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Abstract - -  Zusammenfassung 

Hybrid Next-Fit Algorithm for the Two-Dimensional Rectangle Bin-Packing Problem. We present a new 
approximation algorithm for the two-dimensional bin-packing problem. The algorithm is based on two 
one-dimensional bin-packing algorithms. Since the algorithm is of next-fit type it can also be used for 
those cases where the output is required to be on-line (e. g. if we open an new bin we have no possibility to 
pack elements into the earlier opened bins). We give a tight bound for its worst-case and show that this 
bound is a parameter of the maximal sizes of the items to be packed. Moreover, we also present a 
probabilistic analysis of this algorithm. 

Key words: Two-dimensional packing, bin-packing, heuristic algorithm, worst-case analysis, prob- 
abilistic analysis, on-line algorithm. 

Hybrid Next-Fit Algorithmus f'dr das, zweidimensionale Reehteek-Paekungsproblem. Wir geben einen 
neuen Nfiherungs-Algorithmus fiir das zweidimensionale Packungsprobiem an. Er beruht auf zwei 
eindimensionalen Packungsalgorithmen. Da der Algorithmus yon next-fit Typist, kann er auch in 
solchen FfiUen benutzt werden, wo die Ausgabe on-line sein muB (d. h. sobald wir einen neuen Beh[ilter 
er6ffnen, haben wir keine M/Sglichkeit, Elemente in friiher ge~ffnete Behglter zu packen). Wir geben eine 
gute Schranke im schlechtesten Fall an und zeigen, dab diese Schranke vonder  Maximalgr~Be der 
gepackten Rechtecke abNingt. Schliel3lich untersuchen wir noch das mittlere Verhalten des Algo- 
rithmus. 

1. Introduction 

During the last decade a wide variety of fast heuristics have been developed for the 
one-dimensional bin-packing problem. This problem can be stated as follows: We 
are given a list L = {Pl, P2 . . . .  , p,} of n objects (or items) with sizes s (Pi), i =  1 , . . . ,  n, 
and bins, each with a positive integer capacity of C, (0 < s (Pl)-< C, i = 1, ..., n). What 
is the smallest integer m such that there is a partition L = B  1 w B 2 u . . .  w Bm 

satisfying ~ s (Pi) < C ? We usually think of each list of Bj as being the contents of a 
PI~Bj 

bin of capacity C, and attempt to minimize the number of bins needed for a packing 
of L. 

It is known that the bin-packing problem belongs to the class of NP-hard problems 
(see Garey and Johnson [5]). So there is no efficient algorithm to solve it, unless 
P = N P .  

14 Computing 39/3 



202 J. B, G. Frenk and G. Galambos: 

Therefore there were numerous heuristics developed to solve this problem. To 
decide on an algorithm whether it is better than another one there are different 
methods. 

A possibility to analyze an algorithm is to examine its worst-case behavior. Since we 
use this method, we define the so-called asymptotic performance ratio which 
characterizes the worst-case behavior of an algorithm. For any bin packing 
algorithm A, let A (L) denote the number of bins needs to pack L by the algorithm A, 
and OPT (L) denotes the number of bins used by an optimal packing. Let 

RA(k)=sup {A~(~) [ OPT(L)=k}, 

and let us define the asymptotic performance ratio R A as the largest limit of a 
convergent subsequence of R A (k), i.e. 

R A = lira sup R A (k). 
k--* oo 

In applications we often have a bound 0 < r < C for the size of the items of the list L. 
This means that for all p~ ~ L the size s (Pl) <- r. In this case we denote the asymptotic 
performance ratio by R A (r). 

We will now present four types of algorithms to which we will refer later. The 
interested readers find details in Baker and Coffman [1 l,  Johnson [6] and Johnson 
et al. [7]. 

The Next-Fit (NF) algorithm first places the elements into the bin B 1. Suppose that 
pi is now to be packed, and let B i be the highest inexed non-empty bin. The 
algorithm places p~ into Bj if it will fit (e.g. it is not allowed to pack the element into 
the bins B~,j </), otherwise open a new bin (Bj+I) placing Pi into it (R~F=2). 

The First-Fit (FF) algorithm places each successive piece into the lowest indexed bin 
of the sequence B1, Bz,... into which it will fit (Rvv= 17/10). 

We note that the main difference between the above two algorithms is that 
according to FF it is generally possible for a piece to be packed to the left of the 
rightmost occupied bin, but the NF fills the bins in sequence e.g. B~, B2 . . . .  , B~_ 
receive no further pieces after the first piece is packed in B~. 

These algorithms do not know the items in advance. If we have the possibility to 
order the elements before using the algorithm we would get better results. The First- 
Fit Decreasing (FFD) and the Next-Fit Decreasing (NFD) differ from the above 
ones only in the preordering the items (RFFD= 11/9, RNFD= 1.691 ...). 

The one-dimensional bin-packing problem is well-studied. Relatively few results 
have been published on the two-dimensional rectangle bin-packing. The problem is 
the following: We are given a list L of rectangles. The size of a rectangle p ~ L is given 
by an ordered pair of width and height (w (p), h (p)), and we are given rectangular bins 
with sizes Wand H. We have to pack the rectangles into a minimal number of bins so 
that 
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a) the sides of the rectangles are parallel the corresponding sides of the bins (no 
rotation allowed); 

b) no two rectangles in a bin overlap. 

Chung, Garey and Johnson [2] developed an algorithm to give an approximative 
solution of this problem. They called it Hybrid-First Fit (HFF) because the 
algorithm mixes the FFD and FF  rules. They proved that 

182 17 
~ R H F F ~ - -  

90 8 

A tight bound for RHvFiS not known. Actually, as far as we know there is no heuristic 
algorithm with acceptable tight bound for the two-dimensional bin packing 
problem. The other feature of H F F  is that it has an off-line output in the sense that it 
supposes that whenever an element is to be placed all open bins can be used to pack 
it. But there are numerous applications where we do not have this possibility, i.e. if 
we pack an element in a new bin, we are lost the old ones for further packing (on-line 
output). Such problems can arise in computer science in time-dependent sequential 
storage allocations, in some computer network problems, packing shelves systems, 
filling of a cold-storage plant and so on. So in this case one can not use the above 
mentioned algorithm to get a fast approximative solution. 

In this paper we give an algorithm with time complexity O (n log n) for the two- 
dimensional rectangle bin-packing problem. Since this algorithm uses the results 
concerning the one-dimensional algorithms, see Baker and Coffman [1] and 
Johnson [6], it has an on-line output. We prove a tight asymptotic bound for it in 
Section 2. Moreover, we also present in Section 3 a probabilistic analysis of this 
algorithm, which we call Hybrid-Next Fit (HNF). 

2. The H N F  Bound 

First of all we present the H N F  algorithm. 

Step 1 : Order the rectangles p of the list in nonincreasing direction according to 
their heights h (p). 

Step 2: Take out the first item, say p, from the list and place it in the first bin into the 
lower left hand corner. Let us call the rectangular area of height h (p) of the 
bin whose left most part of width w (p) is covered by p the block opened by p. 

Step 3 : Take the next rectangle of L and try to place it into the last opened block. If 
this is impossible then open a new block (as defined in 2.) within the current 
bin if this is possible. If there is no space for the new block in the current bin 
open a new bin with a new first block. 

Step 4: If we have items unplaced then goto Step 3, else stop. 

Note that without loss of generality we can assume in the sequel that the bin heights 
H and widths W are equal and H = W= 1. 

Since we will examine the worst case behavior of our algorithm we have to define the 
asymptotic performance ratio for the two-dimensional case as well. Let r, s be 

14" 
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integers such that 

If 

I. 

II. 

1 1 
- -  < max w (p) _<--. 

r+ 1 peL r 

1 1 
- - -  < max h (p) < - - .  
s + I  p ~  s 

R A @ , r , s > = s u p { A ~ - ) - I O P T ( L ) = k  },  

then the asymptotic performance ratio is 

R A (r, s> =lim sup R a (k, r, s) .  
k--+ co 

During the proofs of our claims - see below - we shall use sequences which came 
up first in number theory, but they have also been used frequently to solve different 
one-dimensional bin-packing problems (see Baker and Coffman [1] and Liang [9]). 
For an integer s_> 1 let 

i 

t l ( s )=s+l ,  t i + l ( S ) = H  t j + l  i>_1. 
j = l  

We shall use two simple results concerning these sequences (see Baker and Coffman 
[1]) 

2 

i=1 ti(s) s+ l ' 

2 k- ,  1 1 

s + l  i= ti(s) tk(s)-  1 

Our main result is a theorem concerning the asymptotic performance ratio of the 
H N F  algorithm. 

T h e o r e m  2 . 1 :  Let L be a set (or list) of rectangles, which satisfies conditions I and II. 

Let 

Then 

1 s - 1  

~s = i L=-I t, t )'s" - 1 '  ~* = - - s  + ~ '  

e~= ~2, i f r = l ;  
( r, otherwise. 

0( 
R ~ I N F ( r , s ) - - - -  * - ~ - 1  7~ �9 

Proof: The proof relies on the proof which has been given for the one-dimensional 
case by Baker and Coffman [1], but now we use our two=dimensional weight 
function. 

This statement of the theorem immediately follows from the following two lemmas. 
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Lemma 2.2: For any list L which satisfies the conditions I and II the foUowin 9 
inequality is true 

HNF (L) _G< ~__ {- y* OPT (L) + 9. 

Lemma 2.3: There is a sequence of lists L~(z = 1,2. . . ) for  which each list L satisfies 
the conditions I and II, and 

HNF (L~) 
!im OPT(L~) = ~  y~" 

( 1 l lays- in terval i f  Proof: We first prove Lemma 2.2. Let us call an interval k + 1 ' k 

k = t i (s) - 1 for some i. Rectangles whose heights are in a 7s-interval will be called 
7s-pieces. Define a weight function W~Ob) as follows: for any rectangle p sL ,  

h(p)~ -k q- l ' ' - 

1 

[ ~ _ T w o b ) ~ ,  p a ?~-piece; if is 

W~(p) = ~ ~ k + l  
~ w ob) h o b ) ~ ,  otherwise. 

During the proof we shall use the following, easily provable, statements concerning 
the weight function W~ (iv). 

Corollary 2.4: The weight function W~ (p) is a nondecreasing function of height for the 
items with equal width of pl Furthermore, it is strictly increasing, except the 
G-intervals, where it is constant. 

G (p) Corollary 2.5: The function decreases monotonically in G-intervals, but it 
h (p) w ob) 

is constant in any other interval for the items with equal width. 

Corollary 2.6: The weight function W~(p) is additive in vertical direction. That means, 
if we have a piece with sizes h (p) and w ob), and we divide it with a "vertical" line (i.e. 
parallel to its height) into two pieces Pl,P2 of sizes hOb), wobO and hOb), WOb2) then 

w~ (p) = w~ (pl) + w~ ob2). 

For a set of Q, Q ~_ L, let W~ (Q) = ~ W~ ob). We shall prove that the above defined 
peQ 

weighting function has two properties. 

(1) W~ (L)_ HNF (L)-  9. 

(2) G(L)_< _--Z-ly* OPT(L). 

The desired result follows immediately from these two properties. 
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Claim 2.7: 
W~ (L) >__ HNF (L) - 9. 

Proof: Our proof consists of two steps. First we derive a list L from the original list L 
in such a way that we disregard the fact that pieces of smaller height than the first 
item may occur within a block (see Fig, 2.1). 

"#//////////////W//////////~ 
3U" 

"///////////////////////////~ 

Fig. 2.1 

Let L' denote the list derived from the list L by removing the items which have been 
packed into the last bin of the HNF packing of L. In the first step we prove that 

13 
W~ (L) > HNF ( L ) - - -  (2.1) 

3 

Let us suppose that the bin B~ belongs to the HNF packing of L'. 

Case A: Let us suppose that B i contains exactly ki blocks all of whose heights are in 

( 1 ~] i fwedeno te the j . t hb lock in the i_ thb inbyC~d ,  then the interval k ~ + l '  

k ~ ; _ ~ - I  y' w(p) 
-- peCi,  ) 

= I  2(~--1) ~ w(p)-t 2(s  ~' w(p (2.2) 
k i  j = l  p~ci ,  j p~Ci, j 

k l -  i 1 c~ 1 c~ 
> - k i  -~ ki 2(c~-1) Z w(P)+ki 2 ( e - 1 )  ~ w(p). 

P~Ci, 1 P~Ci, k~ 

This expression is valid whether or not is a 7s-interval. We will refer to 
this type of bins as A-type bins. 1' 

Case B: Let us suppose that B~ is not an A-type bin. In this case the bin contains at 
least two blocks with heights in different intervals. These bins are called transition 
bins (see Baker and Coffman [1]). 

Case B.1 : Let us suppose that B~ is a transition bin and contains at least one block 

whose height belongs to a %-interval kl + 1 /~- (k~ >_ s + 2). By definition of the 
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k i -  1 
H N F  rule the cumulative height of the blocks in B i is at least . Let us denote the 

ki 
height of the block Q j  by h(Qj)  (j= 1, ..., ni) and use the inequality 

W~ (p) _> h (p) w (p). 

Then we  get 

(B,) >_ ~, h (Ci,j) Z w (p 
j = l  p~Cij (2.3) 

ni O~ O~ 

>_Zh(Cij)-} h(Ci, t) Z w ( P ) + 2 ( ~ _ l ) h ( C i . )  Z w(p). 
j=2 ' 2(c~- 1) - ' ' PECi ,  1 PECl ,  n i 

We will refer to this type of bins as B 1-type bins. 

Case B.2: Let us suppose that B~ is~a transition bin containing no block whose height 
is in a 7~-interval. We suppose again that the smallest block-height is in the interval 

k i + 1 kl " Since the cumulative height of the blocks in B i is at least ~ and 

ki+ 1 
W~ (p) > h (p) w (p), 

kl ~ -  t 
we get 

G(Bi) > Z h(Ci,j) Z w(p 
j= 1 k i o~- 1 vsc~,j 

ki + l "~ ki + l c~ 
> 2 h(Ci,J)-t h(Ci, t) ~ w(p)+ (2.4) 

kl j=2  k i 2 ( ~ - 1 )  p~c,,~ 

ki+ 1 cr 
§ h(Ci,,,) ~ w(p). 

ki 2 ( a -  1) p~C,,,, 

We will refer to this type of bins as B 2-type bins. 

Let i0 be the smallest index for which Bio contains at least two blocks. Let us divide 
the l is t /2 '  into two p a r t s : / ~  contains those elements f r o m / , '  which have been 
packed in bins with one b lock , / , ;  contains the rest of the list. 

Consider a bin Bi for which i < io. It  has to be an A-type bin; moreover in that special 

case s = 1 and k i = 1. So if i < i o then W~ (Bi) = 2 ~" w (p). Therefore if we get two 
P ~ B  i 

successive bins of this type then W~ (Bi)+ W~ (B~ + 1)> 2. If  we combine these bins for 
all i < io and io is even at most one bin remains, so 

W(Li) > H N F  ( L i ) -  1. (2.5) 

Now consider the case i > io. Because of the H N F  algorithm the following inequality 
is true: 

~ [ ~ w(P)+ ~ w(P) l>l .  
2(c~- 1) p~C,+~l p~ci,,, 
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Introduce the following notations with the help of (2.2)-(2.4) 

[ k,<!, 

| k ~ + l  
[ ~ ,~=2 h(C,.,), 

if B, is an A-type bin; 

if Bi is a B 1-type bin; 

if B~ is a B2-type bin. 

G i ~-- 

l Ct 

k, 2 ( ~ -  1) F, w (p), 
P~CI, I 

- - h ( C i ,  t) Z w(p), 
2 ( ~ -  1) v~c,,~ 
k~+ 1 

h(Ci.,) E w(p), 
k~ 2 ( ~ -  1) wci,1 

if B~ is an A-type bin; 

if B~ is a B 1-type bin; 

if B~ is a B2-type bin. 

H~=~ 

K, 
(p) ,  

k~ 2 ( ~ -  i) z .  
W 

- -  h (6 , . , )  Z w (p), 
2 (~  - 1) p ~ c,,., 

ki+ 1 o~ 
ki 2(c~-i)  h(Ci'") E w(p), 

P~Ci,ni 

if B~ is an A-type bin; 

if B~ is a Bl-type bin; 

if B~ is a B 2-type bin. 

Then the following inequality holds 

HNF (/?) HNF (L') 

W(Ez)>_ • (F~+G~+H~)> E (Fi+G~+H~_I). (2.6) 
i=io  i = i o + 1  

We consider three cases for Bi. 

Case 1: B~ is an A-type bin. Then we have to consider three different subcases. 

Subcase 1.1: B~-I is an A-type bin. Then 

ki-  1 1 c~ 
F~+G~+H~-':-k~-i + ki 2(~--11 E wtp) 

P e e l ,  1 

1 o~ K" (p) 
k~_ ~ 2 (~ - 1) z .  

W 

f fECi - - l ,m-1  

>1.  

(2.7 a) 
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Subcase 1.2: B~-I is a B2-type bin. Then 

k i -  1 1 c~ 
F,+G,+H~_I=--~--+ k, 2(~-1) Y w(p) 

P~Ci, I 

kl- 1 + 1 ~ (2.7 b) 
-~ h(Ci-x,,,-1) ~ w(p) 

ki_ 1 2 ( ~ - 1 )  p~C,-1.,,-i 

>1 .  

Subcase 1.3: B~_I is a B 1-type bin. Then 

k i -  1 1 
F'+G'+H'-I= k, k, 2(:,-1) Z w (p) 

p~ci,1 

o~ 
+ h(Ci-l,, ,-O Z w(p) (2.7 c) 

2 ( ~ - 1 )  p~ci-~,,,-1 

k l -  1 1 1 1 
> - - + - - >  1--~5>1 

�9 ki k i+ 1 k i - k~_  1 

Since a B 1-type bin is a transition bin, at most two such B 1-type bins may occur 
with blocks of heights in the same ?~-interval. So the total weight-shortfall is not 

1 
greater than 2 ~ ~2, where we summarize over all k for which the interval 

1 1 1 is So the cumulative shortfall for these bins is a y~-interval. at most 
k+l' k 

2 < - - .  
i=2 (t, (s)-  1) 2 6 

Case 2: B~ is a B 1-type bin. Then for any type of B~_ x bin 

ni O~ 
Z w(p)+ e,+ G,+ H,_I >- j=zZ h ( C , , J ) + ~ h ( C , , t ) p ~ c i , 1  

+ h (G- 1 n~_ 1) • w (p) >_ 
2 (c~ - 1) p ~ c,_~ ..... 

1 
> l - - -  

ki 

(2.8) 

1 
So the cumulative weight of the items in a B 1-type bin is at least 1 - - - ,  where k i is 

k~ 

that integer for which the smallest block-height of Bi is the interval k~q- 1 ' / ~  " 

Since a B 1-type is a transition bin so at most two B 1-type bins may occur with 
blocks of heights in the same 7s-interval. Therefore the total weight-shortfall for the 

1-type bins is not greater than 2 ~, ,1-, where the sum over all k for which the 
d 

B 
g ;  
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interval ( k  1 1, ~-1 is a 7,-interval. Since the function 7" is a monotone decreasing 

function of s we get that the cumulative weight-shortfall for these bins is 

1 2 - __<2(7~*- 1 ) <  . (2 .9 )  
2 ~ t , ( s ) - I  * 

i = 2  

7 
The last inequality we get from 7" <-7* = 1.691 ... < - - .  

4 

Case 3: B~ is a B2-type bin. Then 

rl i k, + 1 ~ h (C~o) c~ k, + 1 h (Ci, 1) 
F i + G i + H i - l ~  ki j = 2  +2(c~ - i )  k i v~c,,1 

-+-h(Ci-1 ni-1) 2(r 1) ~ w(p) 
P ~ C i - l , n i  1 

> 1 h(C, 1) Z w(p)+ 
k~ k i 2(~ " p~c~,l 

+h(Ci-l,,~_t) ~, w(p) 
P~Ci-J.,n~_ t 

k 2 -  1 1 k~ + 1 1 
> ~ . 2  q 

ki ki ki kl- 1 

w(p)+ 

(2.10) 

2 

2 
This means that the cumulative weight of the items in B i is at least 1 - ,.~-, where k i is 

k~ 

that integer to which the smallest block-height in Bi is in the interval k~ q- 1 ' " 

1 
Since the smallest block-height in Bi is not greater than s +  3 '  we get for the 

cumulative shortfall of the weights of the B2-type bins 

2 ( 6 2  4 9 ~ < 2  
k>_~+3 ~ _ < 2  - ~J - - - -5 - '  (2.11) 

Summing over all bins in/7~ we get 

H N F  (L') 

W,(/7~)> ~ (F~+G,+H,_I)>HNF(/7 '2)-3 .  (2.12) 
i = i o + l  

From (2.5) and (2.12) 

W~ (L') = W~ (/7[) + W~ (/7;) > H N F  (/7') - 4. 

Since W~ (/7) >_ ~ (/7') and H N F  (/7) = H N F  (/7') + 1, therefore 

W~ (L) > H N F  (L) - 5. (2.13) 
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Up to this point we ignored the fact that within a block there may occur pieces with 
smaller heights than the height of the block. Since the rectangles are ordered 
according to their heights it is easy to prove that the total sum over all bins of the 
areas above the rectangles within a block can be bounded by h(C~,l). Since 

1 
h (CI,a)_<--___ 1 we get that the value of the weight-shortfall - returning to the 

s 
original list - can be bounded by the cummulative weight of pieces in one bin. 
Using the result of the Claim 2.8 we obtain 

W~ (/7) < W~(L) + 4 
and so 

W~ (L) > H N F  (L) - 9. (2.14) 

This completes the proof of Claim 2.7. []  

Claim 2.8: In any packing of L the cumulative weight of the items in any of the bins is 
o~ 

at most ~ _  ~ 7". Hence 

(L) _< c~- 1 V* OPT  (L). 

Proof: Consider a bin B in an arbitrary packing of L. Divide the bin B into bands by 
vertical lines along the left- and the right-hand sides of all items in it. Denote the i-th 
band by Dr, and its width by w (Di) (see Fig. 2.2). 

' i 
I I 
I I 
1 I 
I f 
I I 

I 
I 
I 

I 
I 
I 
I 
I 

Fig. 2.2 

We prove that the cumulative weight of the items (or their segments) within a band is 
c~ 

not greater than - -  7" w (Di). Using Corollary 2.6 

Ws (B) 7" w (Di) - -  D,~ <<- ~ -  1 7*. 

Let us consider the band D i. First suppose that there are s - 1 pieces with heights in 
s - 1  

the largest 7s-interval. Their cumulative weight is w ( D ~ ) - - ,  and the height 
c~-I  s 

s - 1  
occupied by these pieces is at least - - .  So the sum of the heights of the re- 

s + l  
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s - 1  2 
maining pieces is at mos t  1 - . Let  qt,. . . ,qm these pieces and  

s + l  s + l  
h (ql) >-- h (q2)->... >- h (qm). I f  h (@ is in the j - th  interval 1 _<j_< m then 

�9 = a - - 1  ?s  �9 
Ws (Di) = ~--~i- w (Di) tj (s) - 1 w (Di) 

Thus assume that  there is at  least one q j, whose height is not  in t he j - t h  7s-interval. 
Let  k be the smallest index of the items of this type. The  total  weight of the largest  
k - 1  pieces is 

a k-1 1 
(Di) W 

~1 tj (s)-- 1" c ~ - I  j= 

The  remaining height is not  greater  than  

2 k-1 1 1 

s + 1 j ~  t~(s) t~(s)- 1 
1 

Since h (%) > _ ~  we get 
tkis) 

(q,)  ~ tk (s)  + 1 
- -  < w (De) - -  

h (q,) - ~ -  1 t k (s) 

for all 1 > k. So the cumulat ive weight of the pieces in the remaining par t  of the bin is 

0~ t k (s) + 1 1 
~;  (Di) <_ ~ -  ~ w (Di) tk (S) tk (S)-- 1 

1) 
c~ tk  ( + " < ~ - 1  w(De) s ) -  1 tk+l(S)-- 1 

Therefore 

o~ / s  1 k+l 1 ) 0~ $ 

Finally let us consider the case that  there are only u _< s -  2 pieces with heights in the 
u 

first ?s-interval. These occupy s + 1 height in the band  D i, and their total  weight is 

0~ U U 
- - w  (De)-- .  So the remaining height in the band  is at mos t  1 - - - .  I t  is clear 
~ - i  s s + l  

1 
tha t  the height of the highest i tem in this par t  of  the band  is not greater  than - - .  
Thus s + 1 

W~(q~) 
W~ (q j) < max  h (q j) 

1~.i<_,~ h(q~) .i=l 

<-o~-1 w(Di 1 s+l -  ' 
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and so 

I s - 2  3 ( s + 2 ) ]  ~ , 
W~(D,)<-~_l w(D,) ~s---f (s+1)2 < ~ h .  

[ ]  

We now prove the Lemma 2.3. It is sufficient to construct the sequence of the list L~. 
Take the following sequence of the items for given s_> I, r >_ 1 and k >_ l. A list L~ 

1 
consists of two types of rectangles. The widths of the rectangles of type A are - - ,  and 

/ 1 

the widths of  the rectangles of t y p e B  are 6 ( 0 < 5 < Z ~ ,  where m is a suitable 
\ 

of tg(S)--1). The sequence of the rectangles of type A consists of multiple 
/ 

1 
m e ( e -  1) (s -1)  times rectangles with height s - ~  + e and another k rectangles of 

1 
different types with heights - - +  e, 1 < i < k, and among them there are m c~ ( ~ -  1) 

t~(s) - - 
pieces of each of the different types. Similarly, we have m a ( s -  1) pieces of the 

1 1 
rectangles of type B bins with height s + 1 + e and m ~ pieces with height - -  + e for 

t i (s) 
all 1 < i_< k. It is clear that the rectangles of type A can be packed into m (~ - 1) bins, 
because 

s - 1  ~ 1 

s i=1 t--/(s) §  1 

with a suitable small e > 0. The pieces from the sequence of type B rectangles can be 
placed into one bin. Thus 

OPT  (Lr)_< m ( a -  1) + 1. 

72x 

i -~ + ~; _ _ A 3 . - -  A 3 A3 

+ E: A 2 A 2 A 2 

1_.~ AI 
3 

J-* E A 1 3 

AI AI 

A1 A1 

IX 

5 -  1 
lO8 

• • • 
3 3 3 

Fig. 2.3a. An optimal packing for s=2, r=3, k=3, ~=3, m=36 

13 3 

B2 

[31 

B1 
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108 x 

AI AI 

AI AI 

36x 9x 

/ 153 
Fig. 2.3 b. The NFD packing for the worst case example [HNF (L)/OPT (L)= ~ 1  

\ " / 3 /  

Order  the elements of the list L, according to the heights of the elements so that  ~ -  1 
pieces of  type A and one piece of type B succeed each other in periodical way. Then  

1 
HNF(L~)>_mc~+mc~ ~ r i ( s ) - i  ( k + l ) ,  

i = 2  

The ratio is 

H N F  (L,) . [- k 1 
- - - - > - -  I =~2 
O P T  (Lr) - c~- 1 L +~.= tl ( s ) -  1 

(k + 1) (~ - 1) + ~ t~ (s) - 1 ] 

m e ( c ~ - l ) + ~  

So the right hand  side of this inequali ty can be made  as closely to c~ - 1- 7* as desired 

by appropr ia te  choices for k, m and ~. [ ]  

Here  we give a table for the first few values of Rm<v(r,s>: 

S - - Y  

3.382 

2.846 

2.604 

2.466 

3.382 

2.846 

2.604 

2.466 

2.536 

2.134 

1.953 

1.848 

2.254 

I 1.897 

1.736 

1.644 

2.114 

1.779 

1.627 

1.541 

3. The Expected Solution Value 

In  order to analyse the expected number  of the bins used by the H N F  heuristic we 
approx imate  its per formance  by that  of the Sliced H N F  with pa ramete r  r (SHNFr),  

1 
(see Csirik et al. [4]) in which items whose heights are larger than  - -  are packed  

r 
according to the N F D  rule, the last opened bin is completed to obta in  at most  (r - 1) 
blocks and any remaining items are packed  in bins in blocks of size r. Con t ra ry  to the 
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notations used in the previous section in this section the random variable A (n) will 
denote the number of bins used by the algorithm A to pack n items. Then clearly for 
any realization of the item sizes (w(p), h(p)), w(p)> l, h(p)< 1, we obtain 

SHNF~ (n) > H N F  (n), r>>_2, n>_l, 
and 

lira SHNF,.(n)=HNF(n) ,  n > l .  (3.1) 
t -+Go 

Consider now a sequence of positive random vectors (w i (p), hi (p))Y= ~, bounded by 1 
in each component, with (w~ @))]=l, (hi (P))n= 1 independent subsequences consisting 
of independent and identically distributed random variables. 

If k~ (n) denotes the number of vectors among the first n whose second component 

( 1 1 landKi(n)=ki(n)+k~+l(n)+.. . thenonecaneasilyverifythat belongs to -i+ 1 ' i 

~-1 NF(k,(n)) NF(K~(n)) 
SHNF,  (n) < E + ~- r. (3.2) 

i=~ i r 

On the other hand, if the items are packed by the H N F  rule and bins containing 
1 

items, whose second components are smaller than - -  or belong to different intervals 
r 

(./1+1, i l l ' l - < i - < r - l ' a r e i g n ~  

r - - 1  

H N F _  Z N F  (k,(n)) r. (3.3) 
i=1 i 

Hence by (3.2) and (3.3) we obtain for every fixed r > 2 immediately 

r-1 E (NF(ki(n))) r-1 
r_<E(HNF(n))_< ~ Ev'F'k i (n)"  + E\NF'K~(n)" ~-r. (3.4) 

{T,,I { } ~ [ / } ~ 

i=1 i i=~ i r 

Notice that for n , m > _ O  

O<_NF(n+m)<_NF(n)+ NF(m) 

and so by the theory of subadditive functions (see Kingman [8]) 

NF(n) 
lim - c 

tJ-+ 0o n 

exist a.s. Moreover, since N F  (n) _< n, we get by the dominated convergence theorem 

E(NF(n)) 
lim - c. (3.5) 

Using the above observations (3.4) and (3.5) and the fact that k~ (n), 1 _< i_<r - 1, resp. (1) 
K, (n), are binomially distributed with parameters n, F - F  ~ resp. 

F ~- , where F denotes the probability distribution of the height h (p), we obtain by 
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a standard argument 

and 

lim sup 
n - * o o  

E(HNF(n)) 

for every r ___ 2. 

_<c 2 i C F  
i = i  

lira inf E (HNF (n))-> c ~ l  F - F 
n~oo  /1 i = 1  i 

(3.6) 

(3.7) 

This implies, letting r--* oo 

E(HNF(n)) & E (NFD (n)) 
lira - c  22 --,c lim (3.8) 

n--, oo /1 i = 1  i n-~oo /1 

where we get the last equation from Csirik et al. [4]. Hence we have proved the 
following result. 

Theorem 3.1 : 
lim E (HNF (n)) _ lim E (NF (n)) lim E (NFD (n)) 

n --+cO n I1--+ c~ 11 11"-*oo n 

Remark: Ifthe item sizes (wl (p), hi (P))G 1 are independent and uniformly distributed 
in the square [0, 1] x [0, 1] then 

lim E ( N F ( n ) )  2 (see Ong etal. [10]) 
, -~  n 3 

and 

Hence 

and since 

this implies 

lim E ( N F D ( n ) ) - ( ~ - - 1 )  (see Csirik etal. [ 4 ] ) .  
n---r oo 

l i m  = - -  - 1 
. ~ o o  n 3 

lira E(OPT(n)) 1, 
n ~ Q O  jr[ 

4 

lim 
n ~ o o  

E ( H N F ( n ) )  8 ( ~ _ _ 1 )  
E(OPT(n)) 3 
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