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ABSTRACT: Tropical cyclone (TC) track forecasts derived from dynamical models inherit their errors. In this study, a
neural network (NN) algorithm was proposed for postprocessing TC tracks predicted by the Global Ensemble Forecast
System (GEFS) for lead times of 2, 4, 5, and 6 days over the western North Pacific. The hybrid NN is a combination of
three NN classes: 1) convolutional NN that extracts spatial features from GEFS fields; 2) multilayer perceptron, which pro-
cesses TC positions predicted by GEFS; and 3) recurrent NN that handles information from previous time steps. A dataset
of 204 TCs (6744 samples), which were formed from 1985 to 2019 (June–October) and survived for at least six days, was
separated into various track patterns. TCs in each track pattern were distributed uniformly to validation and test dataset,
in which each contained 10% TCs of the entire dataset, and the remaining 80% were allocated to the training dataset. Two
NN architectures were developed, with and without a shortcut connection. Feature selection and hyperparameter tuning
were performed to improve model performance. The results present that mean track error and dispersion could be re-
duced, particularly with the shortcut connection, which also corrected the systematic speed and direction bias of GEFS. Al-
though a reduction in mean track error was not achieved by the NNs for every forecast lead time, improvement can be
foreseen upon calibration for reducing overfitting, and the performance encourages further development in the present
application.

KEYWORDS: North Pacific Ocean; Tropical cyclones; Statistical forecasting; Neural networks; Postprocessing;
Artificial intelligence

1. Introduction

Dynamical models have been used extensively for weather
and climate predictions. They predict the forthcoming atmo-
spheric states by numerically solving physical equations. Since
the solutions are discrete in space and time, truncation errors
are inevitable (Gerrity et al. 1972). Moreover, additional er-
rors are produced as the processes at unresolved scales are ap-
proximated by parameterization (Jankov et al. 2005; Otkin
and Greenwald 2008). Furthermore, inaccurate initial condi-
tions will lead to deviation of the model simulation from the
true future state (Lorenz 1963). Although dynamical models
produce more accurate forecasts due to the constant improve-
ment of computer resources and data assimilation methods,
model output errors remain to be solved (Bauer et al. 2015;
Grams et al. 2018; Rodwell et al. 2013).

Tropical cyclone (TC) track forecasts, which rely on dy-
namical models, inevitably inherit model errors. For example,
the choice of cumulus parameterization and microphysics can
significantly impact track forecasting. Bassill (2014) simulated
Hurricane Sandy (2012) with two cumulus parameteriza-
tions}simplified Arakawa–Schubert and Tiedtke}and found
that the former predicted that the TC would move toward
the central North Atlantic, while landfall was predicted for

the latter. Fovell et al. (2009) examined the impact of cloud
microphysics on TC track simulations in idealized experiments.
Three microphysics schemes [e.g., Kessler, Lin–Farley–Orville
five-class, and the Weather Research and Forecasting (WRF)
three-class single-moment] led to different distributions of vir-
tual temperature, thus affecting TC motion. Conversely, Plu
(2011) examined the predictability of TC tracks from 2006
to 2009 using global models from the European Centre for
Medium-Range Weather Forecasts (ECMWF), Météo-France,
and the Met Office (UKMO). He found that the length of
time in which small track error doubles itself (i.e., doubling
time), which is an estimate of the upper bound on predictabil-
ity, was 30–50 h. Therefore, it can be deduced that TC track
forecasts beyond five days that rely solely on the dynamic
model are subjected to larger errors. Since more than one-
third of the TCs formed in the western North Pacific (WNP)
have lifetimes of at least six days (Cheung et al. 2021), im-
proving TC track prediction in this region is important given
the large East Asian population along the coastline (Lau et al.
2021; Mendelsohn et al. 2012; Park et al. 2016; Wang et al.
2019).

Artificial neural networks (ANN, or simply NN)}a sub-
field of both machine and deep learning}have been applied
in weather and climate studies to reduce model errors, gaining
popularity in recent years. Marzban (2003) used NNs to post-
process hourly surface temperature forecasts at 31 locations
using the Advanced Regional Prediction System. Improve-
ments were observed in the mean-squared error, bias, and
variance. Rasp and Lerch (2018) developed an NN for post-
processing ECMWF ensemble forecasts of 2-m temperature
over Germany. Their NN model, which included auxiliary
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predictor variables and station-specific information as input,
outperformed other benchmark methods. Ho et al. (2022)
used a long short-term memory (LSTM) algorithm that in-
cluded input from air pollutant concentrations predicted by
the Community Multiscale Air Quality (CMAQ) model to
forecast air pollutant concentrations in South Korea. Their
LSTM model had an accuracy of 68%–77% for lead times of
up to two days, which was higher than the CMAQ and com-
parable to forecaster-adjusted CMAQ predictions.

Using deep learning as a postprocessing tool for TC track
forecasting is uncommon compared to weather forecasting
and climate prediction. To the authors’ knowledge, the only
study of this kind has been done by Kim et al. (2020) where
NNs were used to correct the TC position predicted by the
WRF at lead times of 1, 2, and 3 days. Using the TC cases in
2015, reductions in track error of 10%–15% were obtained
for forecasts at the three lead times when output selection
was applied (an NN model was trained 10 times and unrea-
sonable output among them were excluded). Conversely, NN
is more commonly used for the direct prediction of future TC
positions. Various architectures, such as convolutional NN
(CNN; Giffard-Roisin et al. 2020), recurrent NN (RNN;
Alemany et al. 2019; Chandra et al. 2015), and convolutional
LSTM (Kim et al. 2018; Kim et al. 2019) have been imple-
mented for TC track prediction within five days. In addition,
application of NN for TC intensity prediction (Cloud et al.
2019; Hu et al. 2020; Xu et al. 2021) or estimation (Chen et al.
2019; Olander et al. 2021; Wimmers et al. 2019), genesis pre-
diction (Zhang et al. 2019), and identification of TC center
(Smith and Toumi 2021) or region of interest (Kumler-Bonfanti
et al. 2020) are also becoming very popular.

As a proof of concept, this study aims to explore the possi-
bility of developing and employing an NN algorithm for post-
processing medium-range TC track forecasts in the WNP.
The three common classes of NN, namely multilayer percep-
tron (MLP), CNN, and RNN, were used concurrently. The
former two types of NN were used for handling scalar and
spatial input data, respectively; the latter was incorporated be-
cause TC trajectory can be considered as a time series. Fea-
ture selection and hyperparameter tuning were performed to
optimize model performance. The introduction of a shortcut
connection to the NN model was shown to improve the model
training and performance.

The remainder of this paper is organized as follows. Section 2
describes the dataset and the methods used in this study. The
architectures of the NN models are presented in section 3. In
section 4, training of NN models, selection of input variables,
and hyperparameters are elucidated, and their performance is
evaluated in section 5. Finally, a discussion and summary are
presented in sections 6 and 7, respectively.

2. Data and methodology

a. Historical TC observation

The TC best track data at 0000, 0600, 1200, and 1800 UTC
from 1985 to 2019 (June–October) from the Regional Special-
ized Meteorological Center (RSMC) Tokyo Typhoon Center

were used. The best track dataset archived the center loca-
tion, central minimum pressure, maximum sustained wind
speed, intensity grade, etc., of each TC formed over the WNP.
Tropical depression and extratropical cyclones were excluded
from the analysis.

b. Model forecast output

The global forecast datasets used in this study are the oper-
ational Global Ensemble Forecast System (GEFS) forecast
(Hamill et al. 2011) and reforecast (Hamill et al. 2013). To
maximize the number of samples produced by a model of the
same version, the operational forecast dataset was used for
the period 2012–14, and the reforecast dataset was used for
the period 1985–2011 and 2015–19. These two GEFS datasets
used model version 10 in their respective periods. The resolu-
tion of GEFS version 10 is T254 (;50-km horizontal resolu-
tion) out to 192 h with 42 vertical levels. The operational
forecast dataset consists of 21 members, produced from 0000,
0600, 1200, and 1800 UTC initial conditions every day, while
the reforecast dataset consists of 11 members only, and is pro-
duced once at 0000 UTC. The data available for download
has a horizontal resolution of 18 3 18. The five variables
(vertical wind shear, steering flow, specific humidity, tempera-
ture, and geopotential height) and the corresponding pressure
levels (850, 500, and 300 hPa) used for the NN input are listed
in Table 1. These vertical levels were selected according to
their association with the lower, middle, and upper troposphere.
Wang and Holland (1996) and Zheng et al. (2007) established
the influence of vertical wind shear on the motion of TC or
TC-like vortex, which may depend on factors like the magni-
tude of shear and vertical structure of TC, using idealized
model experiments. Steering flow, which is pressure-weighted
and vertically averaged horizontal winds from 850 to 200 hPa,
modulates the TC motion in the first order; large error in fore-
cast flow field will result in large track error. It is often used
for inferring to TC motion as such environmental flow can ex-
plain a large fraction of it (Elsberry et al. 1987). Subtropical
high strongly governs the TC track in the WNP, and it is com-
mon to identify subtropical high in the 500-hPa geopotential
height field (e.g., Ho et al. 2004). Yan et al. (2017) found that
spatial distribution of moisture might alter TC intensification
rate, and thus the interaction between TC circulation and en-
vironmental flow, which has a role in TC motion. According
to Chan (2005), a change in temperature structure of the at-
mosphere is followed by a change in the distribution of poten-
tial vorticity (PV). Since TCs tend to move toward the
location of maximum positive tendency of vorticity, any

TABLE 1. Two-dimensional variables and the corresponding pressure
levels for theNNmodel input.

Variable name Pressure level (hPa)

Vertical wind shear (VWSU, VWSV) }

Steering flow (SFU, SFV) }

Specific humidity (Q) 850, 500, 300
Temperature (T) 850, 500, 300
Geopotential height (Z) 500
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change in temperature that leads to changes in PV and hence
vorticity would have an impact on TC motion. Although sea
surface temperature (SST) can have influence on TC move-
ment (Katsube and Inatsu 2016), it is not available in GEFS
and therefore could not be included as a predictor.

In late September 2020, GEFS was upgraded to version 12,
which uses the finite-volume cubed-sphere dynamical core. We
were uncertain how the behavior of GEFS varied with a different
dynamical core and resolution, so data in 2020 and after were not
included. Moreover, the reforecast dataset was obsolete.

c. Detection and tracking of TCs in GEFS

To obtain future TC positions predicted by GEFS and com-
pare the performance of the present NN models against the
dynamical forecast, vortex detection and tracking processes
were required. The detection and tracking algorithm applied
in this study was based on that adopted by UKMO (Heming
2017) with some modifications (Cheung et al. 2021). In this al-
gorithm, relative vorticity at 850 hPa (RV850) was used to
track a TC vortex in a model, as it helped provide a strong sig-
nal for the TC center position even at lower TC intensities.
The nearest local minimum mean sea level pressure (MSLP)
field to the highest value of RV850 was assigned as the model
TC center. Some modifications and additional criteria were
applied to search for a TC vortex for numerous cases. The de-
tails are provided in appendix A.

d. Clustering of TC tracks

During the development of a machine learning model, it is
assumed that the training and test datasets are independent
and identically distributed (Bickel et al. 2007; Wen et al.
2014); the samples in these two datasets are not correlated
but are drawn from the same probability distribution. Viola-
tion of this assumption can result in poor generalization per-
formance of the model. However, if validation and test
datasets contain TCs selected randomly, the TCs in one data-
set can be dissimilar to another one.

To create a more balanced validation and test datasets, TCs
were assigned to these datasets so that both of them contain
TC tracks in all parts of the spectrum. The 204 TCs in the en-
tire dataset were clustered into various track patterns (or clus-
ters). It is similar to putting them in different bins. Each track
pattern contained tracks with similar geographical location
and shape. Following Kim et al. (2011), fuzzy c-mean cluster-
ing was employed (Bezdek 1981). Although each track has a
membership coefficient for each track pattern, which indicates
the degree to which a track belongs to a certain track pattern,
it was assigned to the track pattern where its membership co-
efficient was the largest, resulting in hard clusters. The num-
ber of track patterns chosen is explained in section 4b.

e. Feature selection

Feature selection is a process that seeks a subset of features/
input variables that are relevant to a given problem for the con-
struction of a machine learning model (Guyon and Elisseeff
2003; Leray and Gallinari 1999). Model performance can be
improved by reducing the influence of noisy, correlated, or

irrelevant features. To obtain the best/optimal subset, all
combinations of variables must be evaluated exhaustively,
which is computationally expensive and ineffective. There-
fore, most selection methods perform searches such that a
suboptimal subset is obtained instead of an ideal one. There
are numerous feature-selection methods. This study used
feature elimination following the computation of permuta-
tion feature importance. It is a model-dependent method: a
model is first built, and feature selection is subsequently per-
formed using the same model.

Permutation feature importance was first computed. This
method estimates the importance of input features based on
the increase in validation loss when the order of samples asso-
ciated with a feature is randomly shuffled. It begins with a full
set of features for model training, and the resulting validation
loss is the baseline. This trained model is then run k times,
where k is the number of features. In each of the k passes, the
samples in the validation dataset of one feature is permuted,
while those of other features are kept in place. Change in
model performance, or the increase in validation loss from
the baseline, is recorded. The features having larger increases
in validation loss possess higher importance, and vice versa. A
clear description and visualization of permutation feature im-
portance can be found in McGovern et al. (2019) and their
supplementary material. To obtain a more robust estimation,
each feature was permuted, and validation loss was calculated
5 times in this study. The deviation of averaged validation loss
from the baseline indicated feature importance.

Features that result in minor changes in validation loss can
be considered as unimportant or redundant, so removal of
these features can increase computational efficiency without
significant reduction in model performance, or even can yield
better performance. The features except the most important
ones are eliminated, and the model is then retrained with
these retained features for the next step, which is hyperpara-
meter tuning. The number of retained features was deter-
mined arbitrarily to be six, which was half of the initial
feature set.

f. Hyperparameter tuning

In machine learning, the parameters that control how a model
is trained are called hyperparameters and their optimization for
better model performance is called hyperparameter tuning. Like
feature selection, searching for the optimal set of hyperpara-
meters is prohibitive, necessitating a strategy for effective search.
A grid search was adopted in the present study, where a subset
of hyperparameters and several discrete values of each hyper-
parameter are specified. The model is trained with a value of
each hyperparameter at one time, and all combinations are ex-
haustively attempted. Typical values of batch size, learning rate,
and number of kernels were chosen for calibration, and they are
listed in Table 2. Some of the hyperparameters are explained in
appendix B. There was a total of 24 combinations.

g. Statistical analysis

A dependent sample t test (also called a paired t test) was
applied to check if the mean track errors of NN prediction
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were significantly larger than those of the GEFS forecast
track at various confidence levels. Additionally, the Wilcoxon
signed-rank test, which is the nonparametric counterpart of a
paired t test, was used for comparison of the median. The null
(alternative) hypothesis was that the mean or median of the
track error of the NN prediction was greater than or equal to
(smaller than) that of the GEFS track forecast.

h. Hardware and software for model development

Keras 2.3.1 and Tensorflow 1.15.0 were utilized to develop
the NN models under Python 3.7.9. To make the results re-
producible, random seeds were set (see Table S1 in the online
supplemental material), and Tensorflow was patched with Tf-
determinism, version 0.3.0. Moreover, the NN models were
trained using a computer with the following hardware: (CPU)
Intel Xeon Silver 4116; (GPU) GeForce RTX 2080 Ti;
(RAM) DDR4 16GB 2666 MHz3 18.

3. Architecture of neural network models

This section describes the configuration of the NNs. Since
both two-dimensional (2D) data (e.g., model forecast fields)
and scalar data (e.g., latitude and longitude of future TC posi-
tions) were utilized, it was necessary to use different NN ar-
chitectures to handle the variety of data. Furthermore, TCs are
reported at regular time intervals, so our task was regarded as a
time series problem, where the application of RNN is suitable.
The track error at a time step is dependent on TC location and
the model environment where the TC is embedded at the previ-
ous time step(s), so it is necessary to use an algorithm that can
pass earlier information to the latter part of prediction. Conse-
quently, hybrid NNmodels were constructed by combining these
three NN classes. Moreover, shortcut connection, which is a con-
nection that skips one or multiple layers, is said to improve the
ability to generalize and thus improve performance (Daliri and
Fattan 2011; Rabuñal and Dorado 2006). Hybrid models without
and with a shortcut connection were tested and named NN1 and
NN2, respectively (Fig. 1).

a. Multilayer perceptron branch

The MLP is a vanilla (plain) NN. Sometimes it is simply
called “NN,” “deep NN,” or “feedforward NN” when other

NN architectures are not involved in the same context. A typi-
cal MLP has one input layer, one or multiple hidden layers,
and one output layer, with each layer containing at least one
node. Consider a node in the hidden layer: input signal xi
from node i in the previous layer is first multiplied by a weight
wi, and all the other n weighted input signals are summed to
give a total input to the hidden node in the form

a 5 +
n

i5l
wixi 1 b, (1)

where b is the bias. The output of this hidden node y is then sub-
jected to an activation function f, and thus, y5 f(a). The activation
function provides nonlinearity to anNNmodel.AnNNmodel con-
tains a collection of the two equations above, and weights and
biases are updated to give the best fit to the input data. Further ex-
planations and examples of MLP can be found in Gardner and
Dorling (1998) and Bishop (1994). The MLP branch of the hybrid
NNhadan input layer andahidden layer of eight nodes.1 The input
nodes corresponded to the scalar variables: TC position (latitude
and longitude) predicted by the GEFS. The hyperbolic tangent
(tanh) activation functionwas used.

b. Convolutional NN branch

CNN is an architecture that is common for image recogni-
tion or extraction of features from images. Essentially, it com-
prises of several layers: input, convolutional, pooling, fully
connected, and output layers. The input layer contains multi-
ple spatial fields that are stacked together. For the convolu-
tional layer, multiplications (dot product) of the kernel (or
filter, which is a set of weights) with an input image are per-
formed. A kernel has the same “depth” as the input image,
but the horizontal dimensions are much smaller. Since a ker-
nel has a smaller size, it can slide over an image in the two
horizontal dimensions. Here, the kernel represents a specific
spatial feature (e.g., edges, curves), so convolution using a
kernel allows us to search for certain types of features in the
input image. Multiple kernels are used to discover more fea-
tures from the input images. The output from a convolutional
layer, called a feature map, is then downsampled by the pool-
ing layer. This downsampling is performed by computing ei-
ther the maximum or average value inside a small 2D
window, which slides over the feature map similar to the ker-
nel sliding over the input image. It reduces the resolution of
the feature map, letting only large-scale structures of the input
image remain. When there are multiple convolutional and
pooling layers, complicated spatial features can be extracted.
Finally, fully connected layers, which look like MLP, are used
to perform the prediction task. Readers can consult Albawi
et al. (2017) for a more in-depth description of the CNN. The
CNN branch in our model contained an input layer compris-
ing one or multiple spatial fields stacked together, and three
repeated convolutional blocks. Each of the convolutional
blocks consisted of a 2D convolutional, an activation [in which

TABLE 2. Hyperparameters and the value used for NN model
training. When there are multiple values for a hyperparameter,
the value used for feature selection is in bold; the value used by
the NN1 and NN2 models with the lowest track error after tuning
is indicated by a superscript. FC represents fully connected layers.

Hyperparameter Values

Batch size 8NN1,NN2, 16, 32
Learning rate 0.01, 0.001NN1, NN2

Dropout rate (FC only) 0.15NN1, 0.3NN2

Optimizer Adam
Kernel initializer he_normal
Number of kernels (CNN only) 10NN2, 20NN1

Kernel size (CNN only) (3, 3)
L2 regularization factor (CNN only) 0.001

1 Strictly speaking, the MLP branch is not a complete MLP be-
cause it does not have an output layer.
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a leaky rectified linear unit (leaky ReLU) function is used], a
batch normalization, and 2 3 2 max pooling layers in se-
quence, except for the final block, which used global average
pooling instead of max pooling.

c. Recurrent NN (LSTM) and fully connected layers

RNNs are a class of NN that consider historical information
in the computation, and they are designed to handle sequential
data. They accept inputs and produce an output of any given
length. A typical RNN suffers from the vanishing gradient prob-
lem, so LSTM (Hochreiter and Schmidhuber 1997), a special
version of RNN, was developed to overcome this problem. An
LSTM cell receives three data streams: an input matrix at the
current time step (Xt), and a hidden state matrix and a cell state
matrix from the previous time step (Ht21 and Ct21, respectively).

The input matrix Xt represents new information, while Ht21 and
Ct21 contain short-term and long-term memories, respectively.
There are two outputs from an LSTM cell, Ht21 and Ct21. An
LSTM cell is governed by the following six equations:

It 5 s(WxiXt 1 WhiHt21 1 bi), (2)

Ft 5 s(WxfXt 1 WhfHt21bf ), (3)

Ot 5 s(WxoXt 1 WhoHt21bo), (4)

Gt 5 tanh(WxcXt 1 WhcHt21 1 bc), (5)

Ct 5 Ft � Ct21 1 It �Gt; and (6)

Ht 5 Ot � tanh(Ct), (7)

FIG. 1. The hybrid NN (top) without (NN1) and (bottom) with the shortcut connection (NN2).
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where Wxi, Whi, Wxf , Whf , Wxo, Who, Wxc, and Whc are weight
matrices, bi, bf, bo, and bc are bias vectors, s is a sigmoid
activation function, tanh is a hyperbolic tangent activation func-
tion, and � indicates elementwise multiplication. The subscripts
of the weight matrices and bias vectors (x, h, i, f, c, and o) in-
dicate their association with certain matrices (Xt or Ht21)
and/or gates (It, Ft, Gt, Ot). Since the output of a sigmoid
function must be between 0 and 1, the activation functions in
Eqs. (2)–(4) serve as gates for controlling the fraction of
weighted input, and the hidden state can be retained for fur-
ther calculation in Eqs. (6) and (7). Therefore, they are
called the input (It), forget (Ft), and output gates (Ot), re-
spectively. The gate Gt is called candidate memory (or candi-
date gate), which scales information at the current time step
with a hyperbolic tangent function.

This scaled input is then subjected to the input gate and up-
dates the cell state. Moreover, the hidden state of each time
step is also the output from a LSTM, but cell states are kept
internal within a LSTM. In the present NN models, the input
tensor (data array) for LSTM is formed by concatenating
the output tensors of the MLP and CNN. There was one
LSTM layer possessing 16 nodes, followed by two fully con-
nected layers with 10 and 5 hidden nodes, and the output
layer. Dropout layers were inserted after both fully con-
nected (hidden) layers. None of the three layers following
the LSTM layer used a nonlinear activation function. It
should be noted that multiple hidden layers with linear acti-
vation function is equivalent to a single hidden layer. The
output layer corresponds to postprocessed TC positions (top
panels in Fig. 1).

d. Shortcut connection

In NN2 (bottom panels in Fig. 1), there is a shortcut con-
nection linking the input layer of the MLP branch to an
“Add” layer, which also receives the output from the fully
connected layers following the LSTM layer. The “Add” layer
performs an addition operation that sum up the two inputs to
the layer. Consequently, the NN algorithm will try to learn
the residual, which in our case is the deviation of the GEFS-
predicted TC position from the true value. In contrast, NN1
was trained to directly predict the TC position.

4. Training of neural network models

a. Data preparation

The inputs to the NN models contained forecast fields in
the domain (08–508N, 908–1708E) and forecast TC positions
at lead times of days 0, 2, 4, 5, and 6 (i.e., 0, 48, 96, 120, and
144 h), both from the GEFS, while ground truth labels were
from the TC best track data of RSMC Tokyo. Days 1 and 3
were excluded to reduce the computation loading. Although
not shown in the figure, the inclusion of these two days did
not significantly affect the prediction results after 4 days.
Each TC can contribute to multiple TC cases when it survives
for longer than six days. For example, if a TC lasts for seven
days and forecast is produced daily, two TC cases are ob-
tained: the first starts at 0 h (i.e., day 0), and the other starts at

24 h (i.e., day 1). Since the GEFS dataset consists of multiple
ensemble members (perturbations), they are treated as indi-
vidual samples.

b. Data split

The samples in the entire dataset were split into three parti-
tions: training, validation, and test datasets. The training data-
set is responsible for fitting the model by generalizing any
relationships or patterns within the data. The validation data-
set is required when model selection by methods such as fea-
ture selection or hyperparameter tuning is performed. The
test dataset is used for the final evaluation of the model per-
formance. Ten percent of TCs (20 TCs) was assigned to the
validation dataset, and another 10% (20 TCs) went to the test
dataset. The remaining TCs were left for training. As ex-
plained in section 2d, clustering was performed prior to the
selection of TCs for each dataset. For simplicity, the number
of track patterns was designated to be 20, so a TC could be
randomly picked from one track pattern. The 20 track pat-
terns are shown in Fig. 2, and the resulting validation and test
datasets contain similar distributions of tracks (Fig. 3). TCs in
these two datasets are listed in Table S2. As a result, there
were 5379, 411, and 954 samples, corresponding to 540, 57,
and 79 TC cases.

The samples associated with the same TC must not exist in
the training and validation/test datasets simultaneously (e.g.,
ensemble members 0–5 go to the training dataset while the re-
maining members go to the test dataset). If all the samples are
randomly allocated to these datasets, it is possible that sam-
ples made up of different GEFS ensemble members of the
same TC case are assigned to both the training and validation
datasets simultaneously. Some of the ensemble members
may be similar. When similar or exact copies of samples are
found in the training and validation datasets, validation loss
is close to that of the training dataset, and it weakens the
model’s generalization ability (Santos et al. 2018). Conse-
quently, the TCs were partitioned instead of the TC cases
or the samples.

c. Data transformation

Input data are usually transformed to have small magni-
tudes before training for faster training and less prediction
error (Jin et al. 2015; Sola and Sevilla 1997). Moreover,
when multiple variables with different range of magnitudes
are selected as the model input, those having much larger
variances can dominate. Therefore, data transformation
is an integral part of the training of machine learning
models.

Each of the input and output variables selected for the present
studywere scaled to values between 0 and 1 independently, using
min-max normalization: x′i 5 (xi 2 xmin)/(xmax 2 xmin), where
x′i and xi denote the normalized and original values of a variable
at grid point i, respectively, and xmin and xmax are the minimum
and maximum values of the variable across all grid points, time
steps, and ensemblemembers of the training dataset, respectively.
The samples in the validation and test datasets were transformed
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using the minimum and maximum values calculated from the
training dataset.

d. Loss function

The goal of training of a machine learning model is to mini-
mize the loss function. For a regression task, mean absolute
error or mean-squared error are common loss functions.
However, neither of them is an accurate or typical measure of
the distance between the true and predicted values because
the outputs of the present NN models are latitude and longi-
tude (in degrees), which are not location invariant. A custom
loss function was therefore written to calculate the great-circle
distance between the true and predicted TC positions (i.e.,
track error) for each forecast lead time.

e. Training

Training an NN model is equivalent to determining its
weights to minimize loss. This is similar to finding the coeffi-
cients in a polynomial fit. The weights are updated continuously

as the outputs of the NN do not match the ground truth labels.
Backpropagation is an algorithm that computes the gradient of
the loss function with respect to the weights of an NN for one
sample, and one layer at one time. The weights in a NN are ad-
justed based on the above computation.

Both the NN1 and NN2 models underwent feature selection
(permutation feature importance and feature elimination) and
hyperparameter tuning. For feature selection, the batch size,
learning rate, number of kernels, and kernel size were 16, 0.001,
10, and 33 3, respectively (Table 2). Adaptive moment estima-
tion (Adam) was the optimization algorithm for the training of
the two NN models. The kernel initializer was a He normal
initializer. Each training lasted for 100 epochs, but only the
set of model weights in the epoch that resulted in the mini-
mal validation loss (which is an average across all lead times)
within 100 epochs was saved. The validation loss in this ep-
och was an indicator of this model’s performance.

Figure 4 shows the validation loss for each permuted feature
of NN1 and NN2, and also the baseline (unpermuted loss). The

FIG. 2. The TC tracks (gray lines) of each track pattern for the entire dataset. The numbers inside the parentheses indicate the number of
tracks contained in the particular pattern. The thick black line is the mean track of a track pattern.
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baseline for NN1 and NN2 were 465.6 and 355.7 km, respec-
tively. The training losses were 382.4 and 193.0 km for the two
NN models. For NN1, the permutation of Q500 caused the
greatest departure of validation loss from the baseline, followed
by SFU and VWSU. Q850, Q300, and VWSV also had strong
impacts on the validation loss. Temperature at all levels (T850,
T500, and T300), SFV, and Z500, however, all had validation
losses very close to baseline, indicating their influences on
model performance were minimal. For NN2, a similar result
was obtained. Q850, Q500, SFU, and VWSU had greater im-
portance compared to other features. The importance of Q300
and VWSV were next to the four features mentioned above,
but were not far from the baseline, and were only slightly larger
than SFV. To preserve computational efficiency, we arbitrarily
eliminated half of the features that were least important (or
caused small changes in validation loss after permutation). Sub-
sequently, the six features retained for both NN models were
Q850, Q500, Q300, VWSU, VWSV, and SFU.

Hyperparameter tuning of NN1 and NN2 was performed
using the features selected in the previous step. As shown in
Fig. 5, the best model for NN1 used 0.001, 8, 20, and 0.15 for
the learning rate, batch size, number of kernels, and dropout
rate, while they were 0.001, 8, 10, and 0.3 for NN2. NN1 was
slightly overfitted when the dropout rate was 0.15 but was
underfitted when the dropout rate was increased to 0.3. Mean-
while, NN2 was overfitted in all sets of hyperparameters, but
the overfitting was less severe when a higher dropout rate was
used. Under the same hyperparameter set, the validation loss
was generally lower when the model was less overfitted or

underfitted. It can be seen from the NN1 models trained with
dropout rate of 0.15 and NN2 models trained with dropout
rate of 0.3. On the other hand, the validation loss (and train-
ing loss) of NN2 was less than that of NN1 for all sets of
hyperparameters.

5. Model evaluation

The test dataset was applied to the best models of NN1 and
NN2 selected after feature selection and hyperparameter tun-
ing for the final evaluation of model performance at each lead
time (except for day 0, because the exact observed TC position
is known). For deterministic weather forecasts of continuous
variables, the three commonly used verification measures are
accuracy, association, and skill (Jolliffe and Stephenson 2011).
Accuracy measures how well a forecast agrees with the corre-
sponding observation, and it is indicated by the great-circle
distance between actual and predicted TC position calculated
using haversine formula. Along-track error and cross-track

FIG. 3. TC tracks contained in the (a) validation and (b) test
dataset. Dots and crosses represent the starting and ending location
of each TC, respectively. Different line styles and colors are used
for better identification of tracks.

FIG. 4. The validation losses of NN1 (blue) and NN2 (red) for
each permuted feature. A ring indicates one of the five permuta-
tions, while a solid line represents the average of all permutations
for a feature. The loss for the baseline (unpermuted loss) is drawn
as the dashed line.
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error are also verified. Association quantifies the linear rela-
tionship (correlation) between forecast and observation. Since
correlation coefficient can only be computed for one variable
at one time, the predicted center latitude and longitude of a
TC need to be evaluated separately. Finally, skill is the accu-
racy of the forecast relative to a zero-skill baseline model,
which is calculated as [(EBase 2 EM)/EBase] 3 100%, where
EBase represents the track error from a baseline model, while
EM is that from either NN1, NN2, or GEFS. Climatology and
persistence models are usually used to be the baseline refer-
ence, so CLIPER model, which is a multiple regression model,
for TC track forecast is used. The details of the CLIPER
model used here are explained in appendix C.

a. Accuracy

The boxplots in Fig. 6 and Table 3 show the distribution of the
test loss from NN1, NN2, and GEFS. Only box and whiskers are
plotted to preserve clarity. The figure with outliers is shown in
Fig. S1 in the supplemental material. NN1 had greater test loss in
terms of mean and median on days 2, 4, and 5 than GEFS, but
the interquartile range (IQR) was shorter on the latter two days.
On day 6, NN1 became better thanGEFS for the three statistical
measures, with a significantly smaller mean test loss. For NN2,
the mean test losses on days 2, 4, and 5 were all significantly
smaller than GEFS with shorter IQRs. Although the mean test
loss and IQR of NN2 was still smaller on day 6, the difference in
mean test loss was no longer significant. Although the median of
NN2 on day 4 and 5 were greater thanGEFS, they were still con-
sidered as smaller than GEFS from the Wilcoxon signed-rank
test. It is because the samples in NN2 and GEFS must not be re-
garded as independent to each other, and each set of matched
pair (same forecast) should be compared instead of the two
distributions.

In addition to the track error as represented by the distance
between observed and forecast position of TCs, the along-
track error and cross-track error (Fig. 7), which are two com-
ponents of the track error, were also analyzed. Evaluation of
these two components is common for TC track forecasts (e.g.,
Fiorino et al. 1993; Heming 2017; Leonardo and Colle 2017;
Tsui and Miller 1988). A positive along-track error indicates a
fast bias in the forecast track, while slow bias is represented
by a negative along-track error. For cross-track error, positive
and negative values imply right and left bias, respectively.
The example in Fig. 7 shows a forecast with positive along-
track error (fast bias) and negative cross-track error (left
bias). Although these two components are orthogonal, they
are not independent because a small cross-track error follows
a large along-track error (Fiorino et al. 1993).

The along- and cross-track bias are shown in Fig. 8. NN1
tended to have negative along- and cross-track bias, while
NN2 and GEFS had positive biases. The statistics of the abso-
lute magnitude of the three model forecasts were also com-
pared (Table 4). For NN1, the mean of the along-track error
was significantly smaller than GEFS on days 4, 5, and 6, but
the mean of the cross-track error was larger on days 2, 4, and 5.
As a result, the improvement in the along-track error on day 4
and 5 by NN1 was cancelled out by the decline in cross-track
error. Conversely, NN2 improved both the mean/median of
along- and cross-track error of GEFS on all lead times except
the former one on day 6. It can also be observed from Table 4
that whenever the mean loss of the along-track error of NN1
or NN2 was greater than GEFS, the same was true for the me-
dian loss, but this relationship did not hold for the cross-track
error.

Figure 9 shows the evolution of along-track error and cross-
track error of each model. Each data point represents the

FIG. 5. Training and validation losses for each combination of hyperparameters. The tick label of the x axis indicates
the learning rate, batch size, the number of kernels, and dropout rate. The training error is the one in the epoch where
lowest validation loss is recorded.
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average across all samples in the test dataset at each lead time.
GEFS tended to have an increasing along- and cross-track error
(fast and right bias), although it started with a slow bias. NN1
had slow bias on all days. The slow bias was close to zero on
day 4, but increased on the next two days. Right bias was
observed on day 2, but it changed to another side on day 4. It
approached zero after an increase on day 5. NN2 had an evolu-
tion similar to that of GEFS. A slow bias turned into a fast
bias, and the right bias fluctuated with time. However, the
magnitudes of the two types of bias were smaller than those of
GEFS on all days. Given the similar trajectories of NN2 and
GEFS, and smaller along- and cross-track errors of the former
one, reduction in systematic speed and direction bias of GEFS
prediction is likely to be corrected by NN2.

b. Association

Figure 10 shows the time series of correlation coefficient
between observed and predicted latitude and longitude for

each model. Regardless of lead time or variables (latitude and
longitude), the correlation coefficients decreased with time.
For latitude, GEFS had the strongest correlation between
prediction and observation, followed by NN2 and NN1. The
correlation coefficient of the three models started with 0.95
(NN1)–0.98 (GEFS) on day 2 and dropped to 0.65
(NN1)–0.79 (GEFS) on day 6. For longitude, the correlation
coefficients were usually higher than those of latitude, and
they decreased at a slower rate. NN2 had the greatest correla-
tion coefficients among the three models.

c. Skill

The relative forecast skill of NN1, NN2, and GEFS is
shown in Fig. 11. The skill of NN1 on days 2–5 was rather low,
which increased from 12.0% to 14.7%. It attained 20.3% on
day 6. On the other hand, NN2 and GEFS had similar trends
in forecast skill, although the former one was more skillful.
On day 2, NN2 and GEFS have skills of 46.3% and 35.1%,
respectively. The skills decreased continuously with time,
and became less than 14% on day 6, which was lower than
NN1.

FIG. 6. Comparison of the test loss (km) of the prediction from
NN1 (blue), NN2 (red), and GEFS (black) at each lead time. A
cross inside a box represents the mean value, while a ring repre-
sents an outlier (defined as the data points that fall above the 75th
percentile plus 1.5 interquartile range). The figure with outliers can
be referred to in Fig. S1.

TABLE 3. Mean, median, and IQR of test loss of NN1,
NN2, and GEFS at each lead time. The unit of the values
is kilometers. The asterisk indicates that the mean/median
of NN test loss is significantly smaller than GEFS at the
99% confidence level.

Day Statistics NN1 NN2 GEFS

2 Mean 267 163* 197
Median 247 139* 184
IQR 153 130 153

4 Mean 483 387* 415
Median 464 380* 367
IQR 227 267 372

5 Mean 555 518* 541
Median 509 503* 496
IQR 257 289 379

6 Mean 630* 682 687
Median 487* 664 627
IQR 444 335 523

FIG. 7. Illustration of the along-track error (ATE) and the
cross-track error (CTE).
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d. Proportional of improved samples

Apart from the reduction in the mean track error of a large
group of samples, the number of samples with reduced track
error is also an important indicator of NN model perfor-
mance. Figure 12 shows the scatterplot of the test loss of
GEFS against NN1 and NN2. A sample located above the

identity line (or line of equality) indicates a reduction in track
error by NN. For NN1, 29%, 44%, 51%, and 60% of the sam-
ples on days 2, 4, 5, and 6 had smaller track errors than in
GEFS (top panels of Fig. 12). The proportions of improved
samples after postprocessed by NN2 were larger than those of
NN1, except for day 4 (69%, 58%, 56%, and 53%; bottom
panels of Fig. 12).

The proportion of the samples above the 90th percentile of
the GEFS test loss improved by NN1 and NN2 were also ex-
amined (Table 5). This analysis can specifically demonstrate
the ability of the present NN models to improve GEFS pre-
dictions that contain large errors. The 90th percentile is indi-
cated by the horizontal dashed lines in Fig. 12. For NN1, 69%
of the samples were improved on day 2. The percentage rose
to 95% on day 4, 96% on day 5 and 98% on day 6. For NN2,
the fraction of samples with NN track errors smaller than that
of GEFS for the four lead times were 62%, 94%, 95%, and
98%. The percentages were smaller than NN1 on days 2, 4,
and 5, but greater after that.

e. Spatial distribution of track error

To understand the regions in which NN prediction can give
better prediction than GEFS, the improvement caused by NN
on each test sample were examined (Fig. 13). The majority of
improved samples (blue) by NN1 were clustered mainly in
two regions: south to Japan at 308N, and farther south at
228N. Most of the samples that had increased track error were
found to the east of about 1358E. In comparison, the rises or

FIG. 8. As in Fig. 6, but for (a) ATE and (b) CTE.

TABLE 4. As in Table 3, but for along-track error and cross-
track error (in km) of test dataset. Absolute value of the test loss
was used for calculation of statistics. The asterisk, ampersand, and
pound indicate that mean/median of NN test loss is significantly
smaller than GEFS at the 99%, 98%, and 95% confidence level,
respectively.

Day Statistics

Along-track error Cross-track error

NN1 NN2 GEFS NN1 NN2 GEFS

2 Mean 150 104* 126 193 104* 123
Median 120 78* 101 186 76* 101
IQR 141 101 136 170 111 118

4 Mean 232# 222* 246 379 269* 288
Median 184 174* 204 382 247* 236
IQR 241 244 278 285 280 302

5 Mean 292* 329* 347 412 335# 347
Median 230* 308# 316 402 313# 280
IQR 294 276 364 312 329 377

6 Mean 440* 500 487 361 357& 375
Median 325* 482 432 265 302# 270
IQR 345 409 488 342 394 395
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drops in test loss by NN2 were weaker than NN1. Two major
clusters of improved samples by NN2 could be observed near
the northern coast of Japan, and the region near 228N, 1358E.
Most of the samples at the southwest of Japan had increased
test loss.

6. Discussion

a. Influence of the application of the shortcut connection

Although the test loss of NN2 was not significantly smaller
than GEFS for all lead times (Fig. 6, Table 3), from the results
obtained from feature selection and hyperparameter tuning
with validation dataset (Figs. 4 and 5), or model evaluation
with test dataset (Figs. 6 and 12), it is evident that the applica-
tion of NN2 can result in lower track error averaged across all
lead times than NN1. A possible reason for the superior per-
formance of NN2 over NN1 in numerous situations can be the
use of the shortcut connection. The “core” of NN2 was
trained to learn the deviation from the normalized GEFS-pre-
dicted TC location, which should have magnitude much
smaller than that of the normalized latitude and longitude
value. It has the same positive effect as performing data nor-
malization for data (section 4c). The difference in NN model
characteristics caused by the inclusion of the shortcut connec-
tion can be speculated from Fig. 12. The scatterplots for NN1
had larger spreads than NN2, while the data points in the scat-
terplots for NN2 were closer to the identity line. It indicates
that the predictions of NN2 were closer to those of GEFS, but
NN1 was given the freedom to produce predictions in a larger
range of magnitude. Figure 9 also shows that NN2 underwent
evolution similar to GEFS but with smaller biases.

b. Design of loss function

The loss function is an important part of the development
of an NN model because it can dictate the efficiency of train-
ing and final prediction. The current loss function is the aver-
age track error across all lead times. It is apparent that the
improvement of track forecast on day 6 by NN2 was insignifi-
cant compared to other lead times (Fig. 6 and Table 3). As-
signing heavier weight to loss to later forecast lead time can
be a possibility to train a NN for focusing model performance
less in the earlier part of track forecast. Alternatives such as the
magnitude of improvement (difference between NN-predicted
track error and GEFS-predicted track error) or the proportion
of improved samples can also be considered alongside track er-
ror. Moreover, limiting the maximum reduction of track error
may also be useful for preventing the NN model from exploit-
ing some samples that are easy to improve.

c. Suboptimal generalization of data

Figure 5 shows that the variation in validation loss was
small in all combinations of hyperparameters, while training
loss exhibited apparent change according to hyperparameters.

FIG. 10. Correlation coefficient between observed and predicted
latitude or longitude of TC for NN1, NN2, and GEFS at each fore-
cast lead time. A solid line represents latitude, while a dashed line
represents longitude.

FIG. 11. Forecast skill of NN1, NN2, and GEFS relative to baseline
model (CLIPER) at each forecast lead time.

FIG. 9. Evolution of the ATE and CTE of NN1, NN2, and
GEFS. The number next to a dot represents the lead time (days) of
the corresponding model.
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A possible cause for the dissociation between training losses
and validation losses is the strong dissimilarities among TC
tracks in the present dataset, which consists of tracks that sur-
vive for at least six days. As seen in Fig. 2, the tracks within
the same track pattern looked different to each other in most
of the track patterns. As each of these long tracks possesses
high uniqueness, the same problem will probably still exist
even another validation/test dataset is created by resampling
the dataset. Therefore, a good level of generalization of data
can be very difficult to achieve.

Besides, NN2 was consistently overfitted in all combinations
of hyperparameters. Selecting a combination of hyperpara-
meters that leads to a severely underfitted or overfitted model
is not desirable. A smaller dropout rate (0.15) usually led to
more overfitting than a larger dropout rate (0.3) for NN2. It im-
plies that stronger regularization (e.g., increase dropout rate,
adding L2 regularization) may be needed to reduce overfitting.

Since the grid search was only performed on a limited combi-
nation and value of hyperparameters, and the same grid search
was applied for NN1 and NN2, it is unfortunate that this grid
search caused consistent overfitting forNN2 but not NN1.

7. Summary

This study presents NN models for postprocessing TC track
forecasts made by GEFS in the medium range (up to 6 days)
for the WNP. The present NN models consist of a combina-
tion of three commonly used architectures: MLP, CNN, and
RNN (LSTM), and was trained using dynamical model fore-
cast as input data and was fitted to observation (best track
data). The two NN models, in which one of them was incorpo-
rated with a shortcut connection, showed promising results. It
was found that the use of a shortcut connection led to better
performance under various training conditions. Extending the
forecast length beyond six days is possible for the current al-
gorithms, but the number of training samples is expected to
decrease, and generalization of data can be more difficult.

The present NN models provide a prototype for encourag-
ing further developments in TC track forecasts in the medium
range, as seen from the evaluation of model performance with
the test dataset. More than half of the samples in the test data-
set had reduced track error after postprocessed by NN2, and
the mean track errors for all but the last lead time were also
smaller than those of GEFS. This indicates the potential for
future operational applications if the model can be better

FIG. 12. Scatterplots of GEFS vs (top) NN1 and (bottom) NN2 test loss (km) for lead time of (a),(e) day 2, (b),(f) day 4, (c),(g) day 5, and
(d),(h) day 6. Gray solid line and dashed line indicate identity line and the 90th percentile of GEFS track error, respectively.

TABLE 5. Percentage of samples with large GEFS test loss
(above the 90th percentile) improved by NN1 and NN2 at each
forecast lead time.

Lead time (day) NN1 NN2

2 69% 62%
4 95% 94%
5 96% 95%
6 98% 98%
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calibrated. Figure 5 demonstrates the possibility of further im-
provement of NN2 if heavier regularization is imposed to re-
duce overfitting. Moreover, the NN is a convenient tool for
TC forecasting. Although training an NN model can be time-
consuming depending on its complexity, it is only required to
be trained once. Retraining of a model can be performed be-
fore the next typhoon season, if additional data from the pre-
vious season can be included. Moreover, it takes very little
time for making a real-time forecast (in addition to download-
ing the input forecast data of a dynamical model), which is
negligible compared to that of running a regional (dynamical)
model downscaled from a global model.

Furthermore, there are still some issues to be investigated
for the development of a more comprehensive model: 1) Model
output across multiple versions: it is reasonable to assume
that the systematic error of a model should change with
model upgrade, so the simulation of the state of the same
atmosphere is different. It is unknown whether the difference
in systematic error contained in multiple GEFS model ver-
sions is significant enough to impact the learning of the NN
model. If not, more data or samples are available for training;
2) forecast model: since both observation and forecast data
are required for a model function as a postprocessing method,
data augmentation is difficult if samples for training are insuf-
ficient. Dynamical models such as the WRF Model can be
used to generate training samples, because model outputs are
physically constrained such that resembling observation is
possible. A similar approach has also been used in other stud-
ies (e.g., Kim et al. 2018; Ham et al. 2019), which increases
the number of samples and their variety.
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APPENDIX A

Details of TC Vortex Detection and Tracking Algorithm

The detection and tracking procedures are as follows:

1) Analysis time:
• In the model analysis, the TC center was determined by
initiating a search from the observed TC position within
a radius of 220 km for the grid point that contained the
highest value of RV850. The nearest grid point with a
local minimum MSLP within a 450 km radius from the
highest RV850 point was identified.

• A closed isobar check was performed at a radius of
300 km from the grid point with the aforementioned
local minimum MSLP. If the check fails, this low pres-
sure is not regarded as a TC vortex.

• When a vortex could not be detected, the analyzed
(first) model TC position was set to the observed TC
position.

• To obtain a more precise TC center, a 58 3 58 grid
centered on the previously determined grid point at the
lowest MSLP was interpolated to a 108 3 108 grid.

2) Forecast position after six hours:
• The search for the second TC position was similar to
that for the analyzed position. It started from the ob-
served TC position within a 450-km search radius.

3) Forecast position after 12 hours and beyond:
• The first estimate was defined by extrapolating the fore-
cast track for the previous two time steps. Locating the
TC position was the same as in step 2 but was started at
the first estimated position. The search radius was 450 km.

• When a vortex could not be detected in the above step,
the search was restarted using the preceding model’s
TC center position as the starting point with a 150-km
search radius; this avoids missing a vortex when a model
vortex suddenly accelerates or decelerates to be far
from the original estimated position.

For a lead time longer than six hours, tracking of a model
TC vortex could be continued if the following criteria were
met:

1) For vortices detected at latitudes higher than 208N,
RV850 is greater than 5 3 1025, and 1 3 1025 s21 other-
wise. This threshold was made to be region dependent as

FIG. 13. TC location of samples in test dataset on day 6 predicted
by (a) NN1 and (b) NN2. The color of each circle indicates the dif-
ference in track error between a NN model and GEFS (former mi-
nus latter; km).
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in certain cases a model TC weakened at an early stage,
occurring at lower latitudes.

2) The model vortex is located south of 458N.
3) The MSLP decrease of a model TC from a previous time

step is less than or equal to 20 hPa; it prevents false iden-
tification of a vortex center when two vortices in the
model are in proximity.

4) The separation between the model TC center at the current
and previous time steps is less than or equal to 500 km.

APPENDIX B

Explanation of Hyperparameters

Training of the hybrid NN was carried out for numerous
cycles (epoch), and in one epoch, the entire training dataset
was worked through. The batch size is the number of sam-
ples processed before the NN model is updated, and the
number of batches is roughly the number of training sam-
ples divided by the batch size. Therefore, in one epoch, the
model is updated multiple times.

Learning rate controls the speed of model weights change
in training. When too low, the training can be more reli-
able, but it may take a much longer time to reach the opti-
mal solution, or the model can become trapped in a local
minimum of a loss function landscape. Conversely, when
too high, the training can proceed much faster, but the
model may converge toward a suboptimal solution.

Dropout rate is a probability that determines the proportion
of nodes to be ignored randomly during the training stage.
Dropout is commonly used as a regularization method to avoid
overfitting. L2 regularization, which adds a penalty term to the
loss function, can also be used for the same purpose.

Optimizers are algorithms that modify the weights and
learning rate of NN models to reduce losses more efficiently.
Gradient descent, Adagrad, and Adam are examples of com-
monly used optimizers. Adam is a type of stochastic gradient
descent method with an adaptive learning rate, where the loss
function is optimized by approximating the gradient with a
randomly selected subset of data, and learning rate is made
to decay with time.

Kernel initializer determines the method that randomly
initializes the weights in a NN. The weights can be assigned

values with different types of distributions (e.g., normal,
uniform distribution, etc.). Training can be more efficient if
the initializer is appropriately selected.

Kernel size and number of kernels are both associated
with the CNN. The kernel size defines the size of a 2D win-
dow that slides over an input image during convolution.
The number of kernels indicates the number of spatial fea-
tures to be extracted/detected.

APPENDIX C

CLIPER Baseline Model

Aberson and Sampson (2003) used CLIPER for TC track
forecasts in the WNP up to five days. The predictands are the
displacement in zonal and meridional direction from the initial
time at each forecast lead time. In our case, therefore, there
are eight regression equations in total (two directions 3 four
lead times). The predictors used in Aberson and Sampson
(2003) were also applied in the development of the baseline
model. They are listed in Table C1. The baseline model is de-
veloped using TCs formed in the period 1977–2019. Since the
RSMC Tokyo best track dataset is used, utilization of TC
data before 1977 is not possible because the maximum sus-
tained wind speed was not recorded. The training and test
datasets include samples of TCs that survive for at least six
days in the WNP. The latter one is the same as the one for
evaluation of NN models, while the former one has the re-
maining samples.
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