
 

Instructions for use

Title Hybrid of genetic algorithm and local search to solve MAX-SAT problem using nVidia CUDA framework

Author(s) Munawar, Asim; Wahib, Mohamed; Munetomo, Masaharu; Akama, Kiyoshi

Citation Genetic Programming and Evolvable Machines, 10(4), 391-415
https://doi.org/10.1007/s10710-009-9091-4

Issue Date 2009

Doc URL http://hdl.handle.net/2115/44374

Rights The original publication is available at www.springerlink.com

Type article (author version)

File Information Latex.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Noname manuscript No.

(will be inserted by the editor)

Hybrid of Genetic Algorithm and Local Search to solve

MAX-SAT problem using nVidia CUDA Framework

Asim Munawar · Mohamed Wahib ·

Masaharu Munetomo · Kiyoshi Akama

Received: date / Accepted: date

Abstract General Purpose computing over Graphical Processing Units (GPGPUs) is a huge

shift of paradigm in parallel computing that promises a dramatic increase in performance.

But GPGPUs also bring an unprecedented level of complexity in algorithmic design and

software development. In this paper we describe the challenges and design choices involved

in parallelizing a hybrid of Genetic Algorithm (GA) and Local Search (LS) to solve MAX-

imum SATisfiability (MAX-SAT) problem on a state-of-the-art nVidia Tesla GPU using

nVidia Compute Unified Device Architecture (CUDA). MAX-SAT is a problem of practi-

cal importance and is often solved by employing metaheuristics based search methods like

GAs and hybrid of GA with LS. Almost all the parallel GAs (pGAs) designed in the last

two decades were designed for either clusters or MPPs. Unfortunately, very little research is

done on the implementation of such algorithms over commodity graphics hardware. GAs in

their simple form are not suitable for implementation over the Single Instruction Multiple

Thread (SIMT) architecture of a GPU, same is the case with conventional LS algorithms. In

this paper we explore different genetic operators that can be used for an efficient implemen-

tation of GAs over nVidia GPUs. We also design and introduce new techniques/operators

for an efficient implementation of GAs and LS over such architectures. We use nVidia Tesla

Asim Munawar

Graduate School of Information Science & Technology

Hokkaido University, Sapporo, Japan

Tel.: +81-11-7063760

Fax: +81-11-7063760

E-mail: asim@uva.cims.hokudai.ac.jp

Mohamed Wahib

Graduate School of Information Science & Technology

Hokkaido University, Sapporo, Japan

E-mail: wahibium@uva.cims.hokudai.ac.jp

Masaharu Munetomo

Information Initiative Center

Hokkaido University, Sapporo, Japan

E-mail: munetomo@iic.hokudai.ac.jp

Kiyoshi Akama

Information Initiative Center

Hokkaido University, Sapporo, Japan

E-mail: akama@iic.hokudai.ac.jp



2

C1060 to perform several numerical tests and performance measurements and show that in

the best case we obtain a speedup of 25x. We also discuss the effects of different optimiza-

tion techniques on the overall execution time.

Keywords Compute Unified Device Architecture (CUDA) · General-Purpose computing on

Graphics Processing Unit (GPGPU) · Genetic Algorithm (GA) · MAXimum SATisfiability

problem (MAX-SAT) · Single Instruction Multiple Data (SIMD) · Single Instruction

Multiple Threads (SIMT)

1 Introduction

The SATisfiability (SAT) problem is a decision problem that asks whether a binary tuple can

be found that satisfies all clauses in a Boolean formula. SAT problem is a central problem in

theoretical computer science, artificial intelligence, mathematical logic, and many other ap-

plications. Its wide range of applications motivates the huge interest shown for this problem.

MAXimum SATisfiability problem (MAX-SAT) is a special case of satisfiability problem.

It is an NP-hard problem that asks for the maximum number of clauses that can be satisfied

by a given assignment.

Given n binary variables x(j), j in N , m clauses Ci, i in M , and weights w(i), where

N = 1, 2, ..., n and M = 1, 2, ..., m, the MAX-SAT problem asks to determine a binary

tuple (that is, a 0-1 assignment to each of the binary variables) that maximizes the sum of

the weights of the satisfied clauses. Each clause is a disjunction of literals l ∗ (j), where a

literal is either a variable x(j) (that is, the variable occurs in positive form) or its negation

neg x(j) (that is, the variable occurs in negative form). Without loss of generality we assume

that at most one of x(j) and neg x(j) is included in each clause. A clause is satisfied if at

least one of the positive variables contained in the clause is assigned the value 1 (true) or a

negated variable is assigned the value 0 (false).

Algorithms for solving MAX-SAT optimization problem can be divided into two main

classes [6]:

1. Exact or Complete Algorithms: are dedicated to solve the decision version of SAT prob-

lem. The well-known algorithms are based on the Davis-Putnam-Loveland procedure

DPL[16]. Satz[12,13] is a famous example of a complete algorithm. Exact algorithms

are usually employed for solving small size problems.

2. Approximate or Incomplete Algorithms: are mainly based on Local Search (LS) and

Evolutionary Algorithms (EAs). Gsat[21], Tabu search[5,19], simulated annealing[11],

Genetic Algorithms(GAs)[9] and scatter search [7] are all examples of incomplete algo-

rithms for SAT. Hybrids of these algorithms are also in common use. Incomplete algo-

rithms are mostly used to find approximate solution to the problems involving hundreds

of variables.

GAs are often used to solve MAX-SAT problems. In their simple form, GAs have a ten-

dency to lose their diversity prematurely, and hence their efficiency for solving MAX-SAT

problem. In order to prevent this from happening different techniques are in common use,

namely: increasing population size, using sub-populations based GAs [9], employing LS

and niching. All these techniques come at an expense of increased computational cost. This

is where parallel computing comes for the rescue. For the past two decades clusters/MPPs

have been the major parallel architectures. However, in this decade other architectures like



3

multicores and Graphical Processing Units (GPUs) are competing as an affordable and en-

ergy efficient alternatives to conventional parallel computing paradigms. Such architectures

are becoming more and more common and their importance cannot be ignored anymore.

GPU is a highly parallel multithreaded and manycore processor originally designed for

computer graphics. With the addition of programmable stages and higher precision arith-

metic, GPUs are now commonly used for applications that were traditionally handled by a

CPU. This use of GPU for non-graphics applications is known as General Purpose process-

ing using GPU or GPGPU in short. GPUs are designed such that more transistors are devoted

to data processing rather than data caching and flow control. Therefore, GPUs are less gen-

eral purpose than CPUs. Compute Unified Device Architecture (CUDA) [1] programming

model by nVidia is very well suited to expose the parallel capabilities of GPUs through

industry standard programming languages. CUDA offers significant innovation and gives

users a significant amount of control over a powerful streaming Single Instruction Multiple

Threads (SIMT) computer. Since the release of CUDA in 2007, the use of GPGPU has dras-

tically increased in a wide area of applications. Moreover, CUDA is simple to understand as

it uses the conventions of C language with some simple extensions.

On the other hand, most of the parallel GAs (pGAs) literature during the last two decades

deal with the implementation of pGAs over clusters or MPPs. Unfortunately, very little re-

search is done to explore an efficient implementation of pGAs over GPU like SIMD/SIMT

architectures. GA and LS hybrid algorithms are usually suitable for cluster like parallel en-

vironments; but, conventional genetic and LS algorithms are not suitable for implementation

over GPU like SIMD architectures [23]. Memory management and massive data parallelism

make GPUs a challenging environment for algorithm implementation. Nevertheless, GPUs

can show unprecedented speedups for an appropriately designed algorithm.

The main motivation behind this paper is to harness the computational power of modern

day GPUs to reduce the total execution time for solving MAX-SAT problem using a hybrid

of GA+LS without compromising the output fidelity. Utilizing memory bandwidth and mas-

sive data parallelism in an efficient way are the major design constraints. Although nVidia’s

Tesla C1060 is capable of 933 GFLOPs/s of processing performance and has a memory

bandwidth of 102 GB/s, reaching peak performance or near peak performance is not an easy

task. The objective of this research is to have a GPU compatible GA+LS algorithm, where

the LS algorithm and genetic operators are designed to take maximum advantage of the GPU

processing power and memory bandwidth. The primary contribution of this research is the

modification of conventional LS algorithm and genetic operators to make them suitable for

SIMT architecture. We also suggest different kinds of optimizations with empirical results

to show their effect on the total execution time. By writing this paper, we also want to en-

courage more research in the area of metaheuristics based algorithms over modern parallel

architectures. We believe that such architectures will become more and more common in the

coming years, making similar implementations inevitable in the very near future. We have

not only designed and implemented the proposed algorithm, but in the results section (Sect.

6) we empirically demonstrate the speedups achieved by solving well known benchmark

instances of MAX-SAT. We also discuss the effect of different optimizations on the overall

performance. It involves the optimizations within the algorithm and optimization of the code

itself. We believe that our work provides a valuable contribution for application developers,

by identifying a path that can be followed by other similar applications.

In order to make this paper self-contained, Sect. 2 describes the relevant architectural

features of GPU and CUDA framework. Section 3 describes the past work done to solve

MAX-SAT using GAs. We also discuss the past work done in the area of GAs over GPUs.

In Sect. 4 we discuss the proposed algorithm including genetic operators and LS algorithms.



4

Fig. 1 Hardware architecture of GPU mounted on the PC motherboard [3].

Section 5 describes the proposed implementation to solve MAX-SAT problem. In this sec-

tion, we discuss the design of different operators in detail. Section 6 shows the empirical

results obtained and compares them with the results obtained by other state-of-the-art CPU

architectures. Section 7 concludes this paper and gives some guidelines for future work.

2 General-Purpose computing on GPU (GPGPU)

GPU is emerging as one of the most powerful parallel processing devices. GPU is espe-

cially well-suited to address problems that can be expressed as data-parallel computations

with high arithmetic intensity (i.e. ratio of arithmetic operations to memory operations). As

the same instructions are executed for each data element, there is a lower requirement for so-

phisticated flow control. The memory access latency can be hidden with calculations instead

of big data caches. Applications that process large data sets can use a data-parallel program-

ming model to speed up the computations. In 3D rendering, large sets of pixels and vertices

are mapped to parallel threads. In the recent years, many algorithms outside the field of

image rendering and processing are also accelerated by data-parallel processing. GPUs are

increasingly being used for general purpose processing; as a consequence the term GPGPU

has evolved.

Although GPUs can offer unprecedented performance gain, implementation of an al-

gorithm over a GPU to take full advantage of this new technology involves a significant

complexity of parallelizing across the multiple cores. Memory management over a GPU

makes things even more challenging. CUDA is a parallel computing architecture developed

by nVidia. CUDA is the compute engine in nVidia’s CUDA compatible GPUs, and is ac-

cessible to software developers through industry standard programming languages like C.

CUDA is widely used for programming nVidia’s GPUs for general purpose processing. Re-

search is also done to use CUDA for programming multicore processors other than GPUs

[22]. To the best of author’s knowledge, there is no significant research done for implemen-

tation of GAs or GA+LS hybrid algorithms over GPU using CUDA.

Figure 1 illustrates the architecture of nVidia Tesla GPU (used for this research) [15].

The GPU runs its own specified instructions independently from the CPU but it is controlled

by the CPU. A thread is the computing element in the GPU. When a GPU instruction is in-

voked, blocks of threads are defined to assign one thread to each data element. Arrangement



5

Fig. 2 Hierarchy of computing structure in a

GPU [3].

Fig. 3 nVidia GPU Architecture (Note that the

GPU devotes more transistors to data processing)

[3].

of blocks and threads in a GPU is shown in Fig. 2. All threads in one block run the same

instruction on one streaming MultiProcessor (MP), which gives the GPU an SIMT archi-

tecture. Each MP includes 8 stream processor (SP) cores, an instruction unit, and on-chip

memory that come in three types: registers, shared memory, and cache (constant and tex-

ture). As shown in Fig. 1, threads in each block have access to the shared memory in the

MP, as well as to a global memory in the GPU. Unlike a CPU, the internal structure of a

GPU is designed in such a way that more transistors are devoted to data processing rather

than data caching and flow control. This difference is clearly illustrated in Fig. 3. When an

MP is assigned to execute one or more thread blocks, the instruction unit splits and creates

groups of parallel threads called warps. The threads in one warp are managed and processed

concurrently. Unlike SIMD architecture, threads in the same warp can follow different in-

struction paths. However, this phenomenon drastically reduces the performance and should

be minimized for an efficient implementation.

3 Related Work: GA+LS to solve MAX-SAT

A simple GA (sGA) for solving MAX-SAT is shown in Fig. 4. However, sGA suffers from

problems like premature convergence and is seldom used to solve complex problems like

MAX-SAT. Previous work in the area suggests the use of techniques like: larger population

sizes, sub populations based pGAs [9] and niching. Moreover, a hybrid of GA and LS has

also proved to be an order of magnitude faster than sGA [9,6].

J. Frank [9] suggests the use of multiple sub-populations for a GA based MAX-SAT

solver. This kind of island based pGAs can easily be implemented over conventional parallel

architectures (like clusters). However, implementation over modern parallel architectures

like GPU is an entirely different issue. Traditional pGA+LS algorithms and operators (as

shown in Fig. 4) are not suitable for implementation over SIMT architectures [23]. Some



6

Input: an instance of satisfiability;

Output: an assignment of variables that maximizes the number of satisfied clauses;

1 : Initialize();

2 : While (max generations or optimal solution is found) do

3 : For i ← 1 to POP SIZE; i=i+2 do

4 : Select two individuals;

5 : Generate at random a number Rc from [0,100];

6 : If (Rc < crossover rate) then apply the crossover;

7 : Generate at random Rm from [0, 100];

8 : If (Rm < mutation rate) then apply mutation

9 : Evaluate the new individuals;

10: Apply local search;

11: End for

12: Replace the bad individuals of the population by the fittest new ones.

13: End while

14: Return the best chromosome

15: Destroy();

Fig. 4 A simple Genetic Algorithm (sGA) to solve MAX-SAT problem (row 10 can be added to an sGA to

form a GA+LS hybrid algorithm).

research have been done in the area of GAs and other EAs over consumer-level graphics

hardware or GPUs [8,24,14]. M. Tomassini [23] and Qizhi et al. [24] recommend the use

of GA with 2D structured population also called cellular Genetic Algorithm (cGA) [4] for

implementation of pGAs over a GPU (SIMT architecture). 2D structure of cGA maps well

to the GPU architecture, which is primarily designed for processing of multidimensional

graphics.

As far as performance gain is concerned, Fok et al. [8] shows a 1.25 to 5 times speedup

over a consumer level GPU card, while Qizhi et al. [24] shows speedups of up to 17.1 times

for population sizes of 5122.

4 Proposed algorithm

Keeping in mind the recommendations made by J. Frank [9], M. Tomassini [23] and Qizhi et

al. [24], we are using a hierarchical algorithm of 2D structured sub-populations arranged as

islands in a 2D grid. Therefore, each individual has 4 neighboring individuals (north, south,

east and west) and each sub-population has 4 neighboring sub-populations (north, south,

east and west). In CUDA, this kind of hierarchical population arrangement can easily be

organized by using 2D blocks and 2D grid as shown in Fig. 2.

In the case of cGA, an individual can only mate with its neighboring (north, south, east

and west) individuals[4] as shown in Fig. 5. The individual becomes the first parent while

the second parent is selected by applying a binary tournament among the four neighbors.

Small overlapped neighborhoods help in exploring the search space because the induced

slow diffusion of solutions through the population provides a kind of exploration, while

exploitation takes place inside each neighborhood by genetic operators. As a result, cGA

provides automatic niching effect, avoiding an early convergence.

We have used hill-climbing as the LS algorithm. For genetic operators we have used

mutation, recombination, and selection. Mutation is simple inversion of a random gene (i.e.

0 → 1, 1→ 0). Recombination is done by using a mask of 0’s and 1’s as explained in Sect.

5.2.2. For selection, we use binary tournament among the neighbors to select the second



7

Fig. 5 Population arrangement for cellular

Genetic Algorithm (cGA).

1 : Initialize cGA(InputParams);

2 : for s ← 1 to MAX STEPS do

3 : for x ← 1 to WIDTH do

4 : for y ← 1 to HEIGHT do

5 : NList ← Get Neighborhood(Pop(x,y));

6 : Parents ← LocalSelect(NList);

7 : AuxIndiv ← Recombination(Pc, Parents);

8 : AuxIndiv ← Mutation(Pm, AuxIndiv);

9 : AuxIndiv ← Local Search(AuxIndiv);

10: EvaluateFitness(aux indiv);

11: InsertIfBetter(Pop(x,y), AuxIndiv, AuxPop);

12: end for

13: end for

14: Pop ← AuxPop;

15: UpdateStatistics(Pop);

16: end for

17: Destroy();

Fig. 6 Pseudocode for the cGA+LS [4].

parent. Elitist replacement is also performed to insert an offspring into the next population.

The fitness function used is the total number of true clauses achieved by a given assignment

of the variables. A serial implementation of cGA + LS to solve MAX-SAT is given in Fig.

6.

Instead of using a conventional algorithm for migration between the sub-populations, we

have introduced a new technique that we call diffusion. Diffusion is more suitable for imple-

mentation of cGAs based pGA over a GPU. Section 5.2.1 explains the proposed diffusion

operator in detail.

5 Proposed Implementation

Efficient implementation of the proposed algorithm over CUDA compatible GPUs is the

main contribution of this paper. In this section we give an efficient implementation of the

proposed algorithm (see Sect. 4). The section expounds all the challenges and their solutions.

We have modified the existing operators and we also introduce some new operators that can

help in increasing the efficiency of the algorithm over a GPU. The final goal is to get the

maximum possible speedup without compromising on the solution’s quality. The section

starts with the overall flow of the implementation and then elaborates each part separately

in detail.

In the proposed implementation, the host processor (CPU) acts as a controller while an

nVidia Tesla C1060 GPU provides the required computational resources. Figure 7 shows the

CPU and the GPU side algorithm. All the configurations, memory allocations, initializations

are performed over the host processor. After the initialization stage, data is transferred to the

device and the code enters a loop. Inside the loop the first task is to call kernel 1: random

number generator. In the next step kernel 2: GA kernel is deployed over the device. The

loop keeps on repeating until the end criteria is satisfied. In the proposed implementation

the loop can only exit when the maximum number of generation criteria is satisfied. After

exiting the loop, the final population is copied back to the host memory and the individual

with the maximum fitness is selected as the best solution.



8

Fig. 7 Flow chart of CPU (host) side and GPU (device) side logic.

5.1 Kernel 1: Random Number Generator

Current graphics hardware does not provide the function for generating random numbers.

Fortunately, CUDA SDK comes with a sample random number generator [20] based on

Mersenne twister proposed by M. Matsumoto et al. [17]. Mersenne twister has properties

like long period, efficient use of memory, good distribution properties, and high perfor-

mance. With some modifications proposed by M. Matsumoto [18], the algorithm maps well

onto the CUDA programming model to produce uniformly distributed pseudo-random num-

bers. As shown in Fig. 7, the output of the random number generation kernel is Nr random

numbers. Nr is equal to the total number of random numbers required to evaluate one gen-

eration. This includes the random numbers required by mutation, crossover, and selection

stages. Nr can be given as follows:

Nr = Nrs + Nrc + Nrm

Where, Nrs, Nrc, Nrm are the total number of random numbers required by selection,

recombination, and mutation, to process a single generation (for details see Sect. 5.2.1,5.2.2

and 5.2.3). Value of Nr is computed on the host and is provided as an input to the kernel

along with the seed S. In order to avoid correlation among random numbers generated in

each iteration S should be random itself. For each generation S is computed using standard

C language routines for random number generation. This is ultimately seeded with the sys-

tem time. As both random number generators use different algorithms therefore the risk of

correlation is minimized.



9

Fig. 8 Kernel 2: is the critical kernel that performs Genetic Algorithm and Local Search operations. This

kernel is launched once in each generation and overall it takes more than 95% of the total execution time.

For random number generator kernel gridSize is equal to the total number of MPs (30

in our case). Number of threads is kept at 128 threads/block to achieve a device occupancy1

of “1”. It is important to note that the random numbers generated by this kernel are stored

in the global memory of the device and are never transferred to the host memory.

5.2 Kernel 2: Genetic Algorithm Kernel

Genetic algorithm kernel is the heart of the proposed implementation. For an efficient im-

plementation of this kernel, we must keep the following facts about the CUDA and GPU

architecture into consideration:

1. Each thread should solve a very small part of the problem. This helps in increasing the

total number of threads and hence utilizing the resources in a better way.

2. Minimize the use of global device memory. Shared memory and registers should be used

wherever possible.

3. Global memory access should be coalesced wherever possible.

4. Threads in the same warp should avoid branching. Note that all the threads in a warp are

controlled by a single instruction unit.

1 Occupancy is the ratio of active warps to the maximum number of warps supported on a multiprocessor

of the GPU, and is helpful in determining how efficient the kernel will be on the GPU.



10

Fig. 9 Selection & Diffusion operator.

5. Try to maximize occupancy. Occupancy can be maximized by choosing an appropriate

value thread block size, shared memory size and number of registers used.

The proposed implementation is similar to a fine-grain genetic algorithm, as each thread

deals with only one individual. Therefore, the total number of threads is equal to the popula-

tion size. The population is arranged into a number of sub-populations. Each sub-population

ultimately runs on one MP. Hence, total number of sub-populations is equal to the number of

MPs available in the GPU. Each population is arranged in a 2D toroidal shape. Each block

is of size SPx ∗SPy where, SPx and SPy are the x-dimension and y-dimension of the block

respectively.

Flowchart diagram of kernel 2 is shown in Fig. 8. Each part is designed very carefully to

get an overall efficient implementation. As shown in the figure, the kernel is divided into six

distinct parts (shown by white boxes in Fig. 8). It will only be fair to discuss each of these

parts separately with implementation/optimization details.

5.2.1 Selection & Diffusion

In a typical island model (sub-population based) pGA, selection and migration takes place

as two independent steps. Selection is applied within a sub-population while migration is

responsible to exchange individuals having good fitness with other sub-populations. Tour-

nament selection is a very common type of selection operator and migration often involves

operations like sorting or any other similar algorithm. Such operations involve branching,

making them unsuitable for implementation over a GPU. In this paper we have merged the

selection and migration steps to create a new kind of operator that we call “Selection &

Diffusion”. In diffusion the selection operator is used to share the individuals at the borders

of a sub-population with their neighboring sub-population. This new operator is suitable for

efficient implementation over a GPU with solution quality comparable to its conventional

counterparts.

As discussed in Sect. 4, we are using cGA as the base of the proposed algorithm. Each

sub-population runs independently over a separate MP as shown in Fig. 9. The neighborhood



11

always contains 4 individuals: North, East, West, and South individuals. The individual of

the thread becomes the first parent while the second parent is selected by using binary tour-

nament among the neighboring individuals. Under normal circumstances selection is applied

and the neighborhood is defined within a sup-population as shown in ”sub pop 1” of Fig.

9. However, with a probability Pd, diffusion is applied to the whole population in that gen-

eration. When, diffusion is applied the neighborhood is defined as shown in ”sub pop 5” of

Fig. 9. As the whole population resides in the global memory of the device therefore, all the

data is accessible by any thread in any block.

We can control the migration rate of individuals by controlling the diffusion probability

Pd. If Pd is 0, all the sub-populations are completely independent and they do not exchange

any individual with their neighboring sub-populations. On the other hand, if Pd is 1, whole

population acts as a single entity. Under normal circumstances, Pd should be kept closer to

0 but not 0. This will limit the number of individuals diffusing into the neighboring sub-

populations. The reason why diffusion works is that the relatively small 2D structured sub-

populations reduce the distance of an individual from their neighboring sub-populations,

hence making it easier for an individual with higher fitness to diffuse into the neighboring

sub-populations. Therefore, diffusion cannot work with non-structured populations.

As each individual requires 2 random numbers for a binary tournament among its neigh-

bors, Nrs is equal to twice the size of the population (as mentioned earlier, these random

numbers must be generated by kernel 1). Selection & diffusion operator does not involve

any looping and has only one conditional statement without an else statement.

5.2.2 Recombination

After the selection stage, we have two parent individuals P1 and P2, where, P1 is the

current individual and P2 is the neighboring individual selected by the selection/diffusion

operator (Sect. 5.2.1). Recombination combines these two parents to produce a single child

individual C. We are using the shared memory to store the child’s data, because the remain-

ing operators namely: mutation, fitness evaluation, LS and replacement are applied to the

child individual (as shown in Fig. 8). Therefore, keeping child’s data in the shared memory

can have a significant impact on the overall execution time. But increasing the size of shared

memory can result in lowering the GPU occupancy. Consequently, it is recommended that

the child’s data must be kept outside the shared memory for the problems involving larger

number of variables.

The recombination operator used in this research is slightly different from a traditional

crossover operator. Traditionally, crossover is applied to the individuals with a certain prob-

ability Pc. In our case the recombination operator is applied to all the individuals. In order

to avoid conditional statements involved in one-point or two-point crossover, we perform

the crossover using a mask (M ) of 1’s and 0’s. Probability of 1’s in the mask is given by Pc.

The child C can be computed as follows:

Ci = (P1i ∧ ¬Mi) ∨ (P2i ∧ Mi)

Where, i = 1, ..., N and N is the total number of variables. This implies, when M = 0

then Ci = P1i and when M = 1 then Ci = P2i. Therefore, in absence of any 1 in the mask,

C = P1, therefore, it will have an effect of no crossover. Conventional crossover operators

involve branching. As discussed earlier divergent threads in a warp underutilizes the GPU

and must be avoided. In a mask based recombination operator all the threads in a warp

follows the same instruction path, hence making it more suitable for implementation over



12

GPU like architectures. In terms of quality, empirical results prove that the recombination

operator used in this research is as good as its conventional counterparts.

Number of random numbers required by each individual to perform recombination is

equal to the total number of variables N . Therefore, total number of random numbers re-

quired by the recombination step Nrc is N times the population size.

5.2.3 Mutation

Mutation is a bit inversion operator applied to the child C. Mutation is applied by using

a mask M of 0’s and 1’s. Probability of 1’s in the mask is given by Pm. Bit inversion is

performed by XORing the individual C and the mask M .

Ci = Ci ⊕ Mi

Where, i = 1, ..., N and N is the total number of variables. This implies that, the bit is

inverted if Mi = 1. Mutation operator is a simple operator without any branch statements.

Total random numbers required by each individual to perform mutation is equal to the total

number of variables N . Therefore, the total number of random numbers required by the

mutation step for the whole population Nrm is N times the population size.

5.3 Fitness Evaluation

The fitness value is simply the number of true clauses in any given variable assignment. In

every generation, fitness value is evaluated several times for the child in each thread. LS is

also dependent on this routine, therefore, efficiency of this routine is an important design

parameter. Fortunately, MAX-SAT problem is SIMD/SIMT compatible and all the threads

follow same instruction sequence. Fitness evaluation use nested loop with conditional state-

ments in every iteration. As all the threads follow the same branching pattern, therefore,

in this case branching does not have a negative effect on the overall performance of the

implementation.

5.3.1 Local Search (LS)

Among all the operators, LS is the most difficult operator to be implemented over SIMT

architecture. The target of this operator is to find the local optima. It is mandatory to op-

timize this operator, as LS is usually the most time consuming part of the GA+LS hybrid

algorithm (see Sect. 6.1.1 for details). As discussed earlier, we are using hill-climbing as

the LS algorithm. We have modified the algorithm to meet the hardware constraints for an

efficient implementation. A comparison between the typical hill climbing and the proposed

algorithm is shown in Fig. 10. In a typical implementation, the maximum number of LS

iterations Miter (shown as “MAX ITER”in Fig. 10) is set to a certain value. If there is an it-

eration without any fitness gain the algorithm exits right away without waiting for the Miter

to occur. In the case of the GPU based implementation, we want all the threads in a warp to

exit at the same time and follow a similar execution pattern. Therefore, in case of the pro-

posed implementation LS is performed Fiter number of times (shown as “FIXED ITER”in

Fig. 10). A thread cannot Exit in the middle and has to finish Fiter number of iterations. But

keeping a constant value of Fiter throughout the algorithm degrades the performance of LS.



13

1 : MaxFit ← Fitness ← ObjFunc(C);

2 : for i ← 1 to MAX ITER do

3 : for idx ← 1 to N do

4 : Cidx ←¬Cidx;

5 : TempFit ← ObjFunc(C);

6 : if(TempFit > MaxFit) do

7 : MaxFit ← TempFit;

8 : else

9 : Cidx ← ¬Cidx;

10: endif

11: endfor

12: if (MaxFit > Fitness)

13: Fitness ← MaxFit;

14: else

15: Break;

16: endif

17: endfor

1 : MaxFit ← ObjFunc(C);

2 : for i ← 1 to FIXED ITER * N do

3 : idx ← i% N;

4 : Cidx ← ¬Cidx;

5 : TempFit ← ObjFunc(C);

6 : if(TempFit > MaxFit) do

7 : MaxFit ← TempFit;

8 : FeedBackIteration ← i / N;

9 : else

10: Cidx ← ¬Cidx;

11: endif

12: endfor

Fig. 10 Hill-Climbing local search operator: Traditional hill climbing algorithm (left), Proposed implemen-

tation (right).

Therefore, we have developed a feedback system to control the value of Fiter and to solve

the problem of performance degradation.

In the proposed system Fiter is initialized with “MAX ITER”in the start of the algo-

rithm. With each generation we decrease the value of Fiter by an amount “DEC ITER”.

On the other hand, each call to LS routine returns a feedback value. This value contains the

total number of iterations that were required to reach the local optima. If the feedback value

of more than Fp% of the threads is equal to Fiter , it implies that we need to increase the

number of Fiter in the next generation. Therefore, we incease Fiter by “DEC ITER”. Note

that the maximum value for Fiter is “MAX ITER”. This feedback mechanism gives us the

required performance and SIMTization without any compromise on the quality of the end

results. In our experience, nested loops significantly affect the performance of the kernel.

Therefore, we have avoided nested loops as shown in Fig. 10.

5.3.2 Replacement

We have used the elitist replacement, i.e. the parent is replaced with the child only if the

child has a better fitness than the corresponding parent individual. It is in this step that the

child’s data is transferred from the shared memory to the global device memory.

6 Results

Results given in this section were collected over a system with nVidia Tesla C1060 GPU

mounted on a motherboard with Intel R©CoreTMi7 920@ 2.67GHz as the host CPU. C1060

have 4GB of device memory, 30 streaming MultiProcessors (MPs), and the total number of

processing cores is 240. The maximum amount of shared memory per block is 16KB and

clock rate is 1.30GHz. The compute capability of the device is 1.3. We are using Fedora

Core 8 as the operating system and CUDA SDK/Toolkit ver. 2.1 with nVidia driver ver.

180.22. Other tools used for optimization and profiling include CudaVisualProfiler ver. 1.1

and CudaOccupancyCalculator. C1060 is dedicated to computations only. System has a

separate GeForce 8400 GS GPU acting as a display card.



14

The values of Pc & Pm are kept constant at 20% and 10% respectively. Population size

is also kept constant at 3000. For GPU implementation the population is divided into 30 sub-

populations each consisting of 100 individuals. 30 sub-populations are spatially arranged in

a 2D grid of 10∗3. Individuals in each sub-population are further arranged in a 2D toroidal of

size 10 ∗ 10. In order to keep the comparison fair, we have used sub-populations based pGA

even for serial and OpenMP based implementations. Number of sub-populations is kept con-

stant at 30 for all the implementations. For LS maximum number of hill-climbing iterations

(MAX ITER) is kept constant at 20, while the value is decremented by 2 (DEC ITER) in

each generation. Diffusion probability Pd is kept constant at 5%. Feedback percentage Fp is

kept constant at 20%. In order to test our results we have used the famous benchmarks from

SATLIB [10] (SAT online resources).

6.1 Performance Optimization

On top of algorithm parallelization over GPU, we have used several optimization techniques

to fine tune the performance of the algorithm and to make it more suitable for the low lying

hardware. In this section, we briefly explain these techniques, and evaluate them in terms of

their impact on the overall performance.

As a starting point for the experiment, we ported the proposed algorithm (Sect. 4) over

C1060 GPU. Population was broken into 30 sub-populations each running as a separate

block on a different multiprocessor. Each block contains 100 threads (or individuals). Al-

though parallelization of the algorithm gives us a huge performance gain, it can be further

optimized to get even better speedups. We break the optimization step into two passes. In

the first pass we try to optimize the implementation by making some changes in the algo-

rithm itself. In the second optimization pass we apply some hardware specific optimization

techniques without making any changes in the algorithm. The target is to reduce the total

execution time without compromising on the solution’s quality.

6.1.1 Optimization Pass I

In the beginning of optimization pass I, we implemented the proposed algorithm in par-

allel over GPU. The total execution time taken by this implementation to solve “uf250-

01”problem is shown by the first row of table 1. Although in this implementation the algo-

rithm is running on the GPU, it is not at all optimized for the hardware. We attempted to

optimize the algorithm by modifying each stage of the algorithm in order to make it more

suitable for the SIMT architecture of the GPU. Reduction in execution time for each opti-

mization step is shown in table 1. To obtain the results shown in table 1, we have broken

our GA kernel into smaller kernels with each kernel performing only one operation on the

population. We then use CUDA timer functions to compute the time taken by each operation

separately. As there is no data transfer between GPU and CPU after each operation, breaking

the GA kernel into many smaller kernels does not have any effect on the overall execution

time. Different stages of optimization are given below:

1. Optimizing Local Search: LS was optimized by keeping the number of iterations con-

stant for each thread in a warp. This reduced the branching and waiting in different

threads of the same warp. Feedback system was introduced to cater for the quality loss

(see Sect. 5.3.1 for details).



15

Table 1 Optimization Pass I. Performance impact of various optimization steps when applied to “uf250-01”

MAX-SAT instance. The algorithm only stops when the maximum number of generations (20 in this case) is

reached. All the results shown in this table are an average of 50 independent runs.

2. Optimizing Mutation: Instead of using conditional statements, mutation now uses binary

xor with a mask for its execution. Mutation is applied to all the individuals.

3. Optimizing Recombination: From a 2-point crossover we changed the algorithm to use

a crossover that uses binary mask for its execution. Crossover is also applied to all the

individuals without any exception.

4. Optimizing Selection: In the last step we optimized the selection operator. It is in this

step that the population is organized into 2D toroidal shape. Tournament selection is also

changed to a binary tournament selection among the four neighboring nodes.

5. Optimizing Migration: As discussed in Sect. 5.2.1, we have introduced diffusion, a GPU

friendly way to perform migration. In diffusion the individuals at the border of a sub-

population diffuse into neighboring sub-populations with a certain probability Pd. Due

to relatively small 2D sub-populations diffusion doesn’t compromise the result quality.

Diffusion can save the time for data transfer and sorting.

It is clear from table 1, that the optimizations applied have a significant effect on the

overall execution time.

6.1.2 Optimization Pass II

Although after optimization pass I the algorithm is optimized and is suitable for GPU, ad-

ditional optimizations can be done to further reduce the total execution time. We applied a

second pass of optimization using different optimization techniques specific to GPU archi-

tecture. We applied these optimization techniques to further optimize the problem discussed

in Sect. 6.1.1 (i.e. solving “uf250-01” MAX-SAT instance with number of generations con-

stant at 20). Techniques applied in this optimization pass include:

1. Branch prevention & Branch prediction: Branch prevention has significant effect on the

total execution time. Preventing branching decreases the number of divergent threads

in a warp. We applied branch prevention wherever possible, especially for the LS hill

climbing operator. Branch prediction is another way to optimize branch operations. It

is often used in the modern processors to improve performance. However, in case of a

GPU, branch prediction can only be useful if all the threads in a warp follow the same

branching pattern. We have not used branch prediction as the threads of the same warp

do not follow the same branching pattern in the proposed implementation. Using branch

prevention we were able to reduce the total execution time for solving “uf250-01” MAX-

SAT instance from 37.761 seconds to 35.486 seconds.



16

2. Optimizing memory transfers: This step involves several kinds of optimizations. In the

first step we reduced the transfers between host and device memory. Now the only data

transferred from device to host in each generation is the feedback value of LS which

is only 1-Byte per individual. No other data is transferred between host and device

throughout the execution. As a next step of memory optimization, we are now using

shared memory as a kind of cache for the global device memory. Global memory can

be 150x slower than shared memory or registers. We store all the intermediate data, in-

cluding the data of the temporary child individuals, in the shared memory. Shared mem-

ory is almost as fast as the registers but syncthreads() must be called to ensure the

write to the shared memory. In order to further reduce memory overheads, the access to

global memory should also be coalesced. In current implementation the parent selection

is somewhat random (based on binary selection among the neighbors); hence memory

accesses cannot be coalesced in all cases. Optimizing memory transfers resulted in a

reduction of the total execution time from 35.486 seconds to 34.118 seconds.

3. Increasing Occupancy: We have used nVidia’s CudaOccupancyCalculator tool to ex-

plore the trade-offs between number of threads-per-block versus the number of registers

and the amount of shared memory used by each thread. Finding just the right combi-

nation of the three values to maximize the occupancy had a significant effect on the

execution time of the proposed kernel. By increasing the occupancy we were able to

reduce the total execution time from 34.118 seconds to 31.926 seconds.

4. Avoiding nested loops: Although not mentioned clearly in any of CUDA’s documents,

we found that avoiding nested loops can result in a huge performance gain. We tried to

avoid the use of nested loops in the LS algorithm and observed a drastic reduction in

execution time. Avoiding nested loops helped in reducing the total execution time from

31.926 seconds to 28.913 seconds.

Therefore, applying the above mentioned steps in second pass of optimization helped

in reducing the execution time to solve “uf250-01”MAX-SAT benchmark instance from

37.761 to 28.913 seconds.

6.2 Empirical results

For comparison purposes, we have used OpenMP[2] based parallel implementation of the

same algorithm over different state-of-the-art commodity processors. All the implementa-

tions are optimized for the hardware they are running on. Moreover, for all the implemen-

tations we are using the compiler directives to maximize the execution speed. Five different

implementations used to obtain the results are shown in table 2.

Table 2 Different implementations used to obtain the results.

Sduo Serial implementation over Intel R©CoreTM2 Duo E8600@ 3.33GHz

CPU (2 cores / 2 threads) with 4GB of memory.

Pduo OpenMP based parallel implementation over Intel R©CoreTM2 Duo

E8600@ 3.33GHz CPU (2 cores / 2 threads) with 4GB of memory.

Pu sparc OpenMP based parallel implementation over Sun Ultra Sparc T2

1.16 GHz CPU (8 cores / 64 threads) with 16GB memory.

Pi7 OpenMP based parallel implementation over Intel R©CoreTMi7

920@ 2.67GHz CPU (4 cores / 8 threads) with 4GB memory.

Pgpu Implementation of the proposed algorithm over nVidia C1060 GPU.



17

Table 3 Average execution time required for solving MAX-SAT problem over different architectures.

Table 4 Average number of generations required for solving MAX-SAT problem over different architectures.

Table 5 Average solution quality obtained by solving MAX-SAT problem over different architectures.

Table 3, 4 and 5 show the average value and standard deviation of the total execution

time, number of generations and the best solution obtained by each implementation. The re-

sults shown in these tables are an average of 50 independent runs. All the benchmark prob-

lems used for the experiments are fully satisfiable. The algorithm exits if the best solution

(total number of clauses) is found or if the fitness does not change for 5 consecutive gener-

ations. Although this paper proposes different changes in the traditional GA+LS algorithm



18

Fig. 11 Speedups with respect to implementations over different architectures.

for implementation over a GPU (Pgpu), it is clear from table 4 & 5 that these modifications

does not affect the solution’s quality and the convergence rate.

Figure 11 shows the speedups achieved with respect to each implementation. For larger

problems, we can see a maximum speedup of up to 25x if compared with the serial im-

plementation over Intel Core 2 Duo 3.3GHz (Sduo). For smaller problems with 20 and

50 variables we can still see significant speedups of 16x and 18x respectively. Comparing

our results with an OpenMP based parallel implementation over Intel Core 2 Duo 3.3GHz

(Pduo), we got speedups of up to 13x. Even comparing our results with state-of-the-art pro-

cessors like Intel Core i7 2.67 GHz 4 cores/8 threads (Pi7) and Sun Ultra Sparc 1.167 GHz

8 cores/64 threads (Pu sparc) yielded a maximum speedup of up to 6x and 8x respectively.

These results clearly show the significance of using GPUs in the area of evolutionary com-

putations.

7 Conclusions & Future Work

MAX-SAT is an NP-hard optimization problem with practical uses in many areas of science

& technology. GAs can be used to solve MAX-SAT problem. However, simple GAs suffer

from problems like early convergence. Techniques like Local Search (LS), niching etc are

often used to increase the efficiency of GAs to solve MAX-SAT problem. Parallel GAs

(pGAs) are also in common use to reduce the total execution time.

Most of the pGAs developed in the last two decades were designed for clusters or MPPs.

However, in this decade other architectures like GPUs are becoming increasingly famous for

general purpose parallel processing. Frameworks like CUDA are used to take the maximum

advantage of the low lying hardware using an industry standard programming language.

Even though GAs are easy to parallelize, they do not give themselves easily to data parallel



19

architectures like GPUs. For an efficient implementation, all the genetic operators and LS

algorithms need to be redesigned with a considerable care.

We have recommended using a hybrid of cellular GA (cGA) and hill-climbing. cGA

provides niching and its 2D structured population is ideal for implementation over an nVidia

GPU using CUDA. Hill climbing in its simple form is not data parallel and hence is not

suitable for implementation over GPU. We propose a data parallel approach to hill climbing

with a feedback mechanism. Migration is another process applied to sub-population based

pGAs which is not suitable for GPU. We propose a method called diffusion which suits

thread based environments like GPUs. Selection, mutation, and recombination must also be

adapted to the GPU architecture. Efficient use of data parallelism and memory is another key

to success. In the results section we have shown a detailed analyses of different optimization

techniques and the achievable speed-ups related with them.

We showed the contribution of this paper by solving a problem with many practical uses.

This kind of approach can be used for other problems to achieve comparable speedups. For

the time being the CPU is acting like a controller and the entire processing takes place on the

GPU. Processing some part of the algorithm over CPU while the GPU is busy doing other

processing would be a good area for future work. Moreover, further optimization of LS and

implementation of other LS algorithms over data parallel architecture like GPU could be an

interesting area of work. As another line of future work, the speedups achievable by GPU

implementation can be used to design more complex algorithms that numerically outperform

the existing algorithms.

Acknowledgements We would like to thank Dalila Boughachi for her help, regarding the use of genetic

algorithms to solve MAX-SAT problem. We would also like to thank the anonymous users who replied to our

queries regarding CUDA and GPGPU.

References

1. URL http://www.nvidia.com/cuda/
2. URL http://www.openmp.org/
3. nVidia CUDA Programming Guide 2.1 - CUDA 2.1 SDK Documentation (2008). URL

http://www.nvidia.com/cuda/
4. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms, Operations Research/Computer Science Inter-

faces Series, vol. 42. Springer (2008)
5. Boughaci, D., Drias, H.: Solving weighted max-sat optimization problems using a taboo scatter search

metaheuristic. In: SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pp. 35–

36. ACM, New York, NY, USA (2004)
6. Boughaci, D., Drias, H., Benhamou, B.: Solving max-sat problems using a memetic evolutionary meta-

heuristic. In: Cybernetics and Intelligent Systems, 2004 IEEE Conference on Publication, vol. 1, pp.

480–484 (2004)
7. Drias, H.: Scatter search with walk strategy for solving hard max-w-sat problems. In: proceedings of

IEA- AIE2001m lecture notes in cumputer science, LNAI-2070, p. 3544. Springer, Budapest (2001)
8. Fok, K., Wong, T., Wong, M.: Evolutionary computing on consumer graphics hardware. IEEE Intelligent

Systems 22(2), 69–78 (2007)
9. Frank, J.: A study of genetic algorithms to find approximate solutions to hard 3cnf problems. In: In

Golden West International Conference on Artificial Intelligence. Kluwer Academic Publishers (1994)
10. Hoos, H., Stutzle, T.: Satlib: An online resource for research on sat. pp. 283–292. IOS Press (2000).

SATLIB is available online at www.satlib.org
11. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science, Number 4598, 13

May 1983 220, 4598, 671–680 (1983)
12. Li, C.: Exploiting yet more the power of unit clause propagation to solve 3-sat problem. In: ECAI’96

Workshop on Advances in Propositional Deduction, pp. 11–16. Budapest, Hungary (1996)
13. Li, C., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In: IJCAI (1), pp.

366–371 (1997)



20

14. Li, J., Wang, X., He, R., Chi, Z.: An efficient fine-grained parallel genetic algorithm based on gpu-

accelerated. In: NPC ’07: Proceedings of the 2007 IFIP International Conference on Network and Parallel

Computing Workshops, pp. 855–862. IEEE Computer Society, Washington, DC, USA (2007)

15. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: Nvidia tesla: A unified graphics and computing

architecture. Micro, IEEE 28(2), 39–55 (2008)

16. Martin, D., George, L., Donald, L.: A machine program for theorem-proving. Commun. ACM 5(7),

394–397 (1962)

17. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

18. Matsumoto, M., Nishimura, T.: Dynamic creation of pseudorandom number generators. In: Monte Carlo

and Quasi-Monte Carlo Methods 1998, pp. 56–69. Springer (2000)

19. Mazure, B., Sais, L., Crmoire, E.: A tabu search for sat. In: proceedings of AAAI (1997)

20. Podlozhnyuk, V.: Parallel mersenne twister. CUDA 2.1 SDK Documentation (2007)

21. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search (1994)

22. Stratton, J., Stone, S., Hwu, W.: Mcuda: An efficient implementation of cuda kernels on multi-cores.

Tech. Rep. IMPACT-08-01, University of Illinois at Urbana-Champaign (2008)

23. Tomassini, M.: Spatially structured evolutionary algorithms. Springer, Berlin (2005)

24. Yu, Q., Chen, C., Pan, Z.: Parallel Genetic Algorithms on Programmable Graphics Hardware, vol. 3612,

pp. 1051–1059 (2005)


