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Abstract. This study attempts to achieve real-time rainfall-

inundation forecasting in lowland regions, based on a syn-

thetic potential inundation database. With the principal

component analysis and a feed-forward neural network, a

rainfall-inundation hybrid neural network (RiHNN) is pro-

posed to forecast 1-h-ahead inundation depth as hydrographs

at specific representative locations using spatial rainfall in-

tensities and accumulations. A systematic procedure is pre-

sented to construct the RiHNN, which combines the mer-

its of detailed hydraulic modeling in flood-prone lowlands

via a two-dimensional overland-flow model and time-saving

calculation in a real-time rainfall-inundation forecasting via

ANN model. Analytical results from the RiHNNs with var-

ious principal components indicate that the RiHNNs with

fewer weights can have about the same performance as

a feed-forward neural network. The RiHNNs evaluated

through four types of real/synthetic rainfall events also show

to fit inundation-depth hydrographs well with high rain-

fall. Moreover, the results of real-time rainfall-inundation

forecasting help the emergency manager set operational re-

sponses, which are beneficial for flood warning preparations.

1 Introduction

Establishing a database of potential inundation maps is a con-

ventional non-structural measure for flood hazard mitigation

in many countries. Government agencies in countries such

as the USA, Japan, the UK and Taiwan have adopted flood

maps as references to set up non-structural strategies in com-

prehensive flood management (Cabinet Office, 2003; Mur-

phy, 2003; Lowe, 2003; Chen et al., 2006). In Taiwan, the
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National Science and Technology Center for Disaster Reduc-

tion (NCDR) has applied the database of potential inundation

for emergency managements (Yen et al., 2006). The NCDR

provides the Central Emergency Operational Center, Taiwan,

with an inundation map during the typhoon period. This is

one of the four potential inundation databases selected and

approximated to the flood extents and depths of 150 mm,

300 mm, 450 mm or 600 mm of total rainfall in 24 h (Chen

et al., 2006). However, these potential inundation databases

as flood maps are produced by assuming that the distribution

of spatial rainfall is uniform. Under the influence of spa-

tial rainfall on flood prediction, a bias in the estimation of

parameters making physical interpretation difficult may lead

to overestimation of extreme flows without considering spa-

tial variability (Arnaud et al., 2002). Spatial rainfall distribu-

tion needs to be addressed to improve the rainfall-inundation

forecasting accuracy in emergency response operations.

The potential inundation database provides flood mapping

information to increase awareness of those areas that could

be flooded in certain conditions. It helps the emergency man-

agers set the operational responses as non-structural mea-

sures for flood mitigation, such as allocating rescue re-

sources, evacuating residents, or the specific transport route

to shelter. A local county government in Taiwan has an emer-

gency response time that normally takes from 2 to 3 h to re-

spond to flooding (Chen et al., 2006). Various approaches

have been adopted for flood inundation calculation via hy-

draulic or hydrological models based on data from real-time

rainfall records. For modeling the inundation extent of a

flood event in the lowlands, a two-dimensional (2-D) hy-

drodynamic model can describe hydraulic details with high

accuracy in inundation depth and extent on the floodplain

(Cunge et al., 1980; Wasantha Lal, 1998; Hsu et al., 2000,

2002; Bates et al., 2003; Yu and Lane, 2006; Hsieh et al.,

2006; Chen et al., 2006; Guo et al., 2007).
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Artificial neural networks (ANNs) have become an at-

tractive inductive approach in hydrological forecasting be-

cause of their flexibility and data-driven learning in build-

ing models, as well as their tolerance of inputs with error

and time-saving calculation in real-time models (Thirumala-

iah and Deo, 1998; Kisi and Kerem Cigizoglu, 2007). Al-

though many studies have applied different ANNs to achieve

the prediction and forecasting of various water resource as-

pects (Maier and Dandy, 2000; Toth et al., 2000; Bodria

and Čermák, 2000; Kim and Barros, 2001; Wei et al., 2002;

Pan and Wang, 2004; Kerh and Lee, 2006; Sahoo and Ray,

2006; Sahoo et al., 2006; Dawson et al., 2006; Kisi and

Kerem Cigizoglu, 2007; Chau, 2007; Chen and Yu, 2007;

Goswami and O’Connor, 2007; Pan et al., 2008), few inves-

tigations have utilized ANNs to achieve rainfall-inundation

forecasting, which is essential to providing real-time flood

warning information in emergency responses, as stated pre-

viously. An algorithm must be developed to perform real-

time calculations for inundation forecasting as fast as it re-

ceives the observed rainfall records. However, a 2-D hydro-

dynamic model with a huge number of computational grids

cannot satisfy the requirements of real-time calculations for

emergency responses owing to time-consuming computa-

tions in the wide areas of the lowlands. Hence, ANNs

are adopted to forecast 1-h-ahead inundation based on rain-

fall data at densely populated high-inundation-potential lo-

cations. To elaborate compact models, principal component

analysis (PCA) is applied to extract useful information from

rainfall data, and is merged with feed-forward neural net-

works as rainfall-inundation hybrid neural networks here.

Moreover, the lack of sufficient training data is overcome

by constructing a synthetic potential inundation database cre-

ated by a 2-D overland-flow model as one procedure of the

ANN model construction.

This work attempts to enhance the accuracy of real-time

inundation forecasting for lowland regions based on a syn-

thetic potential inundation database. The algorithm com-

bines the merits of detailed hydraulic modeling in flood-

prone lowlands via the 2-D overland-flow model and time-

saving calculation in real-time applications via ANN mod-

els. Accordingly, the depth and duration of flood inunda-

tion, which is crucial information for real-time emergency

response operations, can be assessed. A brief description of

the methodologies adopted includes hybrid neural networks

and the 2-D overland-flow model in Sects. 2 and 3, respec-

tively, which is followed by a four-step procedure of build-

ing a rainfall-inundation hybrid neural network (RiHNN) in

Sect. 4. The model is applied to the 19 representative in-

undation locations in central western Taiwan for 1-h-ahead

forecasting, and evaluated by 5 criteria in Sect. 5. The per-

formances of various model structures and the influence of

training data are analyzed and discussed in Sect. 6. Final

remarks and overall assessment of the investigation are pre-

sented in Sect. 7.

2 Hybrid neural networks

The ANNs are massively parallel distributed processors

made up of simple processing units, which have a natural

propensity for storing experiential knowledge and making

it available for use. It resembles the brain in two respects:

knowledge is acquired by the network from its environment

through a learning process; interneuron connection strengths,

known as synaptic weights, are used to store the acquired

knowledge (Haykin, 1999). According to the manner of the

adjustment to a synaptic weight by various data-driven learn-

ing algorithms, ANNs are classified into supervised and un-

supervised neural networks. Based on the structures of the

connections between neurons, ANNs are grouped into feed-

forward and recursive neural networks (Pan et al., 2007). As

shown in Fig. 1, the ANN developed here is a multi-hidden-

layer feed-forward neural network with two different types

of learning algorithms described as follows.

2.1 BP layer

The ANNs developed here aim to build the relation between

rainfall and inundation that can substitute for traditional,

time-consuming, numerical inundation models during the ty-

phoon period, and the type of ANNs used in this study falls

into the most popular class, that of the layered feed-forward

network using the BP algorithm as a supervised ANN. The

BP algorithm uses the conjugate gradient back-propagation

with Fletcher-Reeves updates that can train any network as

long as its weights, net input, and activation functions have

derivative functions (Scales, 1985). The inputs are the ob-

servations and accumulations of the present and past-22-h

rainfall of each rain gauge in the study area, and the out-

puts are the 1-h-ahead water depths at each representative

inundation location. The formulas for the rainfall-inundation

feed-forward network are shown in Eqs. (1) and (2).

Hm(t) = f1


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









N
∑

n

LAG
∑

lag=0

W 1
m,n·(lag+1)

·Rn(t − lag)

+
N
∑

n

LAG
∑

lag=0

W 1
m,(LAG+1)·N+n·(lag+1)

· CRn(t − lag)+b1,m















,

m = 1,...,M, (1)

Ok (t +1) = f2

(

M
∑

m

W 2
k,m ·Hm(t)+b2,k

)

,

k = 1,...,K, (2)

where lag is past lag hour; Rn (t-lag) is the rainfall intensity

(mm h−1) of the n-th rain gauge at time t-lag; CRn(t-lag) is

the cumulative rainfall (mm) of the n-th rain gauge from time

t to t-lag; N is the number of rain gauges; LAG is the length

of time delay (h); W l
i,j is the weight between the i-th neuron

of the l-th layer and the j -th neuron of the l+1-th layer; bl,j
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Fig. 1. Block scheme of the rainfall-inundation hybrid neural network. Each block represents a layer of neurons where N , M , J , and K

denote the number of neurons, I , in each layer; N , M , and K also denote the number of rain gauges, principal components, and inundation-

representative locations, respectively.

is the bias of the j -th neuron of the l +1-th layer; Hm(t) is

the output of the m-th hidden neuron at time t ; Ok(t) is the

output of the k-th output neuron at time t ; f1 and f2 are the

continuous log-sigmoid function and the linear function, re-

spectively, as the activation functions. Although the number

of input neurons (dimension of the input vectors) increases

with the increase of rain gauges, the components of the rain-

fall inputs are highly correlated (redundant).

2.2 PCA layer

With three effects, the principal component analysis pro-

poses an effective procedure for reducing the dimension of

the input vectors: the orthogonality of the components of the

input vectors (uncorrelation between each other), the sort of

the resulting orthogonal components (principal components)

with the largest variation come first, and the elimination of

those components that contribute the least to the variation in

the input set (Jolliffe, 1986). Therefore, the correlation of the

input data of the training sets can be written as follow:

Corr = correlation

([

Ri,j

CRi,j

])

, i = 1,···,(LAG+1) ·N,

j = 1,...,training sets, (3)

where R is the matrix of rainfall intensities of training in-

puts; CR is the matrix of cumulative rainfall of training in-

puts; Corr is the correlation matrix of input data. Then the

following equation recognized as the eigenvalue problem can

be solved by linear algebra:

Rq = λq, (4)

where the associated values of q and λ are called the eigen-

values and eigenvectors of the correlation matrix R, respec-

tively. Let the corresponding eigenvalues be arranged in de-

creasing order:

λ1 > λ2 > ...> λM > ...> λ2·(LAG+1)·N , (5)

where λ1 = λmax, M is the number of principal components

determined while

M
∑

m=1

λm

2·(LAG+1)·N
∑

m=1

λm

·100%

= percentage of explained variance ≥ threshold . (6)
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Hence, the M principal components can be calculated via the

following equation:

Pm(t) =
N
∑

n

LAG
∑

lag=0

q ·
m,n·(lag+1)Rn(t − lag)

+
N
∑

n

LAG
∑

lag=0

q ·
m,(LAG+1)·N+n·(lag+1)CRn(t−lag),

m = 1,···,M. (7)

Furthermore, the linear combination of principal component

analysis can be considered a part of ANNs as the weights of

an unsupervised ANN that evolves a hybrid neural network

model as shown in Fig. 1.

2.3 Four-layer feed-forward neural network

The hybrid neural network applied here is a four-layer feed-

forward neural network with 2·(LAG+1) ·N , M , J , and K

neurons in input layer, PCA layer, BP layer, and output layer

where LAG, N , M , J , and K denote, respectively, the quanti-

ties of time lags, rain gauges, principal components, neurons

in BP layer, and representative inundation locations. The

process can be formalized into a set of simple algebraic equa-

tions. For any hidden neuron j , the level of activity Il+1,j can

be described by the following equation:

Il+1,j = fl

(

∑

i

W l
i,j Il,i +bj

)

, (8)

where fl is the activation function of the l-th layer as the lin-

ear, continuous log-sigmoid, and linear functions in 1st to 3rd

layers, respectively; Il,i is the activity level generated from

the i-th neurons in the l-th layer; W l
i,j represents the weight

from the i-th neurons in the l-th layer to the j -th neurons in

the l +1-th layer, and bj is the weighted bias, like a thresh-

old of the opposite sign, associated with the j -th neurons

in the l + 1-th layer. The activation functions in PCA and

output layers are linear combinations that calculate a layer’s

output from its net input while the hyperbolic tangent sig-

moid function is selected as the activation function in the BP

layer. Based on the connections with weights between neu-

rons, each neuron computes its output response through the

weighted sum of all its inputs according to its activation func-

tion and the data flows in one direction through the hybrid

neural network: starting from external inputs (rainfall infor-

mation) into the input layer (the predictors), that are transmit-

ted through the PCA layer in which the rainfall information

is transformed into principal components, and then passed to

the BP layer for perceiving the output layer from which the

external outputs (predictions of water depths at the specific

representative inundation locations) are obtained.

3 2-D overland-flow model

With geographical information including topography, land

cover, and soil type, surface overland flow processes can

be appropriately described by the 2-D overland-flow model,

known as the diffusive-wave model, which is based on non-

inertia surface flow dynamics in rural areas (Wasantha Lal,

1998; Hsu et al., 2000; Hsieh et al., 2006). Although the

hydrodynamic equations, 2-D shallow water equations, de-

scribe more detailed hydraulic phenomena (Lai et al., 2005,

2010; Guo et al., 2008), the simplified form of the overland-

flow model neglecting inertial terms still regarding the back

water effect is physically applicable to simulate shallow

water in floodplains with availability of various land uses

(Vongvisessomjai et al., 1985; Bates et al., 2003). Accord-

ing to the performance of various numerical schemes, the al-

ternating direction explicit (ADE) scheme shows the advan-

tage of relatively short computational time with sufficiently

high accuracy (Yen et al., 1989; Wasantha Lal, 1998). The

model can attain effective prediction of flood inundation pro-

cesses with respect to various land uses and spatial digital el-

evation model (DEM) data (Hsu et al., 2002; Yu and Lane,

2006). Therefore, the 2-D overland-flow model with the

ADE scheme in the finite difference framework is adopted

here.

Assuming that the inertial terms of the shallow water

equations are negligible compared to gravitation and friction

terms, the 2-D overland-flow model becomes:

∂Q

∂t
+ ∂

∂x
F (q)+ ∂

∂y
G(q) = B(q) , (9)

where Q = [h,hu,hv]T is the vector of variables; F(q) =
[

0,gh2/2,0
]T

and G(q) =
[

0,0,gh2/2
]T

are the flux vectors

in the x- and y-directions, respectively; h is the water depth;

u and v are the depth-averaged velocity components in the

x- and y-directions, respectively; g is the acceleration due to

gravity. The source term vector B(q) in Eq. (9) is described

by the following equation:

B(q) =
[

qL,gh(Sox−Sfx)−uqL,gh
(

Soy−Sfy

)

−vqL

]T
, (10)

where qL is the rainfall intensity or pumping capacity per

unit area; Sox = −∂zb/∂x and Soy = −∂zb/∂y are the bed

slopes in the x- and y-directions, respectively; zb is the bed

elevation; Sfx and Sfy are the friction slopes in the x- and y-

directions, respectively. The Manning formula is adopted to

estimate the friction slopes, which are defined as (Chow et

al., 1988):

Sfx = un2
m

√
u2 +v2

h4/3
, Sfy = vn2

m

√
u2 +v2

h4/3
, (11)

where nm is Manning’s roughness. Since the two-step ADE

is employed, Eq. (9) is solved by the finite difference method

to allow an initial condition with zero water depth and veloc-

ity. The detailed description can be found elsewhere (Chang

et al., 2000; Hsu et al., 2002).
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4 Procedures of building a rainfall-inundation hybrid

neural network

Generally, 2-D models of flood inundation are calibrated and

validated based on observed inundation extent and maximum

water depths through survey. However, the measurements

of inundation extent and maximum water depths are limited.

Most 2-D inundation models have been limited to model cali-

bration against a single flood event, and therefore do not fully

test the models’ predictive power (Horritt and Bates, 2002).

Although aerial imagery and satellite-derived data have been

adopted to model calibration and validation, the quality of

those data are still limited by the clear weather during aerial

photographing. Bates and De Roo (2000) also noted the

differences between the aerial imagery and satellite-derived

data sets and the likely errors associated with each of these

sources, subsequently leading to a significant degree of un-

certainty in inundation extent observations (Romanowicz et

al., 1996; Werner et al., 2005). As well as the inundation ex-

tent, the inundation-depth hydrographs are essential for cali-

bration due to the need to assess the time and depth of the in-

undation peak during real-time rainfall-inundation forecast-

ing.

Since mass observed hourly inundation-depth hydro-

graphs are not available for the RiHNN training, the neu-

ral network is trained by a synthetic potential inundation

database generated from the 2-D overland-flow model. The

procedure for building the hybrid neural network has four

steps as illustrated in Fig. 2.

4.1 Step 1: validate the 2-D overland-flow model

The ground elevation contour lines of 50 m and the levees are

defined as the close boundaries, based on DEM and the hy-

draulic structures of the study area. The lateral inflows, nor-

mal to the close boundary, are set to zero since the levees are

assumed to be high enough to prevent river overflow flood-

ing. The pumping station is assumed to work normally at

full capacity, and treated as a sink in numerical simulations.

Manning’s roughness in the model is generally estimated by

applying the land use information, which is set tentatively at

0.07, 0.06 and 0.07 for commercial, residential and industrial

areas, respectively (Hsu et al., 2000). The validation of the

2-D overland-flow model is determined from the simulated

results and surveyed data of the inundation extent.

4.2 Step 2: select representative inundation locations

During the flooding emergency response operations, deci-

sion makers always focus on specific representative inunda-

tion locations where people live or work. These comprise

only a part of all inundation areas shown by potential inunda-

tion maps. Hence, representative locations should be densely

populated urban areas in which inundation frequently occurs.

The representative locations are selected from the surveyed

records, land use, satellite imagery and the potential inun-

dation map resulting from 10-yr return-period rainfall event.

These are the areas which commonly suffer apparent losses

in the flood-prone lowlands in Taiwan.

4.3 Step 3: build a synthetic potential inundation

database

The size of the training set affects the efficiency of the learn-

ing algorithm, and the variation of training significantly in-

fluences the performance of an ANN (Hagan and Menhaj,

1994; Foody et al., 1995). However, the lack of adequate data

sets of observed inundation extent, the survey of maximum

water depths, and inundation-depth hydrographs at the repre-

sentative locations is raised for training neural networks for

rainfall-inundation relation. A synthetic potential inundation

database based on the calibrated 2-D overland-flow model

provides adequate hourly rainfall-inundation synthetic data

for training, validation and test sets.

This work employs hourly observed rainfalls of histori-

cal typhoons and storms of each rain gauge to generate four

types of real/synthetic rainfall events, namely original rain-

fall data, original cumulative rainfalls with a design hyeto-

graph pattern, a modified cumulative rainfall with original

hyetograph pattern, and a modified cumulative rainfall with

a design hyetograph pattern. The synthetic hourly rainfall

data of each rain gauge is weighted to every grid as the rain-

fall intensity inputs for the 2-D overland-flow model. Conse-

quently, the synthetic hourly rainfall-inundation data at each

representative inundation location can be obtained from the

synthetic potential inundation database generated by the 2-D

overland-flow model.

4.4 Step 4: establish the RiHNN

The numbers of neurons in the output and input layers of

the RiHNN can be determined according to the representa-

tive inundation locations selected in step 2 and rain gauges

as illustrated in Fig. 1. Based on a specific percentage of

relative variance explained, the number of principal compo-

nents is determined through principal component analysis of

the hourly rainfall data of training set to reduce the size of

the input neurons as the PCA layer shown in Fig. 2. With

the validation set as a threshold for avoiding over-training,

the BP algorithm is adopted to train the part of model from

the PCA layer to the output layer based on the training set.

The neurons in the BP layer are determined by trial and er-

ror. Consequently, the test set is employed to evaluate the

performance of the RiHNN after the training process stops.
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Fig. 2. The systematic procedure of building a rainfall-inundation hybrid neural network.

5 Applications

5.1 Description of the study area and events

The study area is Yunlin County, which is located in central

western Taiwan, and has an area of 1291 km2 bounded by the

Jhuoshuei River in the North, the Beigang River in the South,

and the Central Range in the East. Yunlin county frequently

suffers inundation hazards during the summer monsoon sea-

son (May–October) and is subject to high mean annual pre-

cipitation (1400 mm). With high resolution and precision de-

rived in 2004 from aerial photographs, the topographic data

obtained from the Ministry of Interior, Taiwan, provide a

spatial resolution of up to 5 m horizontal and 10 cm vertical

DEM. Figure 3 shows the topography descending from east

to west, illustrated by different elevation zones. The study

area was divided into five control sub-areas with five auto-

matic rain gauges using the Thiessen method: Hou-An-Liao,

Nat. Hazards Earth Syst. Sci., 11, 771–787, 2011 www.nat-hazards-earth-syst-sci.net/11/771/2011/
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Fig. 3. The location and topography of Yunlin county, Taiwan and the 19 representative inundation locations.

Fig. 4. The control areas with five automatic rain gauges of Yunlin using the Thiessen method.

Bao-Zhong, Bei-Gang, Xi-Luo, and Da-Pu, as illustrated in

Fig. 4. The 24-h design hyetograph pattern of the all rain

gauges refers to the official handbook for hydrological design

(Cheng et al., 2001) as shown in Fig. 5. Frequency analysis

was performed to obtain 24-h cumulative rainfall for various

return periods, which are listed in Table 1. Based on the de-

sign hyetograph pattern in Fig. 5, the 24-h cumulative rainfall

in Table 1 was allocated for hourly design hyetograph. As an

example, Fig. 6 illustrates the potential inundation map for

10-yr return-period rainfall produced by the 2-D overland-

flow model. Based on historical data from surveys of inun-

dation extent and depth, 19 representative inundation loca-

tions were chosen as the hot spots to which early warning

information should be provided for emergency response, as

shown in Figs. 3 and 6. Because the representative inunda-

tion locations 16, 18 and 19 are selected for further discus-

sion in Sect. 6.3, Fig. 3 also shows the three areas encircled

by a white line.

www.nat-hazards-earth-syst-sci.net/11/771/2011/ Nat. Hazards Earth Syst. Sci., 11, 771–787, 2011
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Fig. 5. The 24-h design hyetograph pattern for all rain gauges in

Yunlin (Cheng et al., 2001).

Since the DEM with high resolution and precision was

produced in 2004, this study has focused on the heavy rain-

fall events causing inundation disaster after 2004. Table 2

shows the 13 study events, comprising seven typhoons and

six storms. The maximum 24-h cumulative precipitations

of these five rain gauges were adopted to derive the major

flooding period of each event from the original rainfall data

in step 3 of Fig. 2. With an average close to 2400 mm, the

sum of 24-h cumulative precipitations of the five return pe-

riods from 20 to 200 yr permuted in the five rain gauges fell

between 2269 mm (Hou-An-Liao: 25 yr, Bao-Zhong: 50 yr,

Bei-Gang: 200 yr, Xi-Luo: 100 yr, and Da-Pu: 20 yr) and

2643 mm (Hou-An-Liao: 50 yr, Bao-Zhong: 100 yr, Bei-

Gang: 20 yr, Xi-Luo: 200 yr, and Da-Pu: 25 yr). To antic-

ipate more severe inundations by taking frequency analysis

into account, the sum of the 24-h cumulative precipitations

of five rain gauges was set to 2400 mm as the modified cu-

mulative rainfall for Types 3 and 4 in step 3 of Fig. 2. Con-

sequently, 52 synthetic inundation events, from each of the

four types of rainfall, were generated and employed to con-

struct the potential inundation database. Storm 04, Typhoons

Mindulle and Sepat were selected for generate 12 synthetic

inundation events as the test set according to the four types in

step 3 of Fig. 2, while others were classified into the training

set (36 events) and the validation set (4 events).

Table 1. Frequency analysis of 24-h cumulative rainfall of 5 rain

gauges in Yunlin: 1 – Hou-An-Liao, 2 – Bao-Zhong, 3 – Bei-Gang,

4 – Xi-Luo, and 5 – Da-Pu.

Return period 24-h cumulative rainfall

(year) (mm)

1 2 3 4 5

10 298.1 404.6 322.0 323.3 268.8

20 316.9 504.3 370.1 382.2 324.6

25 326.3 554.2 394.2 411.7 352.5

50 371.9 668.7 445.0 478.3 424.3

100 400.3 795.1 541.8 542.7 510.2

200 424.5 943.0 620.4 612.6 609.7

5.2 Criteria

The performances of the RiHNN were evaluated by five cri-

teria as follows:

1. Coefficient of efficiency, CE, is defined as

CE = 1−

N
∑

n=1

[Iobs(n)−Isim(n)]2

N
∑

n=1

[

Iobs(n)− Īobs

]2

, (12)

where Isim(n) denotes the water depth (m) of the sim-

ulated inundation-depth hydrograph for time index n,

and Iobs(n) denotes the water depth (m) of the observed

inundation-depth hydrograph for time index n during a

complete event period N . The CE can range from −∞
to 1. An efficiency of 1 (CE = 1) corresponds to a per-

fect match of simulated inundation-depth hydrograph

to the observed data generated by the 2-D overland-

flow model. An efficiency of 0 (CE = 0) indicates that

the model predictions are as accurate as the mean of

the observed data, whereas an efficiency below zero

(−∞ < CE < 0) occurs when the observed mean is a

better predictor than the model. Briefly, a CE value

closer to 1 implies a better fit (Nash and Sutcliffe, 1970).

2. The error of maximum inundation depth, EIp (%), is

defined as

EIp = Isim,p −Iobs,p

Iobs,p
·100%, (13)

where Isim,p denotes the maximum inundation depth

(m) of the simulated hydrograph, and Iobs,p denotes

the maximum inundation depth (m) of the observed

inundation-depth hydrograph.
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Fig. 6. Inundation map under the 24-h design rainfall event with a 10-yr return period with 19 representative inundation locations.

Table 2. Information about the 13 events selected from Yunlin inundation history.

Event Name Date Max. 24-h cumulative precipitation Sum of 5 rain gauges

No. (mm 24 h−1) (mm h−1)

Bei-Gang Da-Pu Bao-Zhong Xi-Luo Hou-An-Liao

01 Typhoon Mindulle 2 Jul 2004 500.0 554.0 470.0 442.0 265.5 2231.5

02 Typhoon Aere 24 Aug 2004 75.0 268.0 72.0 198.0 78.5 691.5

03 Storm 01 10 Sep 2004 80.0 35.0 44.0 45.0 53.5 257.5

04 Typhoon Haima 11 Sep 2004 52.0 16.0 22.0 13.0 31.5 134.5

05 Typhoon Nanmadol 3 Dec 2004 69.0 102.0 60.0 75.0 58.5 364.5

06 Storm 02 9 May 2005 60.0 70.0 107.0 153.0 176.5 566.5

07 Storm 03 12 May 2005 129.0 300.0 209.0 164.0 53.5 855.5

08 Storm 04 14 Jun 2005 371.0 155.0 319.0 241.0 283.0 1369.0

09 Typhoon Haitang 18 Jul 2005 114.0 307.0 91.0 141.0 44.5 697.5

10 Storm 05 19 Jul 2005 169.0 178.0 97.0 131.0 77.5 652.5

11 Storm 06 20 Aug 2005 70.0 31.0 64.0 41.0 38.5 244.5

12 Typhoon Longwang 2 Oct 2005 30.0 79.0 29.0 27.0 26.5 191.5

13 Typhoon Sepat 18 Aug 2007 218.0 135.5 226.0 172.0 263.0 1014.5

3. Root mean square error, RMSE, is defined as

RMSE =

√

√

√

√

√

N
∑

n=1

[Isim(n)−Iobs(n)]2

N
, (14)

where RMSE with same units as the quantity being es-

timated denotes the value by which an estimator differs

from the true value of the quantity being estimated. A

value of RMSE closer to 0 implies a better fit.

4. Mean absolute error, MAE, is defined as

MAE =

N
∑

n=1

| Isim(n)−Iobs(n)|

N
, (15)

where MAE denotes a quantity that is adopted to mea-

sure the closeness of forecasts or predictions to the

eventual outcomes, and RMSE denotes the square root

of the second moment of the error. A value of MAE

closer to 0 implies a better fit.
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Table 3. The structures and performances of five RiHNNs (Models A∼E) and one feed-forward neural network (Model F).

1-h ahead Model A Model B Model C Model D∗ Model E Model F

forecasting

Input layer

(neuron no.) 230 230 230 230 230 230

PCA layer

(neuron no.) 6 10 20 49 80 –

Hidden layer

(neuron no.) 132 67 50 51 100 130

Output layer

(neuron no.) 19 19 19 19 19 19

Weight no. 4831 4329 6619 14 808 28 419 32 519

Explained

variance (%) 67.67 75.35 85.28 95.07 99.02 100.00

Status C V T C V T C V T C V T C V T C V T

CE 0.44 0.63 0.81 0.31 0.62 0.83 0.45 0.68 0.88 0.61 0.68 0.89 0.66 0.68 0.90 0.68 0.59 0.87

EIp (%) 63.14 38.33 23.77 26.75 19.43 1.77 42.16 11.42 7.20 10.35 2.51 4.13 13.24 2.88 5.56 17.44 11.29 5.69

RMSE (cm) 12.74 17.81 14.66 12.46 14.51 12.77 10.74 12.29 11.17 9.87 11.07 10.40 8.29 10.61 9.97 8.29 11.51 10.69

MAE (cm) 9.47 12.76 10.78 9.60 10.68 9.60 8.18 9.09 8.44 7.48 8.25 7.76 6.25 7.99 7.54 6.28 8.52 8.15

RMAE 0.42 0.36 0.24 0.39 0.32 0.21 0.36 0.31 0.19 0.35 0.27 0.18 0.31 0.26 0.16 0.31 0.29 0.18

Note: C is calibration set; V is validation set; T is test set. Model D∗ is the best model.

Fig. 7. Percentage of relative variance explained with different prin-

cipal components.

5. Relative mean absolute error, RMAE, is defined as

RMAE = MAE

Īobs

, (16)

where Īobs denotes the mean of water depths (m) of

the observed inundation-depth hydrograph. A value of

MAE closer to 0 implies a better fit.

6 Results and discussion

6.1 Effect of principal component analysis

Principal component analysis reduced the dimension of neu-

rons in the PCA layer from 230 to less than 100, while the ex-

plained relative variance was almost 100%. Figure 7 dots the

five RiHNNs, plotted as Models A to E, with different num-

bers of principal components depending on specific thresh-

olds of 65%, 75%, 85%, 95% and 99% relative variance ex-

plained, respectively, and the feed-forward neural network

without the PCA layer, is denoted as Model F. The numbers

of neurons in input and output layers were fixed as 46 ·N
and K according to the numbers of rain gauges and specific

representative inundation locations, as indicated in Fig. 1.

The numbers of neurons in the PCA layer were determined

with the given relative variances explained as thresholds. The

numbers of neurons in the hidden layer were decided by trial

and error. The size of the structure of a RiHNN, including the

numbers of neurons in input layer, PCA layer, hidden layer,

and output layer, determined the required computer memory.

A RiHNN with a smaller structure is more efficient. Table 3

lists the structure and the performance of each RiHNN.

Table 5 shows the testing performances of each RiHNN

for the four types of real/synthetic rainfall events after train-

ing the RiHNNs well. Through the comparison between Ta-

bles 4 and 5, the performances of the four-type real/synthetic

rainfall events of test set were better than those of calibra-

tion set, because the events having the first three highest cu-

mulative precipitation (2231.5, 1369 and 1014.5 mm 24 h−1

in Table 2) were selected as the test set. The results in Ta-

ble 5 indicate that the five RiHNNs had similar performance

for most criteria, except that Model A clearly had the worst
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EIp of among the five models. The seventh to tenth prin-

cipal components improved the performance of RiHNN in

obtaining the peak inundation, while the first six principal

components contained less information about the inundation

peak, as indicated by the different numbers of neurons in the

PCA layers of the five RiHNNs in Table 3. Moreover, the

RMSE, MAE and RMAE values reveal that the RiHNNs not

only simulated events with the design hyetograph pattern bet-

ter than the events without it, but also simulated events with

higher rainfall better. While most RiHNNs had a CE value

over 0.8, Model D demonstrated its compact structure with

the superior performances in CE and EIp.

6.2 Spatial rainfall-inundation forecasting

Using the spatial precipitations of five rain gauges as inputs,

the best RiHNN, Model D, was employed to forecast 1-hour-

ahead inundation depths of the selected 19 representative in-

undation locations at the real-time base. Figures 8 and 9 il-

lustrate the scatter plots of the forecasting using Model D

and the synthetic inundation by a 2-D overland-flow model

for the selected locations based on 12 test events. The Ri-

HNN responded to the rainfall earlier than the 2-D overland-

flow model in order to catch the inundation jumping at the

beginning, as indicated by the output results at P05, P06,

P08 ∼ P15 and P17 ∼ P19. Figure 10 shows the hydrograph

of P18 as an example for discussion. This is because the

durations of inundations arising from 0 to 40 cm in most

selected locations were less than one hour, which is within

the calculation time interval of RiHNN. Nevertheless, most

forecasting results were close to the prefect fitting line af-

ter the initial jump in inundation, as revealed by the scatter

plots. Figures 10 and 11 show the rainfall-inundation pro-

cesses of Typhoon Sepat in Types 1 and 3 at representative

inundation locations P16, P18 and P19. In Fig. 10, the fore-

casting results were compared with survey data of Typhoon

Sepat (Type 1) at P18 and P19, which also validated the 2-D

overland-flow model adopted here. The mapping between

Figs. 4 and 6 indicates that P16 and P19 belong to the control

area of the Bei-Gang rain gauge, while P18 is in the control

area of the Hou-An-Liao rain gauge.

Since P16 was located in a locally-relative low place, as

shown in Fig. 12, the inundation-depth hydrograph gener-

ated by the 2-D overland-flow model reflected the accumu-

lation of the flood in both Figs. 10 and 11. Meanwhile, the

forecasting water depth indicated the increasing trend based

on the intensity and accumulation of precipitation in present

and past 22 h. Although a break occurred in the rainfall of

the Bei-Gang rain gauge between the 13th and 17th hour, the

forecasting inundation still obtained a peak following a drop

at the 16th hour. According to the experience of local people

in the study area, it was not easy to walk if the water was

deeper than 20 cm during inundation. Figure 12 shows the

inundation contours of 20 cm depth advancing with elapsed

time in 2007 Typhoon Sepat. The inundation contour demon-

Table 4. Performance of RiHNNs for the four types of rainfall in

calibration procedure.

Model Type 1 Type 2 Type 3 Type 4

(training)

C
E

A 0.17 0.11 0.70 0.87

B –0.01 –0.20 0.71 0.87

C 0.29 -0.11 0.80 0.91

D∗ 0.38 0.34 0.85 0.92

E 0.34 0.50 0.88 0.94

E
I p

(%
)

A 125.26 7.85 96.01 13.50

B 38.77 –14.45 72.14 7.61

C 84.24 20.47 48.49 3.16

D∗ 21.30 –4.70 21.82 –0.13

E 17.76 –0.57 28.25 3.39

R
M

S
E

(c
m

) A 10.74 7.41 19.94 14.90

B 9.71 7.73 19.42 13.78

C 9.42 7.01 15.23 11.92

D∗ 8.58 6.69 13.90 10.79

E 7.90 6.13 10.96 9.10

M
A

E
(c

m
) A 8.27 5.67 14.27 10.97

B 7.48 5.98 14.65 10.73

C 7.15 5.35 11.28 9.30

D∗ 6.71 5.25 10.13 8.15

E 6.03 4.69 8.09 6.89

R
M

A
E

A 0.68 0.48 0.31 0.18

B 0.58 0.48 0.31 0.18

C 0.56 0.47 0.24 0.16

D∗ 0.54 0.47 0.22 0.14

E 0.49 0.44 0.18 0.12

Note: Type 1 is original rainfall data.

Type 2 is design hyetographs amplified based on original cumulative rainfall.

Type 3 is original hyetographs amplified based on a modified cumulative rainfall.

Type 4 is design hyetographs amplified based on a modified cumulative rainfall.

D∗ is the best model.

strates that the surrounding lowlands near village including

the representative inundation location, P16, were inundated

over 20 cm following the 11th hour owing to overland flow.

P16 suffered inundation about one hour earlier than the vil-

lage area. Thus, residents in the village had 2 h to make emer-

gency responses for evacuation or transportation to shelter,

based on the 1-h-ahead forecasting by RiHNN.

Around P18 located south of the village, the shallow flow

was driven through by the topography effect from the east to

the west, as shown in Fig. 13. Based on the 2-D overland-

flow model, the peak rainfall at the Hou-An-Liao rain gauge

induced rising inundation at the 11th hour, and was released

slowly from east to west, while the second peak rainfall at

18th hour only caused the water depth to rise slightly in

Fig. 10. Due to the magnification of precipitation of Typhoon

Sepat in Fig. 11, the risen inundation induced by the peak

rainfall at the eighth hour was higher than that in Fig. 10, and

the bigger rainfall later caused the second inundation peak of
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Table 5. Performance of RiHNNs for the four types of rainfall in

test procedure.

Model Type 1 Type 2 Type 3 Type 4

(test)

C
E

A 0.70 0.76 0.85 0.91

B 0.75 0.84 0.81 0.91

C 0.82 0.88 0.89 0.94

D∗ 0.85 0.88 0.90 0.94

E 0.86 0.87 0.91 0.94

E
I p

(%
)

A 44.22 11.46 26.40 13.00

B 6.01 –1.84 1.95 0.95

C 16.51 5.57 6.55 0.17

D∗ 11.31 3.46 2.79 –1.05

E 8.95 0.48 10.08 2.74

R
M

S
E

(c
m

) A 15.41 13.90 16.71 12.60

B 13.67 10.72 15.31 11.38

C 12.44 9.46 13.11 9.68

D∗ 11.03 9.15 12.49 8.94

E 10.37 8.70 12.13 8.69

M
A

E
(c

m
) A 10.94 10.53 11.93 9.71

B 9.97 8.30 11.23 8.91

C 9.14 7.39 9.70 7.52

D∗ 8.16 7.02 9.15 6.71

E 7.76 6.70 8.90 6.78

R
M

A
E

A 0.34 0.27 0.21 0.14

B 0.31 0.22 0.20 0.13

C 0.29 0.20 0.17 0.11

D∗ 0.26 0.19 0.16 0.10

E 0.23 0.18 0.16 0.10

P18 in Fig. 11. The differences in the inundation-depth hy-

drographs generated by the 2-D overland-flow model demon-

strate that different cumulative rainfall would induce differ-

ent hydrograph patterns, even when the hyetograph patterns

were the same. Although the forecasting at P18 only re-

flected the changes of cumulative rainfall between Figs. 10

and 11 without modification of hydrograph patterns, the ris-

ing segment of inundation was still close to the inundation

generated by the 2-D overland-flow model, especially in

high-cumulative-rainfall events. The inundation contour in

Fig. 13 also indicates that inundation occurred P18, suffering

one hour earlier than that within the village area northwest

of P18. Hence, residents would have at least 2 h to make

emergency responses.

The inundation of P19 occurred after water filled up the

lower areas nearby, according to Fig. 14. The advance of

20 cm-deep contour lines demonstrates the rising of the in-

undation depth from lower to higher areas. Hence, the dif-

ferent cumulative rainfall with the same hyetograph pattern

between Figs. 10 (Type 1) and 11 (Type 3) induced not only

changes of peak inundation, but also differences in the hy-

drographs of inundation depth. The forecasting performance

of P19 indicated in Figs. 10 and 11 confirms that the fore-

casting is more accurate for high rainfall than that for slight

inundation, as discussed in Sect. 6.2. The RiHNN matched

not only the trend but also the peaking time of inundation for

Type 3 in Fig. 11, although the maximum inundation depth

was poor for Type 1 in Fig. 10. Moreover, P19 suffered in-

undation (see Fig. 14) about 2 h earlier than the village area

during Typhoon Sepat. The 1-h-ahead forecasting provided

by the RiHNN would give the residents about 3 h for emer-

gency responses.

From the above analyses, the RiHNN predicted 1-h-ahead

inundation depth acceptably at the representative inundation

locations through spatial rainfall information according to

Table 5 and Figs. 10 and 11. Accordingly, it may normally

take from 2 to 3 h for emergency managers of a local county

government in Taiwan to set the operational responses, as

mentioned previously. Based on the event study for the Ty-

phoon Sepat, the elapsed time of advancing 20 cm-deep in-

undation contour lines from the representative inundation lo-

cations (P16, P18 and P19) to the protected villages are about

2 to 3 h, which concludes that site selection of the distributed

representative inundation locations would have been benefi-

cial for real-time flood warning preparations.

7 Conclusions

This study presents a systematic flowchart for developing

a rainfall-inundation hybrid neural network (RiHNN) that

combines principal component analysis with a feed-forward

network to forecast the real-time 1-hour-ahead water depth of

inundation at distributed representative inundation locations

based on the spatial intensities and accumulations of ob-

served rainfall. For lack of surveyed inundation-depth hydro-

graphs in artificial neural network (ANN) training, the 2-D

overland-flow model was adopted to generate mass potential

inundation maps based on real/synthetic rainfall events. Al-

though building a synthetic potential inundation database is

time-consuming, a well-trained RiHNN that stores the char-

acteristics of inundation flows can respond to the specific

representative inundation locations in a real-time calcula-

tion during flood disasters. The proposed RiHNN combines

the merits of detailed hydraulics in flood-prone lowlands via

the 2-D overland-flow model and time-saving calculation via

ANN model.

Since principal component analysis (PCA) is embedded in

the PCA layer, the RiHNNs with various principal compo-

nents are compared with a feed-forward neural network. An-

alytical results indicate that RiHNNs obtain the same perfor-

mance as a feed-forward neural network with fewer weights.

Hence, this study proposes an efficient and compact Ri-

HNN with a 230-49-51-19 structure (see Table 3) to fore-

cast the inundations of 19 representative inundation locations

based on the rainfall records of 5 rain gauges. Moreover,
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Fig. 8. The scatter plots of the forecast by RiHNN (Model D) and the synthetic inundation by 2-D overland-flow model for the P01 ∼ P12

representative inundation locations.
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Fig. 9. The scatter plots of the forecast by RiHNN (Model D) and the synthetic inundation by 2-D overland-flow model for the P13 ∼ P19

representative inundation locations.

the capability of RiHNNs has been examined through four

types of real/synthetic rainfall events, and the performance

of rainfall-inundation forecasting via RiHNNs has been eval-

uated by five criteria. These evaluations reveal that RiHNNs

not only forecast inundation depths more accurately for the

event with design hyetograph pattern, but also fit inundation-

depth hydrographs with higher rainfall well.

The rainfall-inundation results demonstrate that 1-h-ahead

forecasting at the representative inundation locations does

help emergency managers set operational responses. For the

event study of Typhoon Sepat (2007), the elapsed time of ad-

vancing 20 cm-deep inundation contour lines from the rep-

resentative inundation locations (P16, P18 and P19) to the

protected villages are about 2 to 3 h, which is beneficial for

real-time flood warning preparations. Further study for the

algorithm of rainfall-inundation forecasting may be needed

to extend the distributed points to inundation extents.
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Fig. 10. The rainfall-inundation hydrograph of Typhoon Sepat (Type 1) in 2007.
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Fig. 11. The rainfall-inundation hydrograph of Typhoon Sepat (Type 3) in 2007.
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Fig. 12. Topography around P16 with the inundation contours of

20-cm depth advancing with elapsed time (by hour) in Typhoon

Sepat.

Fig. 13. Topography around P18 with the inundation contours of

20-cm depth advancing with elapsed time (by hour) in Typhoon

Sepat.

Fig. 14. Topography around P19 with the inundation contours of

20-cm depth advancing with elapsed time (by hour) in Typhoon

Sepat.
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