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Abstract−−−−A chaotic system with available prior knowledge is identified with both the sequential hybrid neural net-
work and the standard Artificial Neural Network (ANN). The identified models are validated with phase portrait, return
map, the largest Lyapunov exponent and correlation dimension instead of using Sum of Square Errors (SSE). In-
terpolation and Extrapolation capability of the models are compared. This is demonstrated for nonisothermal, irrevers-
ible, first-order, series reaction A�B�C in a CSTR.
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INTRODUCTION

Industrial chemical processes involving chemical reactions, heat
and mass transfer, separations and fluid flow are inherently and
strongly nonlinear and exhibit complicated dynamic behavior. In
the past, a considerable number of studies have been carried out
for the processes showing multiple steady states, oscillatory behav-
ior and chaos [Kim, 1998]. Most of the studies were based on the
mathematical models of systems derived from governing physical
laws. In actual industrial processes, however, it is usually very dif-
ficult to obtain rigorous mathematical models of the systems be-
cause of both the complexity of the systems and the lack of avail-
able system parameters. An alternative method is to use the stand-
ard black-box Artificial Neural Network (ANN) based only on
the input-output data of the systems. Recently, it has been widely
used as a universal function approximator when there is no prior
knowledge about the systems because of its ability to describe non-
linear systems. It has been proved that the standard ANN can ap-
proximate arbitrary complex functions well and describe even com-
plex nonlinear phenomena such as steady state multiplicity and os-
cillatory behavior only if the internal parameters such as the num-
ber of inputs, neurons, layers and the transfer functions of neurons
are properly chosen, and a sufficiently large data set with desired
property is available. This inherent capability of the standard ANN
is due mainly to the combination of nonlinear transfer functions
used for each node. The standard ANN also has noise smoothing
effect if the internal parameters are properly chosen or if the batch
mode learning of back-propagation is used.

It has, however, many disadvantages. If the training data set does
not have proper quality and the internal parameters are not prop-
erly chosen, the standard ANN suffers from serious malfunction.
For example, if the training data set is corrupted with noise and the
number of internal parameters is more than needed, the standard
ANN fits the noise as well as the system dynamics. It is also im-
possible to realize what kind of interaction occurs between process

variables since all components of the standard ANN are though
be partially responsible for the output of the network. Although 
standard ANN can be simplified by various pruning techniqu
such as sensitivity analysis of weights with respect to the ou
error of ANN, we still cannot give physical meanings to the 
sulting network. Therefore, we cannot guarantee the extrapola
capability of the standard ANN beyond the limits of training da
even in case the standard ANN is trained very well.

Another recourse is to use the hybrid (structured) neural 
work approach. If prior knowledge about a system is available
is smart to incorporate the prior knowledge into the black box m
el of the system. Recently, there have been many attempts an
excellent summary of the subject is given in the paper of Thom
son and Kramer, 1994. In the hybrid neural network approach
first principle models from physical considerations such as m
and energy balance or empirical correlation are used as prior kn
edge about a system, and the ANN model complements the u
tain parts of the first principle models. It is also possible to reg
the hybrid neural network model as the ANN constrained by 
first principle models. There can be several approaches in the
tual implementation of the hybrid neural network, but here we d
with only the sequential hybrid neural network approach, wh
the ANN model is combined with the first principle models in s
ries. In the approach, the ANN serves as a nonparametric estim
of the unmeasured process parameters which are the interme
values to be used in the first principle models, and estimates
dependence of the process parameters on the state variables
system. In this sense, the approach provides more general pa
ter estimation strategy and usually gives better estimations 
classical parameter estimation schemes such as nonlinear prog
ming (NLP) optimization and kalman filter parameter estimati
[Psichogios and Ungar, 1992]. The approach has many advant
Because the ANN component approximates only the uncertain p
of the first principle models, the size of the ANN can be drastica
reduced. Therefore, the training is more focused, and then pote
error sources are greatly reduced. As a result, the sequential h
neural network model usually shows better performance an
more robust to noise than the standard ANN model. Moreover,
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cause the hybrid model is based mainly on the first principle mod-
els, it can also be used for extrapolation purpose as well as interpo-
lation.

In any ANN, important steps are in the selection of appropriate
number of layers and of neurons in each layer, the choice of the
transfer function used for each neuron and the training algorithm in
order to obtain a good identified model, and also the validation of
the model. Usually, a trial and error procedure based on criterion of
minimization of sum of squares of ANN training errors and com-
parison of the time series of the original system with the model
generated time series by calculating the mean square error between
them are used for this purpose. For chaotic systems, however, this
criterion may not provide useful information. Identified models can
show different dynamical behaviors even though the training errors
are roughly the same, and the criterion of minimization of the mean
square error between the time series is just a necessary condition
for an identified model to capture the dynamical properties of the
system; it is definitely not sufficient. In the case of a chaotic sys-
tem, although the initial prediction of an identified model can be
very accurate, predicted values diverge from the original time se-
ries at much later prediction times no matter how good the model
is. This is due to the inaccuracies in the model and the existence of
positive Lyapunov exponents. Because nearby trajectories diverge
locally in state-space for a chaotic system, the initial error due to
the modeling error, however small, is magnified. The model gener-
ated time series thus becomes completely different from the origi-
nal time series in the long run. Therefore, more sophisticated cri-
teria are required. One of the criteria is to compare attractors (phase
portraits), and reconstructed attractors (or return maps, the 2-dimen-
sional projection of reconstructed attractors). Because there exists a
smooth invertible transformation between the original states and
the reconstructed states with appropriately chosen delay time and
embedding dimension, we can check if an identified model cap-
tures the original dynamic behavior of the system by comparing
the reconstructed attractors. In many cases, however, although the
location and the overall shape of the attractors look similar and thus
the dynamic behavior of the system seems to have been reason-
ably captured, detailed characteristics such as the density of trajec-
tories in some region of the attractor and the local divergence rate
of nearby trajectories are somewhat different. Therefore, other cri-
teria like Lyapunov exponent and correlation dimension that quan-
tify numerically the matching between the dynamic behaviors are
also required. From the criteria, we can determine and validate the
optimal ANN model describing the system’s chaotic dynamical be-
havior.

In this paper, we identify a chaotic chemical reaction system with
both the sequential hybrid neural network and the standard ANN,
and validate the identified models with the criteria used for nonlin-
ear dynamics instead of sum of square error (SSE). Then we com-
pare the interpolation and the extrapolation capability of the opti-
mal sequential hybrid neural network model with those of the op-
timal standard ANN model.

THEORETICAL BACKGROUNDS

In the sequential hybrid neural network, the ANN component
estimates the unmeasured process parameters which are intermedi-

ate values to be used in the first principle model. The inputs to
ANN component are current state variables and current man
lated variables, and then the ANN estimates current process
ameters. The obtained parameter values are considered as con
between sampling instants. Then the parameter values with th
puts to the ANN component are propagated through the first p
ciple model. The outputs of the first principle model are the 
timates of the process state variables for the next sampling t
The schematic representation of the sequential hybrid neural
work is given in Fig. 1.
1. Modified Error Back Propagation

In the standard ANN, weights are updated by using the error
nals between the outputs of the ANN and the target values as
ving force. One of the most famous methods is the error back-
pagation algorithm [Runmelhart et al., 1986], where the output
rors of the ANN are back-propagated through the network so 
weights are updated in the local direction of steepest descent o
error signals. In the sequential hybrid neural network, however,
standard error back-propagation algorithm cannot be applied
rectly, because the target values of the outputs of the ANN com
nent are unmeasured process parameters and therefore the 
errors of the ANN component are not directly available. Therefo
the modified error-back propagation algorithm [Psaltis et al., 19
is introduced, where the errors between the outputs of the first p
ciple model part (the plant) and the target values of the process
variables are translated into the error signals for the outputs o
ANN component by Jacobian (differential gain) of the plant. In t
algorithm, the plant can be thought of as an additional, but unm
ifiable, layer since the output errors of the plant are propagated 
through the plant without modifying anything. The translated er
signals are then used as the driving force to update the weigh
the ANN component. More details about the modified back pro
gation algorithm are given as follows. The objective function to
minimized can be expressed as

(1)

where yk and dk denote the k th plant output and the k th targ
value, respectively. If we differentiate the objective function (J) w
respect to the ANN’s weight between the i th neuron of the m−1 th

J = 
1
2
--- dk − yk( )2

k
∑

Fig. 1. Schematic representation of the sequential hybrid neural
network.
Korean J. Chem. Eng.(Vol. 17, No. 6)
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(2)

where εk=dk−yk is the k th plant output error and m denotes the fi-
nal layer of the ANN. From the chain rule, the gradient becomes

(3)

where λj is the j th output of the ANN, that is the j th unmeasured
process parameter, and ∂yk/∂λj is the differential gain of the plant.
If we define p and q as the input to the neuron and the output from
the neuron, respectively, the weighted sums of the outputs of the
m−1 th layer, pj

m, and the output of the i th neuron of the m th lay-
er, qi

m can be written as

(4)

where fj
m is the transfer function of the j th neuron of the m th lay-

er. If we incorporate the above notation into the gradient expres-
sion,

(5)

where, 

And therefore the amount of weight updated is

(6)

where α is the learning rate. For all other layers, the gradient of the
objective function with respect to the weight and the amount of
weight updated can be derived from the similar procedure as above,
and the results are given as follows.

(7)

where, 

(8)

In numerical calculation, the differential gain, ∂yk/∂λj, is usually
approximated by determining how the plant outputs change as the
unmeasured parameters change at the operating point, that is, the
numerical derivative.

(9)

PROCESS MODEL

We consider the dynamic behavior occurring in a nonisothermal
CSTR with two irreversible consecutive first-order reactions, A�
B�C; the first exothermic, the second endothermic. The system
can be described by the following dimensionless differential equa-

tions [Kahlert et al., 1981]:

(10)

(11)

(12)

where the variables x1, x2 denote the dimensionless concentratio
of species A, B, x3 is the dimensionless temperature in the reac
Da is the Damköhler number, ε is the dimensionless activation en
ergy, S is the ratio of the two rate constants, κ is the ratio of ac-
tivation energies, B is the dimensionless adiabatic temperature
α is the ratio of heat effects, β is the dimensionless heat transfe
coefficient, and u is the dimensionless coolant bath temperature a
can be viewed as an externally manipulable variable. The sys
is known to show deterministic chaos when the system param
values are Da=0.26, ε=0.0, S=0.5, κ=1.0, B=57.77, α=0.42, β=
7.9999, and u=0.0, that is, when there is no control action. Fig. 2
show the 3-D phase portrait of the system and the 2-D projec
of the 3-D phase portrait, respectively. The simulation was car
out on IBM RS6000/370 using the IMSL subroutine ode_adam
gear. Fig. 4 shows the second return map of the state variab3.

∂J
∂wij

m
--------- = − εk

∂yk
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---------
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yk λj  + ∆λj( )  − yk λj( )

∆λj

--------------------------------------------

dx1

dt
-------  = 1 − x1 − Dax1 exp

x3

1 + εx3

---------------

dx2

dt
-------  = − x2 + Dax1 exp

x3

1 + εx3

----------------  − DaSx2 exp
κx3

1 + εx3

---------------

dx3

dt
-------  = − x3 + DaBx1 exp

x3

1 + εx3

----------------

− DaBαSx2 exp
κx3

1 + εx3

---------------  − β x3 − u( )

Fig. 2. 3-D phase portrait of the system.

Fig. 3. x1−−−−x2 plane projection of 3-D phase portrait of the system.
November, 2000
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The largest Lyapunov exponent and correlation dimension are cal-
culated for the time series data of the system using in-house im-
plementations of the Wolf’s algorithm [1985] for the largest Lyap-
unov exponent and the Grassberger and Procaccia algorithm [1983]
for correlation dimension. The obtained values are 0.00446 for the
largest Lyapunov exponent and 1.535 for correlation dimension as
summarized in Table 1. The bifurcation analysis of the system

equation is also carried out by using numerical continuation te
niques which are implemented in the software package AU
[Doedel, 1986]. From the analysis, we obtain the bifurcation d
gram as shown in Fig. 5. All the detailed analysis is given in 
paper of Kim, 1998.

SYSTEM IDENTIFICATION

We assume that the first principle model of the system in 
same form as above is available from the mass and energy
ance. All of the parameters are assumed to be available from
individual experiments or the literature except the ratio of the t
rate constants, S. The parameter values are Da=0.26, ε=0.0, κ=1.0,
B=57.77, α=0.42, β=7.9999, which are the same values as in s
tion 3, and S is assumed to vary in complex ways with chem
composition and temperature of the system, that is, the state 
ables. Here we consider only the case with no control action (u

First, we deal with the sequential hybrid neural network wh
utilizes the above first principle model as the prior knowledge.
this method, the dependence of the ratio of the two rate const
S, on the state variables is described by the ANN component,
then the ANN component is combined with the first principle mo
el to compose the sequential hybrid neural network. We use
three layer feed forward neural network as the ANN compon
The inputs to the ANN component are the state variables x1, x2 and
x3. Each neuron in the hidden layer has the sigmoidal activa
function, while the linear activation function is used for the outp
layer. The biases of the neurons in the input layer are assum
be zero. We train the sequential hybrid neural network by the m
ified error-back propagation algorithm proposed by Psaltis et 
however, we improve the algorithm with momentum and an ad
tive learning rate to increase the speed and the performance.
mentum helps the network avoid being trapped into local minimu
and the adaptive learning rate accelerates the training spee
keeping the learning step size as large as possible while kee
learning stable. The training data are obtained by integrating
system equations in section 3 and by sampling at every 0.00
mensionless time. The training is carried out on DEC Alpha Se
2100 using MATLAB. We adapt only the number of hidden nod
and determine the optimal model which best describes the ch
trajectory of the system according to the criteria of phase port
return map, the largest Lyapunov exponent and correlation dim

Fig. 4. Second return map of the system.

Table 1. Summary of the largest Lyapunov exponent and corre-
lation dimension

The largest
Lyapunov exponent

Correlation
dimension

Original system 0.00446 1.535
Hybrid model with h=4,
(trained with full data)

0.00446 1.541

Hybrid model with h=7,
(trained with full data)

0.00436 1.854

Standard ANN with h=8,
(trained with full data)

0.003942 1.402

Hybrid model with h=4,
(trained with partial data)

0.005129 1.301

Fig. 5. Bifurcation diagram of the system.
Fig. 6. 3-D phase portrait of the hybrid model with h=4 (trained

with full data).
Korean J. Chem. Eng.(Vol. 17, No. 6)
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Among an enormous number of candidates, we find two candi-

dates by trial and error which seem to describe the chaotic behav-
ior of the system closely. The numbers of hidden nodes (h) are 4
and 7, respectively. Fig. 6 denotes a 3-D phase portrait of the hy-
brid model with 4 hidden nodes, and Fig. 7 is the x1−x2 plane pro-
jection of the 3-D phase portrait. Fig. 8 shows the second return
map reconstructed from the time series data of the state variable
x3. Figs. 9-11 denote the corresponding results when the number
of hidden nodes is 7. The figures say that the hybrid model with 4
hidden nodes describes the chaotic dynamics of the system better
than the hybrid model with 7 hidden nodes. In addition, we also
calculate the largest Lyapunov exponent and correlation dimension
to check the matching between the dynamic behaviors quantita-
tively. The calculations are carried out by using the same method
as before. The obtained values are summarized in Table 1. From
the results, we conclude that the hybrid model with 4 hidden nodes
is the optimal model and, moreover, the model describes the cha-
otic dynamics of the system almost perfectly.

Next we compare the performance of the obtained optimal hy-
brid model with that of the optimal standard ANN model. We use
the three layer feed forward neural network as shown in Fig. 12.

The inputs to the standard ANN are the state variables x1, x2 and
x3. All activation functions, biases and the training data set used
same as before. Levenberg-Marquardt optimization algorithm w
used to train the standard ANN, and the training was carried ou
a DEC Alpha Server 2100 using MATLAB. We adapt only th
number of hidden nodes and determine the optimal model wh
best describes the chaotic trajectory of the system according t
criteria of phase portrait, return map, the largest Lyapunov ex

Fig. 7. x1−−−−x2 plane projection of the 3-D phase portrait (The hy-
brid model with h=4, trained with full data).

Fig. 8. Second return map of the hybrid model with h=4 (trained
with full data).

Fig. 9. 3-D phase portrait of the hybrid model with h=7 (trained
with full data).

Fig. 10. x1−−−−x2 plane projection of the 3-D phase portrait (The hy-
brid model with h=7, trained with full data).

Fig. 11. Second return map of the hybrid model with h=7 (train-
ed with full data).
November, 2000
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nent and correlation dimension as before. From the extensive trial
and error procedure, the optimal model is obtained when the num-
ber of hidden nodes (h) is 8 among several candidate models hav-
ing roughly the same SSE. The 3-D phase portrait and its x1−x2

plane projection are shown in Figs. 13-14, respectively. The sec-
ond return map is shown in Fig. 15. We also calculate the largest
Lyapunov exponent and correlation dimension to check the match-
ing between the dynamic behaviors quantitatively. The calculations
are carried out by using the same method as before. The obtained
values are summarized in Table 1. The results say that the sequen-
tial hybrid neural network shows much better interpolation capa-
bility than the standard ANN although the standard ANN also de-
scribes the chaotic dynamics of the system quite well.

When we compare the extrapolation capability of the models, the
advantage of the sequential hybrid neural network becomes more
obvious. We train the hybrid model with 4 hidden nodes and the

standard ANN with 8 hidden nodes using only the first one-fifth
the original training data set, and then simulate the identified m
els up to the same final time as the case of the original training d
The hybrid model shows quite good extrapolation capability
shown in Figs. 16-18 and Table 1; however, the standard ANN 
not extrapolate at all. Therefore, we can conclude that the seq
tial hybrid neural network shows better interpolation and also 
better extrapolation capability than the standard ANN.

Fig. 12. Schematic representation of the standard ANN.

Fig. 13. 3-D phase portrait of the standard ANN with h=8 (train-
ed with full data).

Fig. 14. x1−−−−x2 plane projection of the 3-D phase portrait (The
standard ANN with h=8, trained with full data).

Fig. 15. Second return map of the standard ANN with h=8.

Fig. 16. 3-D phase portrait of the hybrid model with h=4 (trained
with partial data).

Fig. 17. x1−−−−x2 plane projection of the 3-D phase portrait (The
hybrid model with h=4, trained with partial data).
Korean J. Chem. Eng.(Vol. 17, No. 6)
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CONCLUSION

If prior knowledge about a system is available, it is smart to in-
corporate the prior knowledge into the black box model of the sys-
tem. In this paper, we identify a chaotic chemical reaction system
with both the sequential hybrid neural network and the standard
ANN, and compare interpolation and extrapolation capability of
the models. The identified models are validated with phase por-
trait, return map, the largest Lyapunov exponent and correlation di-
mension instead of Sum of Square Errors (SSE). This is demon-
strated for a nonisothermal, irreversible, first-order, series reaction
A�B�C in a CSTR. The results say that the sequential hybrid
neural network shows good interpolation and extrapolation capa-
bility. When compared with the standard ANN, it shows better in-
terpolation and also far better extrapolation capability.
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NOMENCLATURE

In Section 2
J : objective function
yk : k th plant output
dk : k th target value
wm

ij : weight between the i th neuron of the m−1 th layer
and the j th neuron of the m th layer

εk=dk−yk: k th plant output error
λj : j th unmeasured process parameter (j th output of the

ANN component)

: differential gain of plant

p : input to neuron
q : output from neuron
pm

j : weighted sums of the outputs of the m−1 th layer

qm
i : output of the i th neuron of the m th layer

fm
j : transfer function of the j th neuron of the m th layer

α : learning rate

In Section 3
x1 : dimensionless concentrations of species A
x2 : dimensionless concentrations of species B
x3 : dimensionless temperature in the reactor
Da : Damköhler number
ε : dimensionless activation energy
S : ratio of the two rate constants
κ : ratio of activation energies
B : dimensionless adiabatic temperature rise
α : ratio of heat effects
β : dimensionless heat transfer coefficient
u : dimensionless coolant bath temperature
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