and 15% full-system EDP reduction for WiHetNoC when 

compared to the mesh and HetNoC architectures respectively. 

6. Conclusion 
In this paper, we have proposed the design of a hybrid NoC-enabled 

single-chip heterogeneous computing platform for energy-

efficiently accelerating an important deep learning kernel. The 

proposed NoC architecture is able to fulfill the communication 

requirements of both CPU and GPU cores. We also highlight the 

inherent limitations of a traditional mesh-based NoC in handling 

the traffic patterns arising from deep learning kernels. By virtue of 

using single-hop wireless links, the proposed WiHetNoC 

architecture achieves much better throughput and latency 

compared to a highly optimized mesh. For the considered 

backpropagation application, WiHetNoC achieves 25% lower full 

system energy-delay-product (EDP) with respect to the mesh and 

15% lower full system EDP when compared to a fully wireline 

application-specific architecture. It should be noted that this full 

system EDP improvement comes only from the network level 

innovation.  

 
Fig. 17. Execution time and full-system EDP of mesh, HetNoC, and 

WiHetNoC architectures. 
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Fig. 16. Network latency and EDP of mesh, HetNoC, and WiHetNoC. 
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Fig. 15. Probability Density Function (PDF) of the link utilizations in WiHetNoC, XY mesh, and XY+YX mesh architectures. 
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The full system EDP will improve even further when the 

WiHetNoC design is complemented with suitable core-level task 

and power management strategies, which is the focus of our future 

investigation. In addition, we plan to evaluate the characteristics of 

the proposed architecture for other deep learning workloads.  
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