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,ree-phase induction motors are becoming increasingly popular for electric cars and industrial uses because of their improved
efficiency and simplicity of production, among other things. Many enterprises and industries use induction motors in several
rotating applications. However, it is a difficult talent to master when it comes to controlling the speed of an induction motor for
various purposes. ,is study examines the performance of a three-phase induction motor using approaches such as field-oriented
control and direct torque control. ,is work utilized the fractional order Darwinian particle swarm optimization (FODPSO)
method in fuzzy methodology to optimize a motor’s performance. Field-oriented control (FOC) and Direct torque control (DTC)
methods are regulated by FODPSO, which is compared to standard FOC and DTC methods. MATLAB-Simulink was used to
compare the outcomes of each system’s simulation model to determine which one performed the best. ,e support vector
machine-direct torque control (SVM-DTC) technology is famous for its rapid dynamic response and decreased torque ripples.
Using torque and settling time and rising time reduction, the suggested technique is proved to be superior to the present way.

1. Introduction

,ere are a variety of approaches that may be used to control
the torque of an induction motor. Because of their capacity
to effectively follow torque and speed standards despite
changes in load factors, control techniques such as direct
torque control and field-oriented control have gained
popularity [1]. Blaschke developed field-oriented control,
also known as vector control, in 1970 and published his
findings in 1971. ,is technique has the capability of

manipulating the space vectors of voltage, current, and
magnetic flux [2, 3] ,e fundamental benefit of this tech-
nology is that the flux and torque components maybe
separated in the same manner as they can be separated in an
independently stimulated direct current (DC) motor. High-
speed induction motor speed control simulation was re-
ported by Maghfiroh et al. [4]. ,e simulation was based on
direct current technology. ,e fuzzy-PID model was used to
simulate the system under both loaded and unloaded cir-
cumstances. In this case, they were comparing fuzzy-PID
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with regular PID. ,e suggested approach uses 4.5 percent
more energy in the no-load test than the existing technique.
,e energy consumption of fuzzy PID is 1.03 percent lower
than that of classical PID in a load test [5]. A performance
investigation of FOC and DTC for Permanent Magnet
SynchronousMotor drives using the SVPWM technique was
reported by Abassi et al. in 2015. One of the limitations of
this method is that it necessitates the use of location in-
formation and mechanical sensors. Earlier this year, Nan-
jibEIQuanjili, Aziz Derouich, and colleagues published a
study of contemporary DTC augmentation techniques for
induction motor drives.

,e direct torque [6] approach simply creates the desired
torque response of an induction motor by applying a
constant voltage to the motor. Using space vector selection,
the lookup table directs the regulated space vector selection
for the stator flux and torque drive in this technique to stator
flux and torque drive. When it comes to advantages, direct
torque control trumps field-oriented control hands down. It
is less vulnerable to external disturbances and more resistive
to parameter changes and does not need the use of reference
frame transformation [7] than indirect torque control.
When compared to field-oriented control, the dynamic
response is likewise rather excellent in this case. ,is work
presents the results of the simulation of these two ap-
proaches using the fractional order Darwinian particle
swarm optimization (FODPSO) with a fuzzy logic controller
(FODPSO-FLC) [8, 9], and the findings are compared to
those obtained using a three-phase induction motor.

However, various studies on DTC and FOC, as well as
the use of other kinds of controllers to enhance the per-
formance of those motor control systems, have been pub-
lished in recent years. ,e fact that all of those reports and
studies were solely focused on performance comparisons,
which presume that everything is going smoothly, which is
not always the case, presents another concern. As a con-
sequence, two power quality concerns have been included in
these comparative studies: voltage sag and brief interruption
[10, 11]. On the one hand, a theoretical comparison of DTC
[11] and other motor drive techniques was published,
outlining the fundamental principles of DC drive [12], flux
vector, scalar control, and DC drive. On the other hand, a
theoretical comparison of DTC and other motor drive
techniques was published, outlining the fundamental
principles of DC drive. On the other hand, DTC and FOC
have been the subject of much research, both separately and
in conjunction with the use of other kinds of controllers to
enhance the performance of those motor control systems.

Using topology modification, such as the addition of
gears for the components or the use of a gearbox with a
limited number of ratios, Kabalan et al. [13] investigated the
potential for efficiency improvement of a simple series-
parallel hybrid electric vehicle powertrain using a simple
series-parallel hybrid electric vehicle powertrain. ,e data
revealed that the efficiency of one variation decreased while
the efficiency of another variant increased, with a fuel
consumption result that was equivalent to that of the
conventional Toyota Hybrid System. Vora et al. [14] de-
veloped a powertrain simulation and battery deterioration

which were both integrated into the model-based frame-
work. ,e development of models for predicting fuel usage,
electrical energy consumption, and battery replacement is
now underway. ,ese findings were paired with economic
assumptions in order to allow for further investigation of a
more expansive design space in order to deliver greater
insights to vehicle integrators, component makers, and
purchasers of hybrid and electric vehicles (HEVs). For the
first time, Lei et al. [15] presented an innovative strategy for
constructing a battery-electric powertrain that reduces en-
ergy usage while preserving vehicle performance and
comfort. Requirements for power performance, energy us-
age, and other factors are also reduced. Vehicle-specific
characteristics such as ride comfort and handling were
developed. Following that, the resulting requirements were
applied to the subsystem level, where torque outputs, motor
efficiency, and other parameters were taken into consider-
ation.,e equivalent criteria were vehicle weight and vehicle
length. At the subsystem level, a multiobjective global op-
timization was carried out, and a restricted-energy technique
was used to reduce energy consumption. It was suggested
that the vehicle level be used. ,e final solution featured a
lightweight-to-heavyweight ratio of 93.5 percent and was
very compact, so 92% motor efficiency was achieved.

For the last point, past work has concentrated on the
parallels between FOC and DTC by reexamining the un-
derlying principles of both and studying ways to merge the
two to provide a control algorithm that is both more ac-
curate and quicker.,erefore, this research was compared to
the previous studies, with a greater number of comparable
parameters being included in the comparison. Specifically,
the proposed work explains the operation of FOC in section
2, the operation of DTC in section 3, the FODPSO approach
for fuzzy control in section 4, simulation, the result, and a
comparison of the various techniques in section 5, and the
conclusion in section 6.

2. Field-Oriented Control

,e FOC technique makes use of orthogonal transforma-
tion, in which a-b-c coordinates are transformed to dq0
coordinates, as seen in the diagram. ,is will allow for
independent control utilizing direct axis or quadrature axis
currents since the torque and flux components will no longer
be connected together. PI controllers are capable of regu-
lating the output voltage, which limits the reaction time of
the torque controller under transient conditions. ,e
components of the FOC system are an IGBT-based VSI
inverter, an induction motor, an IGBT-based controller, and
a current control-based PWM block. In this comparison, the
rotor speed (r) is compared with the reference speed (r∗),
and the difference in speed is supplied into a PI controller. A
limiter is a device that restricts the amount of reference
torque (Tk∗) produced by the PI controller. ,e reference
current for the quadrature axis component of current (Iq∗) is
formed by limiting the value of Tref∗ to a reasonable value.
In a similar vein, the direct axis component of current is
dictated by the rotor speed of the electric motor. ,e
combination of the quadrature axis and direct axis
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components of currents results in the generation of three-
phase reference currents. In the next step, the measured
three-phase winding current value is compared to the three-
phase reference current value, with the resulting error being
passed back to the PWM block.,is equation is then used to
create the switching signal, which is subsequently used.
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3. FODPSO-FLC-Based FOC

,e power supply circuit, three-phase diode rectifier, speed
controller, IGBT-based VSI inverter, feedback optimization
circuit, and optimization circuit are all shown in the block
diagram in Figure 1. ,e fundamental concept of a three-
phase induction motor is to transform three-phase electrical
energy into mechanical energy [16, 17]. ,e magnetic field
produced by the stator is caused by the alternating current
power provided to it. ,e rotor of a synchronous motor, on
the other hand, spins in reaction to the magnetic field
created by the stator of the motor. Because of the rotating
magnetic flux in the rotor winding, current may be induced
in the secondary winding of the transformer, and this
current is then used to power the transformer.,e controller
that has been proposed is a mix of the FODPSO and the FLC.
FODPSO is an acronym for the fractional order Darwinian
particle swarm optimization [18]. Optimization is a tech-
nique that is used to create the greatest potential output
value while minimising costs. Optimization is used to de-
termine the difference between the rotor and reference
speeds, and the error speed is sent to the PI (Proportional
Integral) controller.

FLC is a fuzzy logic controller. ,e fuzzy logic controller
is divided into three sections:

(i) Fuzzification

(ii) Inference system
(iii) Defuzzification

Table 1 represents the fuzzy set for input error function.

3.1. Direct Torque Control. ,e direct torque control drive is
composed of a torque controller, a speed controller, and an
IGBT-based variable speed inverter (VSI). It is possible to
create an error signal when the reference speed and the rotor
speed are compared [19]. In order to compensate for the
speed mistake, the PI controller creates reference torque
(Tk∗). After that, a torque limiter utilized to keep the torque
under control. It is possible to determine the torque inac-
curacy by comparing the restricted torque reference (Tref )
with the actual torque recorded by the machine, and the
result is presented in Table 1. ,e reference speed of the
motor is computed by combining the estimated stator flux of
the motor with the expected rotor speed flux (r). ,e
switching vectors for the VSI are determined by the errors in
flux and torque [20]. ,e amount of torque linked to the
rotor flux and the stator flux is as follows:
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,e stator flux and the rotor flux in complex form can be
represented as

Ψs � LsIs + LmIr,

Ψr � LrIr + LmIs.
(3)

,e estimated stator flux and torque values are compared
to the command stator flux and torque values, and the error
is processed using a hysteresis band controller.

HΨ � 1 forEΨ > + HBΨ,

HΨ � −1 forEΨ < − HBΨ.
(4)

Here, the flux controller will have a hysteresis bandwidth
of 2HBΨ and rotates in anticlockwise direction. ,e torque
control loop has three levels of digital output, which are
related as follows:

HTe � 1 forETe > + HBTe,

HTe � −1 forETe < − HBTe,

HTe � 0 for − HBTe <ETe < + HBTe.

(5)

3.2. FODPSO-FLC-Based DTC. ,e FODPSO-FLC tech-
nique combines the fuzzy logic controller and fractional
order Darwinian particle swarm optimization techniques
[21]. Figure 2 depicts the FODPSO-FLC-based DTC block
diagram. ,e torque error, which compares the reference
torque to the rotor torque, is the first stage. ,rough the
FODPSO optimization technique, the estimated error is fed
into the controller.
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4. Simulation Results

,e goal function may be calculated by using the fitness
function as a starting point. ,e primary objective is to
monitor the highest amount of wind power while keeping
inaccuracy to a bare minimum during turbine mechanical
power generation [22]. ,e FODPSO method, which is
inspired by the PSO algorithm, is shown in Figure 3, and its
flow chart is given in Figure 4. It is used to acquire the
required minimised and maximised values using an opti-
mization strategy such as the FODPSO algorithm. Computer
algorithms like particle swarm optimization (PSO) [23] may
theoretically improve a problem by repeatedly trying to
execute a feasible solution.

Candidate solutions are referred to as particles in the
PSO approach, and each particle travels over the search

space in pursuit of the greatest potential answer. In contrast
to the particle [24], the swarm retains its global best position
in the search space for each step, whereas the particle keeps
its unique best position in the search space for each step.,e
calculating process of the PSOmethod traps particles around
the suboptimal solution in the search space, resulting in a
clogged search space. As a result, the issue was solved by
utilizing the Darwinian PSO method of optimization
(DPSO). ,e PSO is based on Darwinian evolution. ,is
DPSO makes use of a multisimultaneous parallel PSO ap-
proach, with each swarm in the search space having its own
swarm. However, there is a drawback to this approach: if the
search results in a substandard result, the search in that
location is simply discarded, and a new area is investigated
instead. For this reason, DPSO has a problem with the
stagnation that causes it to shorten the lifespan of swimming
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Figure 1: FODPSO-FLC-based FOC.

Table 1: Fuzzy set for input error.

Fuzzy set Membership function Range Set description

NL Trapezoidal
−1.0 to −1.0
−1.0 to −0.8
−0.8 to −0.5

Speed error is high in the negative direction

NM Triangular −0.8 to −0.5
−0.5 to −0.2 Speed error is medium in negative direction

ZE Triangular −0.2 to 0
0 to 0.2 Speed error is around zero

PM Triangular 0.2 to 0.5
0.5 to 0.8 Speed error is medium in positive direction

PL Trapezoidal
0.5 to 0.8
0.8 to 1
1 to 1

Speed error is large in positive direction

NS Triangular −0.5 to −0.2
−0.2 to 0 Speed error is smaller in negative direction

PS Triangular 0 to 2
0.2 to 0.5 Speed error is small in the positive direction
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particles and erase them from the search area automatically.
As a consequence, reaching a point of convergence takes an
inordinate amount of time. DPSOwas proposed as a method
of addressing the complexity of DPSO while also controlling
its convergence rate.,e DPSO has submitted a proposal for
fractional ordering. Particle trajectories and dynamic events
benefit from this fractional order since it needs an infinite
number of requirements to be satisfied [25].

Table 2 represents the electrical parameters of induction
motor and the different parametric values.

MATLAB-Simulink is used to model a sensor-less FOC
of an induction motor drive for a 200 HP AC motor. ,e
model-referencing adaptive system approach is used to
calculate the motor speed from terminal voltages and cur-
rents. As a result, the speed sensor is no longer functional.
,e induction motor’s parameters are listed in Table 2.
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Figure 2: FODPSO-FLC-based DTC.

Figure 3: Fuzzy optimization by FODPSO technique.
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,is is accomplished by driving the induction motor
using a voltage source inverter, which is constructed from a
three-phase bridge rectifier of the Simulink model of FOC-
based FODPSO, as shown in Figure 5. ,e flux and torque
references for the FOC controller are generated by a PI
controller that is included in the speed control loop. When
the FOC controller calculates the flux and torque references
for the motor, a three-phase current regulator is used to
provide the motor with the three reference motor line
currents.

,is discretized FOC system has a step time of 2 us and
has been discretized. ,e speed controller employs a 140-
second sample period to simulate the control device, while
the DTC controller uses a 20-second sampling time to
emulate the control device. ,e switching frequency of the
inverter has been set at 5 kHz. ,is is shown in Figure 6.

When the forward operating mode is activated, the reference
speed is set to 500 rpm at time 0.5 s, and when the forward
operating mode is deactivated at time 2 s, the reference speed
is reduced to 0 rpm.

Similarly, at t� 1 s, the full load torque, i.e., 100Nm is
applied to the motor shaft and torque is brought back to
0Nm at 2.5 s, which is shown in Figure 7.

At t� 0.5 s, as the reference speed set point is increased to
500 rpm, at this instant, the motor speed starts to accelerate
and settles at 500 rpm after 0.33 s. ,erefore, the reference
speed and rotor speed of a three-phase induction motor
using the FOC method are shown in Figure 8.

At 2 s, the reference speed is reduced to 0 rpm, causing
the rotor speed to drop to 0 rpm in 0.33 s by exactly following
the deceleration ramp and the motor speed to stabilize at
0 rpm shortly after. ,e complete load torque is given to the
motor shaft at t� 1 s, yet the motor speed continues to ramp
up to its final value during this interval. When the motor hits
500 rpm and the speed ramping is completed, the electro-
magnetic torque reaches its maximum (500Nm) and then
stabilises. It is also worth noticing that the speed curve
exceeds 500 rpm at 0.83 s before settling at 500 rpm at 1s.,e
peak overshoot in the speed curve of three-phase induction
motor using the FOC method is shown in Figure 9.

When the stator current curve is examined, which is
shown in Figure 10, it reveals a starting current of 1540 A
and a negative peak current of −3050A, but this peak settles
at 0.04 s to a magnitude of 100 A at no load.

It is also seen that when the machine starts to accelerate
at 0.5 s and the magnitude of current increases to 250A, the
extent drops to 100A at 0.85. When reference speed is either
accelerated or decelerated, the magnitude of current in-
creases, but if the speed is maintained constant, the stator
current oscillates around 100A, and this is shown in
Figure 11.

During the interval from 0.5 s to 0.83 s, the electro-
magnetic torque increases to 500Nm. Similarly, when load
torque is applied at 1 s, the electromagnetic toque is
maintained at 120Nm. During deceleration, the load torque
stabilizes at −400Nm. During the interval from 2 s to 2.83 s,
the electromagnetic toque oscillates around 110Nm.

Figure 12 depicts a MATLAB-Simulink simulation of
direct torque management using space vector pulse width
modulation for a three-phase induction motor, and its
model is shown in Figure 13. A voltage source inverter
powers a three-phase induction motor in the system. ,is
method uses fixed frequency control instead of variable
frequency control. ,e torque and flux characteristics re-
quired for the direct torque control block are estimated by
the PI controller that is positioned in the speed control loop.
A reference voltage vector is created by comparing the es-
timated flux and motor torque values to the reference values.
With a 2 μs time step, the DTC system was discretized. ,e
speed controller employs a 100 us sampling interval to
represent the system, whereas the vector controller uses a
20 μs sample period.

At 0.5 s, the motor starts to accelerate and achieves a
peak overshoot of 506 rpm at 1.05 s and settles to 500 rpm at
1.25 s. ,e reference rotor speed and the peak overshoot of
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Figure 4: Flow chart for FODPSO based on the fuzzy technique.

Table 2: Electrical parameters of induction motor.

Different parameters Value
Rated power 149.2 kW
Rated voltage 440V
Stator resistance 15mΩ
Rated speed 500 RPM
Stator inductance 0.3mH
Horse power 200HP
Rotor resistance 9mΩ
Rotor inertia 3 kgm2

Rotor inductance 0.3mH
Pole pairs 2
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Figure 5: Simulink model of FOC-based FODPSO.
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Figure 9: Peak overshoot in the speed curve of three-phase induction motor using the FOC method.
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Figure 11: Stator current during the interval 0.5 s to 0.85 s.

8 Mathematical Problems in Engineering



0 0.5 1 1.5 2 2.5 3
<Electromagnetic torque T e (N*m)>
Torque reference

600

400

200

0

-200

-400

-600

Figure 12: Torque reference and electromagnetic torque of a three-phase induction motor by using the FOC method.

Figure 13: Simulink model of the DTC method of induction motor.
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Figure 14: Reference speed and rotor speed of a three-phase induction motor using the DTC method.
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three-phase induction motor using the DTC method are
shown in Figures 14 and 15.

When compared to the FOC approach, the starting
current of the stator climbs to a positive maximum of 1200A
and a negative maximum of −600A for a 200HP machine,
which is shown in Figure 16.

During the speed acceleration at 0.5 s, electromagnetic
torque increases to a magnitude of 300Nm and settles at
100Nm when the motor achieves a stable speed of 500 rpm;

these are shown in Figure 17. Table 3 describes the per-
formance evaluation of conventional FOC and DTC with
proposed FODPSO-based fuzzy FOC and DTC. From the
comparative analysis, the FODPSO-based fuzzy FOC works
better than others and gives efficient performance in all
parameters. Table 3 represents the performance evaluation
of FOC and DTC for a three-phase induction motor. Table 4
represents the comparative analysis of various optimization
techniques.
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Figure 15: Peak overshoot in a three-phase induction motor using the DTC method.
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Figure 16: Stator current of three-phase induction motor using the DTC method.
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Figure 17: Torque reference and electromagnetic torque for a three-phase induction motor using the DTC method.

10 Mathematical Problems in Engineering



Table 4 shows the comparative analysis of various op-
timization techniques used in the induction motor con-
troller. It compares the rise time, fitness function, switching
loss, and algorithm complication of different optimization
techniques.

Figure 18 represents the controller performance. ,e
proposed method of FODPSO-based fuzzy logic control
technique performs better than other optimization
techniques.

5. Conclusion

An induction motor of 200 horsepower was modeled using
MATLAB-Simulink, which is utilized to create a model of
field-oriented control and direct torque control techniques
for the motor. When comparing the DTC approach to the
FOC method, it has been discovered that the DTC method
produces superior outcomes. ,is paper proposes an opti-
mization strategy for controlling the FOC andDTCmethods

Table 3: ,e performance evaluation of FOC and DTC for a three-phase induction motor.

Parameters FOC DTC FODPSO-FLC-based FOC FODPSO-FLC-based DTC
Peak overshoot speed 501 rpm 506 rpm 503 rpm 504 rpm
Settling time 0.23 s 0.28 s 0.17 s 0.2 s
Rise time 0.42 s 0.61 s 0.33 s 0.55 s
Fall time 0.42 s 0.61 s 0.33 s 0.55 s
Torque at 500 rpm 118N·m 97N·m 120N·m 100N·m
Torque during acceleration 489N·m 294N·m 500N·m 300N·m
Torque during deceleration −402N·m −200N·m −400N·m −200N·m
Starting current (positive peak) 1535A 1196A 1540A 1200A
Starting current (negative peak) −3050A −600A −3050A −600A
Stator current at 500 rpm 100A 100A 100A 100A

Table 4: A comparative analysis of various optimization techniques.

Different optimization techniques Rise time Fitness function Switching loss Algorithm complexity
DTC-conventional High High High Simple
FOC-conventional High High High Simple
DTC-GA Medium Moderate Medium Complex
FOC-GA Medium Moderate Medium Complex
DTC-BOA Medium Moderate High Good
DTC-BOA Medium Moderate High Good
FOC-fuzzy Low Low Low More complex
DTC-fuzzy Low Low Low More complex
DTC-FODPSO Low Low Low Good
FOC-FODPSO Very low Low Low Good
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Figure 18: Overall performance of the controllers.
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that is based on FODPSO. It is necessary to do a perfor-
mance analysis of both strategies in order to compare their
results. ,e FODPSO-based FOC outperforms both the
DTC technique and other traditional methods in terms of
performance. ,e DTC technique requires less starting
current and less torque for the same speed since the starting
current and torque requirements are lower in the DTC
method.

Energy efficiency optimization is very important not just
for electrical systems but for all systems in order to be useful
in terms of money and also in terms of lowering global
warming emissions. ,rough the use of optimum control
and design methodologies, this study provided a compre-
hensive overview of recent achievements in the area of ef-
ficiency optimization of three-phase induction motors. It
included both the broad techniques of loss model control
and the search control that were discussed in detail in the
previous section. Optimization of design adjustments in
materials and structure in order tomaximize the efficiency of
the motor is covered by the term “optimal design.” ,ese
techniques include artificial neural networks, fuzzy logic,
expert systems, and nature-inspired algorithms. Other
techniques such as genetic algorithms, differential evolution,
evolutionary programming, evolutionary strategy, and
simulated annealing were also included in this paper’s future
work of optimization.
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on request from the corresponding author.
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