
1

Hybrid Parallelism for Volume Rendering
on Large, Multi- and Many-core Systems

Mark Howison, E. Wes Bethel, Member, IEEE, and Hank Childs

(Invited Paper)

✦

Abstract—With the computing industry trending towards multi- and

many-core processors, we study how a standard visualization algorithm,

ray-casting volume rendering, can benefit from a hybrid parallelism

approach. Hybrid parallelism provides the best of both worlds: using

distributed-memory parallelism across a large numbers of nodes in-

creases available FLOPs and memory, while exploiting shared-memory

parallelism among the cores within each node ensures that each node

performs its portion of the larger calculation as efficiently as possible.

We demonstrate results from weak and strong scaling studies, at levels

of concurrency ranging up to 216,000, and with datasets as large as

12.2 trillion cells. The greatest benefit from hybrid parallelism lies in

the communication portion of the algorithm, the dominant cost at higher

levels of concurrency. We show that reducing the number of participants

with a hybrid approach significantly improves performance.

Index Terms—Volume visualization, parallel processing

1 INTRODUCTION

Many in the HPC community have expressed concern
that parallel programming languages, models, and ex-
ecution frameworks that have worked well to-date on
single-core massively parallel systems may “face dimin-
ishing returns” as the number of computing cores on
a chip increase [1]. In this context, we explore the per-
formance and scalability of a common visualization al-
gorithm – ray-casting volume rendering – implemented
with different parallel programming models and run
on both a large supercomputer comprised of six-core
CPUs and a cluster with many-core GPUs. We com-
pare a traditional distributed-memory implementation
based solely on message-passing against a “hybrid”
implementation, which uses a blend of message-passing
(inter-chip) and shared-memory (intra-CPU/intra-GPU)
parallelism. The thesis we wish to test is that there are
opportunities in the hybrid-memory implementation for
performance and scalability gains that result from using
shared-memory parallelism among cores within a chip.

• M. Howison is with the Center for Computation and Visualization,
Brown University, 94 Waterman Street, Providence, RI 02912, USA,
and the Computational Research Division, Lawrence Berkeley National
Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA. Email:
mhowison@brown.edu

• E.W. Bethel and H. Childs are with the Computational Research Division,
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley,
CA 94720, USA Email: {mhowison,ewbethel,hchilds}@lbl.gov

Fig. 1. This 46082 image of a combustion simulation result

was rendered by our MPI+pthreads implementation run-

ning on 216,000 cores of the JaguarPF supercomputer.

Over the years, there has been a consistent and well-
documented concern that the overall runtime of large-
data visualization algorithms is dominated by I/O costs
(e.g., [2]–[4]). During our experiments, we observed re-
sults consistent with previous work: there is a significant
cost associated with scientific data I/O. In this study,
however, we focus exclusively on the performance and
scalability of the ray-casting volume rendering algo-
rithm, not on parallel I/O performance. This approach is
valid for many visualization use cases, such as creating
multiple images from a single dataset that fits entirely
within the memory footprint of a large system, or creat-
ing one or more images of data that is already resident
in memory, as in the case of in-situ visualization.

Our findings (Section 5) show that there is indeed
opportunity for performance gains when using hybrid-
parallelism for raycasting volume rendering across a

2

wide range of concurrency levels. The hybrid-memory
implementation runs faster, requires less memory and,
for this particular algorithm and set of implementation
choices (Section 3), requires less communication band-
width than the distributed-memory implementation.

This paper is an extension of our previous work [5],
and we have added the following new components: (1) a
weak scaling study to better understand performance as
we increase problem size along with processor count; (2)
a new platform and implementation – a hybrid/CUDA
implementation run on a distributed memory GPU clus-
ter – along with both strong and weak scaling studies
on that platform to better understand how the change
in ratio of cores to nodes impacts performance and scal-
ability; (3) a study to determine the optimal image tile
size and shape, based upon the principles of autotuning,
for both the CPU and GPU platforms. For the sake of
completeness, we reuse many of the figures and concepts
from our earlier work.

2 BACKGROUND AND PREVIOUS WORK

2.1 Parallel Volume Rendering

Volume rendering is a common technique for display-
ing 2D projections of 3D sampled data [6], [7] and is
computationally, memory, and data I/O intensive. In the
quest towards interactivity, as well as to address the
challenges posed by growing data size and complexity,
there has been a great deal of work over the years in the
space of parallel volume visualization (see Kaufman and
Mueller [8] for an overview). The focus of our work here
is on a hybrid-memory implementation (Section 2.2) at
extreme concurrencies to take advantage of multi- and
many-core processor architectures.

Our hybrid-memory implementation makes use of a
design pattern common to many parallel volume ren-
dering applications that use a mixture of both object-
and pixel-level parallelism [9]–[12]. The design employs
an object-order partitioning to distribute source data
blocks to processors where they are rendered using ray
casting [6], [7], [13], [14]. Within a processor, we then
use an image-space decomposition, similar to Nieh and
Levoy [15], to allow multiple rendering threads to coop-
eratively generate partial images that are later combined
via compositing into a final image [6], [7], [14].

This design approach, which uses a blend of object-
and pixel-level parallelism, has proven successful in
achieving scalability and tackling large data sizes. The
TREX system [3] is a parallel volume rendering algo-
rithm on a shared-memory platform that uses object-
parallel data domain decomposition and texture-based,
hardware-accelerated rendering followed by a paral-
lel, software-based composition phase with image-space
partitioning. The design choices for which part of the
SGI Origin to use for different portions of the algorithm
reflect a desire to achieve optimal performance at each
algorithmic stage and to minimize inter-stage communi-
cation costs. Müller et al. [16] implemented a raycasting

volume renderer with object-order partitioning on a
small 8-node GPU cluster using programmable shaders.
This system sustained frame rates in the single digits
for datasets as large as 12603 with an image size of
1024×768. More recently, Moloney et al. [17] implement
a GLSL texture-based volume renderer that runs on a
32-node GPU system. This work takes advantage of the
sort-first architecture to accelerate certain types of ren-
dering, like occlusion culling. Childs et al. [18] present a
parallel volume rendering scheme for massive datasets
(with one hundred million unstructured elements and
a 30003 rectilinear data set). Their approach parallelizes
over both input data elements and output pixels, and is
demonstrated to scale well on up to 400 processors.

Peterka et al. [4] run a parallel volume rendering
algorithm at massive concurrency, rendering 44803 data
sizes with 32,000 cores on an IBM BG/P system. They
demonstrated generally good scalability and found that
the compositing phase slowed down when more than ten
thousand cores were involved, likely due to hardware or
MPI limitations. To address this problem, they reduced
the number of processors involved in the compositing
phase. Later, Peterka et al. introduce the radix-k paral-
lel compositing algorithm [19] to address compositing
performance at large concurrency. Kendall et al. [20]
build upon this work by demonstrating an approach
for tuning radix-k’s algorithmic parameters to various
architectures, and include new compression and load
balancing optimizations for better scalability and perfor-
mance on diverse architectures.

The most substantial difference between our work and
previous work in parallel volume rendering is that we
are exploiting hybrid parallelism at extreme concurrency,
and performing in-depth studies to better understand
scalability characteristics as well as potential perfor-
mance gains of the hybrid-parallel approach.

2.2 Hybrid Parallelism

Hybrid parallelism has evolved in response to
the widespread deployment of multi-core chips in
distributed-memory systems. The hybrid model allows
data movement among nodes using traditional MPI
motifs like scatter and gather, but within nodes
using shared-memory parallelism via threaded
frameworks like POSIX threads or OpenMP. Previous
work comparing distributed-memory versus hybrid-
memory implementations (e.g., [21], [22]) has focused
on benchmarking well-known computational kernels.
In contrast, our study examines this space from the
perspective of visualization algorithms.

The previous studies point to several areas where
hybrid memory may outperform distributed memory.
First, hybrid memory tends to require a smaller data
footprint for applications with domain decomposition
(e.g. parallel volume rendering), since fewer domains
means less “surface area” between domains and hence
less exchange of “ghost” data. Second, the MPI runtime

3

allocates various tables, buffers, and constants on a per-
task basis. Today, the gain from using fewer tasks to
reduce this memory overhead may seem small with
only four or six cores per chip, but the trend towards
hundreds of cores per chip with less memory per core
will amplify these gains. Third, hybrid-memory imple-
mentations can use a single MPI task per node for collec-
tive operations like scatter-gather and all-to-all, thereby
reducing the absolute number of messages traversing
the inter-connect. While the size of the messages in this
scenario may be larger or smaller depending upon the
specific problem, a significant factor influencing overall
communication performance is latency, the cost of which
is reduced by using fewer messages.

Peterka et al. [23] investigated a hybrid-parallel im-
plementation of a volume renderer that uses four POSIX
threads per MPI task on the IBM BlueGene/P archi-
tecture. They identify similar improvements during the
compositing phase as we report in our study. Their
strong scaling study extends to 4096-way concurrency
with a 11203 dataset and an 12042 image, whereas we
conduct both strong and weak scaling studies with
up to a 230403 dataset and 216,000-way concurrency,
and compare hybrid-memory implementations that use
POSIX threads, OpenMP, and CUDA.

Fogal et al. [24] have recently studied the performance
of volume rendering on a larger multi-GPU cluster.
While their use of an MPI-based compositing phase is
similar to our implementation, they use a different slice-
based volume rendering technique implemented with
GLSL shaders in OpenGL. Their implementation is an
add-on to VisIt, a production parallel visualization tool,
whereas our implementation is a stand-alone research
prototype. Still, their results show similar advantages
for increasing the density of cores per node, as made
possible by a GPU cluster. Because they use out-of-
core access to CPU memory, they are able to process
datasets as large as 81923 on 256 GPUs. In contrast, we
operate within the available device memory of 448 GPUs
to process a 46083 dataset. However, we explore image
sizes as large as 46082, while Fogal et al. use a smaller
1024 × 768 image.

3 IMPLEMENTATION

From a high level view, our parallel volume rendering
implementation using a design pattern that forms the
basis of previous work (e.g., [9]–[12]). Given a source
data volume S and n parallel tasks, each task reads in
1/n of S, performs raycasting volume rendering on this
data subdomain to produce a set of image fragments,
then participates in a compositing stage in which frag-
ments are exchanged and combined into a final image.
The completed image is gathered to the root task for
display or I/O to storage. Figure 2 provides a block-level
view of this organization.

Our distributed-memory implementation is written
in C/C++ using the MPI [25] library. The portions

of the implementation that are shared-memory parallel
are written using a combination of C/C++ and and
either POSIX threads [26], OpenMP [27], or CUDA (ver-
sion 3.0) [28] so that we are actually comparing three
hybrid-memory implementations that we refer to as
hybrid/pthreads, hybrid/OpenMP, and hybrid/CUDA.

The distributed-memory and hybrid-memory imple-
mentations differ in several key respects. First, the
raycasting volume rendering algorithm runs in serial
on the distributed-memory tasks, but is multi-threaded
on the hybrid-memory tasks. We discuss this issue in
more detail in Section 3.1. Second, the communication
topology in the compositing stage differs slightly, and
we discuss this issue in more detail in Section 3.2. A
third difference is in how data is partitioned across the
tasks. In the distributed-memory implementation, each
task loads and operates on a disjoint block of data. In
the hybrid-memory implementation, each task loads a
disjoint block of data and each of its worker threads
operate in parallel on that data using an image-parallel
decomposition [15].

3.1 Parallel Raycasting

Our raycasting volume rendering code implements
Levoy’s method [6]: we compute the intersection of a
ray with a data block, and then compute color at a
fixed step size along the ray through the volume. All
colors along the ray are composited front-to-back using
the “over” operator. Output consists of a set of image
fragments that contain an x, y pixel location, R,G, B, α
color, and a z-coordinate. The z-coordinate is the location
in eye coordinates where the ray penetrates the block of
data. Later, these fragments are composited in the correct
order to produce a final image (see Section 3.2).

Each distributed-memory task invokes a serial ray-
caster that operates on its own disjoint block of data.
Since we are processing structured rectilinear grids, all
data subdomains are spatially disjoint, so we can safely
use the ray’s entry point into the data block as the z-
coordinate for sorting during the subsequent composi-
tion step.

In contrast, the hybrid-memory tasks invoke a ray-
caster with shared-memory parallelism that consists of T
threads executing concurrently to perform the raycasting
on a shared block of data. As in [15], we use an image-
space partitioning: each thread is responsible for raycast-
ing a portion of the image. In the pthreads and OpenMP
raycasting implementation, our image-space partitioning
is interleaved, with the image divided into many tiles
that are distributed amongst the threads. The CUDA
raycasting implementation is slightly different because
of the data-parallel nature of the language: the image
is treated as a 2D CUDA grid, which is divided into
CUDA thread blocks. Each thread block corresponds to
an image tile, and the individual CUDA threads within
each block are mapped to individual pixels in the image.

We directly ported our pthreads raycasting implemen-
tation to CUDA and made no additional optimizations to

4

Fig. 2. Diagram of our system architecture.

improve performance. Even though CUDA thread blocks
require a minimum of 32 threads to saturate computa-
tional throughput, our optimal configuration uses only 8
threads, which points to the branching nature of our al-
gorithm that causes “divergence” among CUDA threads.
A thread block is executed in a single-instruction-
multiple-thread (SIMT) fashion in which “warps” of
32 threads are executed across 4 clock cycles in sets
of 8 threads that share a common instruction. If those
8 threads do not share a common instruction, such
as when conditionals cause branching code paths, the
threads “diverge” and must be executed individually.
This situation is prevalent in our algorithm. For example,
imagine a thread block owning a region of the image
that only partially covers the data volume. Some of the
threads immediately exit because of the “empty-space-
skipping” [16] optimization in our algorithm, while the
other threads proceed to cast rays through the volume.
Even the threads that proceed together with raycasting
have rays of different lengths, which can cause diver-
gence and load imbalance.

It is possible to improve performance of the CUDA
raycasting implementation by dividing it into separate
stages for calculating the ray intersections and integrat-
ing the rays, but the trade-off is the additional memory
required to temporarily buffer the rays between the two
stages. Although we tested this optimization and it led
to better performance at small scales, we chose to use
the direct CUDA raycasting port in our study so as to
maintain a algorithmically consistent comparison with
the pthreads and OpenMP implementations.

3.2 Parallel Compositing

Compositing begins by partitioning the pixels of the final
image across the tasks. Next, an all-to-all communication
step exchanges each fragment from the task where it
was generated in the raycasting phase to the task that
owns the region of the image in which the fragment
lies. This exchange is done using an MPI_Alltoallv

call. After the exchange, each task then performs the

final compositing for each pixel in its region of the
image using the “over” operator, and the final image
is gathered on the root task.

MPI_Alltoallv provides the same functionality as
performing direct sends and receives, but bundles the
messages into fewer point-to-point exchanges for greater
efficiency. This call uses a variety of strategies based
on concurrency level and total message size. One of
the strategies employed is pairwise exchange, so, pro-
vided the heuristics of which strategy to employ are
good, the MPI_Alltoallv should always match or
exceed that of pairwise exchange. Pairwise exchange
shares certain characteristics with binary swap, namely
messages are collated and exchanged in a way that
minimizes the number of point to point communications.
The key difference between binary swap and pairwise
exchange is that binary swap calculates intermediate
compositings as messages are exchanged between the
tasks, reducing the message sizes as as the algorithm
progresses. Although our implementation may appear
to be related to direct-send at first glance, it in fact
has performance characteristics closer to binary swap,
with the caveat that the total message size is greater.
Of course, an optimized binary swap implementation
would outperform our implementation and the results
from Peterka et al in [4] showed the Radix-K provided
further improvement, improving on binary swap by
as much as 40%. Regardless, we believe the number
of messages and message sizes for MPI_Alltoallv is
similar to those of the more sophisticated algorithms
and therefore findings regarding the benefits of hybrid
parallelism also provide evidence of potential benefit for
those algorithms.

Peterka et al. [4] reported scaling difficulties for com-
positing when using more than 8,000 tasks. They solved
this problem by reducing the number of tasks receiving
fragments to be no more than 2,000. We emulated this
approach, again limiting the number of tasks receiv-
ing fragments, although we experimented with values
higher than 2,000.

In the hybrid-memory implementations, only one

5

thread per socket participates in the compositing phase.
That thread gathers fragments from all other threads
in the same socket, packs them into a single buffer,
and transmits them to other compositing tasks. This ap-
proach results in fewer messages than if all threads in the
hybrid-memory implementation were to send messages
to all other threads. Our aim here is to better under-
stand the opportunities for improving performance in
the hybrid-memory implementation. The overall effect of
this design choice is an improvement in communication
characteristics, as indicated in Section 5.4.

4 METHODOLOGY

Our methodology is designed to test the hypothesis that
a hybrid-memory implementation exhibits better per-
formance and resource utilization than the distributed-
memory implementation.

Our multi-core CPU test system, JaguarPF, is a Cray
XT5 located at Oak Ridge National Lab and in 2009
was ranked number one on the list of Top 500 fastest
supercomputers with a peak theoretical performance
of 2.3 Petaflop [29]. Each of its 18,688 nodes has two
sockets, and each socket has a six-core 2.6GHz AMD
Opteron processor, for a total of 224,256 compute cores.
With 16GB per node (8GB per socket), the system has
292TB of aggregate memory and roughly 1.3GB per core.

Our many-core GPU cluster, Longhorn, is located at
the Texas Advanced Computing Center and has 256 host
nodes with dual-socket quad-core Intel Nehalam CPUs
and 24GB of memory. They share 128 NVIDIA OptiPlex
2200 external quad-GPU enclosures for a total of 512
FX5800 GPUs. Each GPU has a clock speed of 1.3Ghz,
4GB of device memory, and can execute 30 CUDA thread
blocks concurrently. We choose to treat the FX5800 as
a generic “many-core” processor with a data-parallel
programming model (CUDA) that serves as a surrogate
for anticipating what future many-core clusters may look
like. In terms of performance, we position the FX5800
relative to the Opteron in terms of its actual observed
runtime for our particular application rather than relying
on an a priori architectural comparison.

We conducted the following three studies:

• strong scaling, in which we fixed the image size at
46082 and the dataset size at 46083 (97.8 billion cells)
for all concurrency levels;

• weak–dataset scaling, with the same fixed 46082

image, but a dataset size increasing with concur-
rency up to 230403 (12.2 trillion cells) at 216,000-way
parallel; and

• weak scaling, in which we increased both the image
and dataset up to 230402 and 230403, respectfully, at
216,000-way parallel.

Note that at the lowest concurrency level, all three cases
coincide with a 46082 image and 46083 dataset size.

On JaguarPF, we share a data block among six threads
and use one sixth as many tasks. Although we could
have shared a data block among as many as twelve

threads on each dual-socket six-core node, sharing data
across sockets results in non-uniform memory access.
Based on preliminary tests, we estimated this penalty
to be around 5 or 10% of the raycasting time. Therefore,
we used six threads running on the cores of a single six-
core processor. On Longhorn, we use one task per GPU
device, and load the data block into GPU device memory
where it is shared among all CUDA threads.

Because the time to render is view-dependent, we
executed each raycasting phase ten times over a selection
of ten different camera locations. The raycasting times
we report are an average over all locations.

In the compositing phase, we tested either four or
five (depending on memory constraints) ratios of total
tasks to compositing tasks. We restricted the compositing
experiment to only two views (the first and last) because
it was too costly to run a complete battery of all view and
ratio permutations. Since the runtime of each trial can
vary due to contention for JaguarPF’s interconnection
fabric with other users, we ran the compositing phase
ten times for both views. We report mean and minimum
times over this set of twenty trials. Minimum times most
accurately represent what the system is capable of under
optimal, contention-free conditions, while mean times
help characterize the variability of the trials.

4.1 Determining Optimal Algorithmic Parameters

The size and shape of the image tiles used in an image-
space partitioning for shared-memory raycasting can
be treated as a tunable parameter. To determine which
configurations performed best on the AMD Opteron
CPU, we ran a parameter sweep over 100 different
sizes and shapes using our shared-memory raycaster on
a 3843 dataset on a single CPU with six threads. We
varied the image tile width and height over the range
{1, 2, 4, . . . , 256, 512} and measured frame rendering time
(FRT) over thirty different views using dynamic work
assignments. For this problem, there are three “invalid”
block size configurations, 256 × 512, 512 × 512, and
512×256, that produce decompositions resulting in only
one or two total work blocks.

From the test results, shown in Figure 3, we see clear
“sweet” and “sour” spots in performance. To produce
that figure, we “normalized” FRT by the minimum so
that values range from [1.0 . . .∞]. In this particular set
of results, the maximum data value is about 3.0, which
means the FRT of the worst-performing tile size was
about three times as slow as the best-performing con-
figuration. We see that very small and very large image
tiles produce poorer performance: at small tile sizes, the
threads’ access to the work list is serialized through a
mutex and performance is adversely affected. At large
tile sizes, there are not enough tiles to result in good
load balance. Therefore, the sweet spot tends to fall in
regions of medium-sized tiles.

An interesting feature in Figure 3 is the relatively poor
performance for block widths of {1, 2, 4}. At these config-
urations, we observe in hardware performance counter

6

Fig. 3. Normalized frame rates resulting from using

different image tile sizes in the pthreads implementation.

Reds correspond to higher and blues to lower frame rates.

CUDA Block Size

1 2 4 8

X Dimension

1

2

4

8

Y
 D

im
e

n
s
io

n

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

A
v
g

. R
a

y
c
a

s
tin

g
 T

im
e

 (s
)

Fig. 4. A sweep over CUDA thread block sizes found that

4 × 2 was the optimal configuration.

data a relatively high level of L1, L2, and TLB cache
misses (not shown due to space limitations); there seems
to be a direct correlation between higher cache miss rates
and higher FRT. The reason for higher cache miss rates
in general is due to degraded spatial and/or tempo-
ral locality of memory accesses. We are using a row-
major ordering of volume data in memory for each data
block, which could be a contributing factor to relatively
higher cache miss rates in certain configurations. More
study, including comparison with more cache-friendly
layout schemes like Z-ordering [30], would help reveal
more insights into the cache utilization characteristics
of different parameter choices. Nonetheless, the main
point here is that our approach, which is consistent
with autotuning in general, is to empirically measure
performance across a range of algorithmic parameters
in order to determine the configurations that perform

better and worse for a given problem configuration on a
given platform. The alternative is to attempt to derive a
quantitative performance model of a complex system in
order to predict which parameter settings will result in
the best performance given a specific algorithm, problem
configuration, and machine architecture.

Based upon the results of this study, we decided to
perform our scalability studies using an image tile size
of 32×32 pixels. That tile size lies within the sweet spot
that is visible in Figure 3. Other tile size choices could
be equally valid: we see that tile sizes having relatively
large width and relatively small height also lie within
the sweet spot of FRT.

We also performed a sweep over CUDA thread block
sizes on the FX5800 using the MPI+CUDA implemen-
tation on a subset of 48 GPUs (see Figure 4). For the
FX5800, the maximum number of CUDA threads per
thread block is 512, and all registers for all threads in
the block must fit in only 16KB of memory. With these
constraints, we swept over thread block sizes up to 8×8.
The experiment found that 4 × 2 was the optimal size.

On the GPU, image tiles (CUDA thread blocks) are
automatically load balanced by the CUDA runtime’s
scheduler. On the CPU, however, we had the choice of
implementing either a dynamic or static work assign-
ment of image tiles to threads. We ran a similar study
where we varied tile size across both algorithms. The
results of that study, not shown here due to space limi-
tations, indicate the static assignment produces slightly
better frame rates at the smallest block sizes, but that the
dynamic assignment produces better results at medium
and larger block sizes and has better load balance char-
acteristics across a larger range of block sizes. Therefore,
we chose to use the dynamic work assignment since it
results in better performance than static assignments for
32 × 32 tiles.

4.2 Source Data and Decomposition

Starting with a 5123 dataset of combustion simulation
results 1, we used trilinear interpolation to upscale it
to arbitrary sizes in memory. We scaled equally in all
three dimensions to maintain a cubic volume. Our goal
was to choose a problem size that came close to filling
all available memory (see Table 1). Although upscaling
may distort the results for a data-dependent algorithm,
the only data dependency during raycasting is early ray
termination. However, we found that for our particular
dataset and transfer function, there was always at least
one data block for which no early terminations occurred.
Moreover, the cost of the extra conditional statement in-
side the ray integration loop to test for early termination
added a 5% overhead. Therefore, we ran our study with
early ray termination turned off, and we believe that
upscaling the dataset does not effect our results.

1. Sample data courtesy J. Bell and M. Day, Center for Computational
Sciences and Engineering, Lawrence Berkeley National Laboratory.

7

TABLE 1

Problem Configurations

Strong Scaling Weak Scaling

Distributed Tasks Hybrid Tasks Distributed Block Hybrid Block Memory Per GPU/Node (MB) Data Size

GPU

- 56 - 1152 × 576 × 329 3331 2304 × 2304 × 2303

- 112 - 576 × 576 × 329 1666 2900 × 2900 × 2898

- 224 - 576 × 288 × 329 833 3656 × 3656 × 3654

- 448 - 288 × 288 × 329 416 4608 × 4608 × 4606

CPU

1728 (123) 288 384 × 384 × 384 384 × 768 × 1152 10368 4608
3

13824 (243) 2304 192 × 192 × 192 192 × 384 × 576 1296 9216
3

46656 (363) 7776 128 × 128 × 128 128 × 256 × 384 384 13824
3

110592 (483) 18432 96 × 96 × 96 96 × 192 × 288 162 18432
3

216000 (603) 36000 76 × 76 × 76 76 × 153 × 230 80.4/81.6 23040
3

Because the compute nodes on an XT5 system have
no physical disk for swap space, allocating beyond the
amount of physical memory causes program termina-
tion. Our total memory footprint was four times the
number of bytes in the entire dataset: one for the dataset
itself, and the other three for the gradient data, which
we computed by central difference and used in shading
calculations. Although each node has 16GB of memory,
we could reliably allocate only 10.4GB for the data block
and gradient field at 1,728-way concurrency because of
overhead from the operating system and MPI runtime
library.

On JaguarPF, we chose concurrencies that are cubic
numbers to allow for a clean decomposition of the entire
volume into cubic blocks per distributed-memory task.
In hybrid memory, these blocks are rectangular because
we aggregated six blocks (1×2×3) into one shared block.

4.2.1 Strong Scaling

On JaguarPF, we used a fixed 46083 dataset at all
concurrencies, except for 216,000-way where the 46083

dataset could not be evenly divided. With increasing
concurrency, each task was assigned a correspondingly
smaller data block, as seen in Table 1.

At 216,000-way concurrency we rounded down to a
45603 distributed-memory dataset and a 4560 × 4590 ×
4600 hybrid-memory dataset. As a result, the distributed-
memory dataset is approximately 1.4% smaller. While
this difference might seem to give an advantage to
the distributed-memory implementation, results in later
sections show that hybrid-memory performance and
resource utilization are uniformly better.

On Longhorn, we were unable to use all 512 GPUs,
so we instead configured our largest test as 8 × 8 × 7
blocks over 448 GPUs. Starting at 56-way concurrency,
the largest dataset we could reliably fit in GPU device
memory was 23043. We processed this data size with
a matching image size of 23042 at concurrencies in the
range {56, 112, 224, 448}.

4.2.2 Weak–dataset and Weak Scaling

On JaguarPF, we assigned a 3843 block to each
distributed-memory task t all concurrency levels, and

aggregated these blocks into a 384 × 786 × 1152 block
for the hybrid-memory tasks. As a result, we processed
datasets with sizes ranging from 46083 to 230403 (see
Table 1). For the weak–dataset scaling, we maintained
the same 46082 image size at all concurrency levels,
whereas for weak scaling we scaled the image size up
to 230402.

On Longhorn, we conducted a weak scaling study
from 56- to 448-way concurrency with data sizes ranging
from 23043 to 46083 and image sizes from 23042 to
46082. We had to round down the z-dimensions of the
dataset slightly to maintain integer multiples in the
decomposition (see ‘Data Size’ in Table 1).

5 RESULTS

We compare the cost of MPI runtime overhead and cor-
responding memory footprint in Section 5.1; the absolute
amount of memory required for data blocks and ghost
(halo) exchange in Section 5.2; the scalability of the ray-
casting and compositing algorithms in Sections 5.3 and
5.4; and the communication resources required during
the compositing phase in Section 5.4. We conclude in
Section 5.5 with a comparison of results from the six-
core CPU system and the many-core GPU system to
understand how the balance of shared-memory versus
distributed-memory parallelism affects overall perfor-
mance.

5.1 Initialization

Because there are fewer hybrid-memory tasks, they in-
cur a smaller aggregate memory footprint for the MPI
runtime environment and program-specific data struc-
tures that are allocated per task. Table 2 shows the
memory footprint of the program as measured directly
after calling MPI_Init and reading in command-line
parameters 2. Memory usage was sampled only from
tasks 0 through 6, but those values agreed within 2% of
each other. Therefore, the per-task values we report in
Table 2 are from task 0 and the per-node and aggregate
values are calculated from the per-task value.

2. We collected the VmRSS, or “resident set size,” value from the
/proc/self/status interface.

8

TABLE 2

Memory Usage at MPI Initialization

CPU
Cores

Memory
Type

Tasks Per Proc.
(MB)

Per Node
(MB)

Agg.
(GB)

1728 Hybrid 288 67 133 19

1728 Distrib. 1728 67 807 113

13824 Hybrid 2304 67 134 151

13824 Distrib. 13824 71 857 965

46656 Hybrid 7776 68 136 518

46656 Distrib. 46656 88 1055 4007

110592 Hybrid 18432 73 146 1318

110592 Distrib. 110592 121 1453 13078

216000 Hybrid 36000 82 165 2892

216000 Distrib. 216000 176 2106 37023

TABLE 3

CUDA Initialization Time (s)

Concurrency

Scaling 56 112 224 448

Strong 2.10 2.06 1.83 1.73

Weak 2.10 2.15 2.53 2.47

The distributed-memory implementation uses twelve
tasks per node while the hybrid-memory one uses only
two. At 216,000-way concurrency, the runtime over-
head per distributed-memory task is more than 2× the
overhead per hybrid-memory task. The per-node and
aggregate memory usage is another factor of six larger
for the distributed-memory implementation because it
uses 6× as many tasks. Thus, the distributed-memory
implementation uses nearly 12× as much memory per-
node and in-aggregate than the hybrid-memory imple-
mentation for initializing the MPI runtime at 216,000-
way concurrency.

A major disadvantage of using GPU co-accelerators
is the cost of initializing the GPU device in CUDA and
of transferring data between host and device memories.
For our hybrid/CUDA implementation, it took up to
2.53s to initialize the GPU on each node and transfer the
data block from CPU memory to GPU memory across
the PCI-Express bus (transferring the array of image
fragments back to CPU memory had negligible cost).
Although this upfront cost can be amortized in the use
case where several volume renderings are computed
for the same dataset, if only one volume rendering is
computed, then this cost makes the hybrid/CUDA im-
plementation less competitive than the hybrid/pthreads
or hybrid/OpenMP ones. However, the initialization
cost is a limitation of the hybrid/CUDA implementation
in particular, and not the hybrid-parallelism approach in
general.

5.2 Ghost Data

Two layers of ghost data are required in our raycast-
ing phase: the first layer for trilinear interpolation of
sampled values, and the second layer for computing the
gradient field using central differences (gradients are not

 0

 20

 40

 60

 1728

 13824

 46656

 110592

 216000

G
h
o
s
t
D

a
ta

 (
G

B
)

Strong Scaling

Distributed
Hybrid

 0

 400

 800

 1200

 1600

 1728

 13824

 46656

 110592

 216000

G
h
o
s
t
D

a
ta

 (
G

B
)

CPU Cores

Weak Scaling

Fig. 5. Ghost data requirements.

pre-computed for our dataset). Because hybrid memory
is decomposed into fewer, larger blocks, it requires less
exchange and storage of ghost data by roughly 40%
across all concurrency levels and for both strong and
weak scaling (see Figure 5).

5.3 Raycasting

All of the scaling studies demonstrated good scaling for
the raycasting phase, as no message passing is involved
(see Figure 6). For these runs and timings, we used
trilinear interpolation for data sampling along the ray
as well as a Phong-style shader. The final raycasting
time is essentially the runtime of the thread that takes
the most integration steps. This behavior is entirely
dependent on the view. Our approach, which is aimed
at understanding “average” behavior, uses ten different
views and reports an average runtime.

In the strong scaling study, we achieved linear scaling
up to 216,000-way concurrency for the raycasting phase
with distributed memory (see Figure 6). The hybrid-
memory implementation exhibited different scaling be-
havior because of its different decomposition geometry:
the distributed blocks had a perfectly cubic decomposi-
tion, while in hybrid memory we aggregated 1 × 2 × 3
cubic blocks into a larger rectangular block (see Table
1). The smaller size of the GPU cluster limited the
concurrencies we could choose for the hybrid/CUDA
implementation, leading to similarly irregular blocks in
that case.

The interaction of the decomposition geometry and
the camera direction determines the maximum number
of ray integration steps, which is the limiting factor for
the raycasting time. At lower concurrencies, this inter-
action benefited the hybrid-memory implementation by

9

TABLE 4

Raycasting Time (s)

Strong Scaling Weak–dataset Scaling Weak Scaling Hybrid/CUDA

Cores Distributed Hybrid/ pthreads Hybrid/ OpenMP ” ” ” ” ” ” GPUs Strong Weak

1728 24.88 22.31 22.23 24.88 22.31 22.23 24.88 22.31 22.23 56 1.04 1.04

13824 3.10 2.84 2.83 7.33 7.06 7.06 26.65 24.92 24.93 112 0.54 1.09

46656 0.92 0.85 0.85 3.56 3.51 3.51 27.18 25.88 25.88 224 0.29 1.16

110592 0.38 0.37 0.37 2.13 2.15 2.15 27.45 26.59 26.50 448 0.15 1.18

216000 0.19 0.21 0.20 1.46 1.48 1.58 *22.17 26.79 26.88

* Data size is smaller due to memory constraints.

 1

 2

 4

 8

 27

 64

 125

 1728

 13824

 46656

 110592

 216000

56 112 224 448

R
a

y
c
a

s
ti
n

g
 S

p
e

e
d

u
p

CPU Cores

Strong ScalingGPUs

Linear Scaling
Distributed

Hybrid/pthreads
Hybrid/OpenMP

Hybrid/CUDA

 1

 2

 4

 8

 16

 32

 1728

 13824

 46656

 110592

 216000

R
a

y
c
a

s
ti
n

g
 S

p
e

e
d

u
p

CPU Cores

Weak-dataset Scaling

Linear Scaling
Constant Scaling

Distributed
Hybrid/pthreads
Hybrid/OpenMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1728

 13824

 46656

 110592

 216000

56 112 224 448

R
a

y
c
a

s
ti
n

g
 S

p
e

e
d

u
p

CPU Cores

Weak ScalingGPUs

*

Constant Scaling
Distributed (measured)
Distributed (estimated)

Hybrid/pthreads
Hybrid/OpenMP

Hybrid/CUDA

Fig. 6. The speedups (referenced to 1,728 cores) for both the raycasting phase and the total render time (raycasting

and compositing). The raycasting speedup is linear with distributed memory, but sublinear with hybrid memory: this

effect is caused by the difference in decomposition geometries (cubic versus rectangular).

as much as 11% (see Table 4). At higher concurrencies
the trend flips and the distributed-memory implemen-
tation outperforms the hybrid-memory one by 10%. We
expect that if we were able to run the hybrid-memory
implementation with regular blocks (such as 2×2×2 on
an eight-core system), both implementations would scale
identically. We also note that at 216,000 cores, raycasting
is less than 20% of the total runtime (see Figure 9),
and the hybrid-memory implementation is over 50%
faster because of gains in the compositing phase that
we describe in the next subsection.

For weak scaling, the hybrid-memory implementation
maintained 80% scalability out to 216,000 cores. Overall
raycasting performance is only as fast as the slowest
thread and because of perspective projection, the number
of samples each thread must calculate varies. This vari-
ation becomes larger at scale as each core is operating
on a smaller portion of the overall view frustum, which
accounts for the 20% degradation.

The distributed-memory result at 216,000-way con-
currency appears (misleadingly) to be superlinear, but
that is because we could not maintain the data size
per core. Although we could maintain it for the weak–
dataset scaling, increasing the image size to 230403 in
the weak scaling study caused the temporary buffers for
the image fragments (the output of the raycasting phase)
to overflow. To accommodate the fragment buffer, we

had to scale down to a data size of 192003 (7.1 trillion
cells), instead of the 230403 data size (12.2 trillion cells)
used in hybrid memory. We report the measured values
for this smaller data size, and also estimated values for
the full data size assuming linear scaling by the factor
230403/192003.

For the weak–dataset scaling study, the expected scal-
ing behavior is neither linear nor constant, since the
amount of work for the raycasting phase is dependent on
both data size and image size. With a varying data size
but fixed image size, the scaling curve for weak–dataset
scaling should lie between those of the pure weak and
pure strong scaling, which is what we observe. Overall,
216,000-way concurrency was 10× faster than 1,728-way
concurrency.

5.4 Compositing

Above 1,728-way concurrency, we observed that com-
positing times are systematically better for the hybrid-
memory implementation (see Figure 7). The com-
positing phase has two communication costs: the
MPI_Alltoallv call that exchanges fragments from
the task where they originated during raycasting to the
compositing task that owns their region of image space;
and the MPI_Reduce call that reduces the final image
components to the root task for assembly and output
to a file or display (see Figure 9 for a breakdown of

10

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

T
im

e
 i
n
 s

e
c
o
n
d
s

Strong Scaling

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

T
im

e
 i
n
 s

e
c
o
n
d
s

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

T
im

e
 i
n
 s

e
c
o
n
d
s

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

T
im

e
 i
n
 s

e
c
o
n
d
s

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

T
im

e
 i
n
 s

e
c
o
n
d
s

Log10(Compositors)

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

Weak-dataset Scaling

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

Log10(Compositors)

 0

 1

 2

 3

 4

 10 100 1000 10000 100000

1
,7

2
8

Weak Scaling

Distributed
Hybrid/OpenMP
Hybrid/pthreads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000 10000 100000

1
3

,8
2

4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 10 100 1000 10000 100000

4
6

,6
5

6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 10 100 1000 10000 100000

1
1

0
,5

9
2

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 10 100 1000 10000 100000

2
1

6
,0

0

Log10(Compositors)

Fig. 7. Compositing times for different ratios of compositing tasks to total tasks. Solid lines show minimum times taken

over ten trials each for two different views; dashed lines show the corresponding mean times.

11

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

 1728

 13824

 46656

 110592

 216000

M
e
s
s
a
g
e
s

Strong Scaling

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

 1728

 13824

 46656

 110592

 216000

Weak-dataset Scaling

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

4.0e+06

 1728

 13824

 46656

 110592

 216000

Weak Scaling

Distributed
Hybrid/OpenMP
Hybrid/pthreads

 0

 5

 10

 15

 20

 25

 1728

 13824

 46656

 110592

 216000

D
a
ta

 S
e
n
t
(G

B
)

CPU Cores

 0

 5

 10

 15

 20

 25

 1728

 13824

 46656

 110592

 216000

CPU Cores

 0

 100

 200

 300

 400

 500

 600

 700

 1728

 13824

 46656

 110592

 216000

CPU Cores

Fig. 8. The number of messages and total data sent during the fragment exchange in the compositing phase.

these costs). During the fragment exchange, the hybrid-
memory implementation can aggregate the fragments
in the memory shared by six threads, and therefore
it uses on average about 6× fewer messages than the
distributed-memory implementation (see Figure 8). In
addition, the hybrid-memory implementation exchanges
less fragment data because its larger data blocks allow
for more compositing to take place during ray integra-
tion. Similarly, one sixth as many hybrid-memory tasks
participate in the image reduction, which leads to better
performance.

Our compositing phase used a subset of tasks for com-
positing and we explored different ratios of compositors
to renderers. For the strong and weak–dataset scaling
studies, we observe an inflection point starting at 13,824-
way concurrency for hybrid memory and 46,656-way
for distributed memory, where the optimal compositing
configuration is to use a subset in the range of 2,000 to
8,000 tasks. We believe this inflection point exists due to
the characteristics of the underlying interconnect fabric.
Because the hybrid-memory implementation generates
fewer and smaller messages, the critical point occurs at a
higher level of concurrency than for distributed memory.
Interestingly, in the weak scaling study, the inflection
point does not arise until higher concurrency, and using
a larger subset of compositing tasks in the range of 2,000
to 30,000 is optimal. Moreover, it was not possible to use
subsets as small as in the strong scaling study because
of the larger image size with weak scaling; setting the
subset too small led to overallocation from temporary
data structures and MPI buffers as the additional data
was concentrated in fewer compositors.

Peterka et al. [4] first observed that the reduced num-
ber of compositors at higher concurrencies increased
overall performance. In their strong scaling study, they
concluded that 1,000 to 2,000 compositors were optimal

for up to 32,768 total tasks. We note, however, that there
are many differences between our study and theirs in
the levels of concurrency, architectures, operating sys-
tems, communication networks, and MPI libraries, each
potentially introducing variation in the ideal number of
compositors.

5.5 Overall Performance

In the strong scaling study at 216,000-way concurrency,
the best compositing time with hybrid memory (0.35s,
4500 compositors) was 3× faster than with distributed
(1.06s, 6750 compositors). Furthermore, at this scale
compositing time dominated rendering time, which was
roughly 0.2s for both implementations. Thus, the total
render time was 2.2× faster with hybrid memory (0.56s
versus 1.25s). Overall, the strong scaling study shows
that the advantage of hybrid memory over distributed
becomes greater as the number of cores increases (see
Figure 9).

For weak–dataset and weak scaling, the hybrid-
memory implementation still shows gains over the
distributed-memory one, but they are less pronounced
because the raycasting phase dominates. Although the
216,000-way breakdown for weak scaling looks like it
favors distributed memory, this is actually an artifact of
the reduced data size (192003) we were forced to use
in the distributed-memory implementation to avoid out-
of-memory errors. Comparing an estimated value for a
230403 distributed-memory data size suggests that the
hybrid-memory implementation would be slightly faster.

At 448-way concurrency with the 46083 dataset, the
hybrid/CUDA implementation averaged 1.18s for ray-
casting and exhibited a minimum compositing time of
0.15s (median of 0.19s). The raycasting performance po-
sitions this run close to the 46,656-way run on JaguarPF
(see Figure 10). However, the compositing time for the

12

 0

 20

 40

 60

 80

 100

S
tro

n
g

 S
c
a

lin
g

 1,728 13,824 46,656 110,592 216,000

25.3

22.9 22.8

3.6

3.2 3.2

1.5

1.2 1.2

1.2

0.7 0.7

1.2

0.6 0.6

 0

 20

 40

 60

 80

 100

P
e
rc

e
n
t
o
f
"D

is
tr

ib
u
te

d
"

T
im

e

W
e

a
k
-d

a
ta

 S
c
a

lin
g

25.3

22.9 22.8

7.9
7.4 7.4

4.1
3.8 3.8

2.9

2.5 2.5

2.6

1.9 1.9

 0

 20

 40

 60

 80

 100

Distributed

Hybrid/OpenMP

Hybrid/pthreads

Distributed

Hybrid/OpenMP

Hybrid/pthreads

Distributed

Hybrid/OpenMP

Hybrid/pthreads

Distributed

Hybrid/OpenMP

Hybrid/pthreads

Distributed

Hybrid/OpenMP

Hybrid/pthreads

W
e

a
k
 S

c
a

lin
g

*

* Estimated

25.3

22.9 22.8

28.1
26.1 26.1

29.8
28.1 28.0

32.0
29.9 29.9

34.0*
32.0 31.8

Raycasting Compositing - Alltoallv Compositing - Reduce Compositing - Other

Fig. 9. Total render time split into raycasting and compositing components and normalized at each concurrency level

as a percentage of the distributed-memory time. “Compositing – Other” includes the time to coordinate the destinations

for the fragments and to perform the over operator.

hybrid/CUDA run on Longhorn (0.15s) is half that
of hybrid-memory runs at 46,656-way concurrency on
JaguarPF (0.31 to 0.33s).

This result from Longhorn points more generally to
the increasing potential of hybrid parallelism for raycast-
ing volume rendering at higher core-to-node ratios. The
shared-memory parallelism used by the dynamically-
scheduled, image-based decomposition in the raycasting
phase scales well to high concurrencies per node (thou-
sands of threads in the case of CUDA). In turn, decreas-
ing the absolute number of nodes improves the commu-
nication performance during the compositing phase.

We anticipate that future multi-core CPU systems with
more shared-memory parallelism will find a similar
“sweet spot” in hybrid-parallel volume rendering per-
formance as we observed on Longhorn. For instance, we
expect that our hybrid/pthreads and hybrid/OpenMP
implementations will benefit from additional shared-
memory parallelism on the recently procured Cray XT5

system Hopper at NERSC, which will have dual-socket
12-core Opteron CPUs for 24 cores per node.

6 CONCLUSION AND FUTURE WORK

The multi-core era offers new opportunities and chal-
lenges for parallel applications. Our study shows that
for raycasting volume rendering, hybrid parallelism en-
ables performance gains and uses less resources than a
distributed-memory implementation on large supercom-
puters comprised of both multi-core CPUs and many-
core GPUs. The advantages are reduced memory foot-
print, reduced MPI overhead, and reduced communica-
tion traffic. These advantages are likely to become more
pronounced in the future as the number of cores per CPU
increases while per-core memory size and bandwidth
decrease.

Our study used MPI_Alltoallv to perform com-
positing. While we are encouraged by the results show-
ing favorable hybrid-parallel performance in terms of

13

 0

 1

 2

 3

 4

 5

Distributed

Hybrid/OpenMP

Hybrid/pthreads

Hybrid/CUDA

Distributed

Hybrid/OpenMP

Hybrid/pthreads

T
o

ta
l
R

e
n

d
e

r
T

im
e

 (
s
)

JaguarPF 13,824

Longhorn 448
JaguarPF 46,656

3.6

3.2 3.2

1.33
1.5

1.2 1.2

Raycasting
Composite - Alltoallv
Composite - Reduce

Composite - Other

Fig. 10. Total render time for the 46083 dataset, with the

hybrid/CUDA implementation on Longhorn bracketed by

the strong scaling results from JaguarPF.

reduced number of messages, reduced message size,
and faster overall runtime, it would interesting to see
improvement in the context of compositing algorithms
like binary swap and Radix-K. We leave this for future
work.

ACKNOWLEDGMENT

This work was supported by the Director, Office of
Science, Office and Advanced Scientific Computing Re-
search, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 through the Scientific Discov-
ery through Advanced Computing (SciDAC) program’s
Visualization and Analytics Center for Enabling Tech-
nologies (VACET).

This research used resources of the National Center
for Computational Sciences at Oak Ridge National Lab-
oratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725. Additionally, preliminary results for
this work were collected using resources of the National
Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

The authors acknowledge the Texas Advanced Com-
puting Center (TACC) at The University of Texas at
Austin for providing the GPU cluster Longhorn that
contributed to the research results reported within this
paper.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick, “The Landscape of Parallel
Computing Research: A View from Berkeley,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2006-
183, Dec 2006. [Online]. Available: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-183.html

[2] C. T. Silva, A. E. Kaufman, and C. Pavlakos, “PVR: High-
Performance Volume Rendering,” Computing in Science and En-
gineering, vol. 3, no. 4, pp. 18–28, 1996.

[3] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter,
A. Keahey, and C. Hansen, “Interactive Texture-Based Volume
Rendering for Large Data Sets,” IEEE Computer Graphics and
Applications, July/August 2001.

[4] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham, “End-to-end
study of parallel volume rendering on the ibm blue gene/p,” in
Proceedings of ICPP’09 Conference, September 2009.

[5] M. Howison, E. W. Bethel, and H. Childs, “MPI-Hybrid Par-
allelism for Volume Rendering on Large, Multicore Clusters,”
in Proceedings of Eurographics Parallel Visualization and Graphics,
Nörkopping, Sweden, May 2010.

[6] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Com-
puter Graphics and Applications, vol. 8, no. 3, pp. 29–37, May 1988.

[7] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,”
SIGGRAPH Computer Graphics, vol. 22, no. 4, pp. 65–74, 1988.

[8] A. Kaufman and K. Mueller, “Overview of Volume Rendering,”
in The Visualization Handbook, C. D. Hansen and C. R. Johnson,
Eds. Elsevier, 2005, pp. 127–174.

[9] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “A Data
Distributed, Parallel Algorithm for Ray-Traced Volume Render-
ing,” in Proceedings of the 1993 Parallel Rendering Symposium. ACM
Press, October 1993, pp. 15–22.

[10] R. Tiwari and T. L. Huntsberger, “A Distributed Memory Al-
gorithm for Volume Rendering,” in Scalable High Performance
Computing Conference, Knoxville, TN, USA, May 1994.

[11] K.-L. Ma, “Parallel volume ray-casting for unstructured-grid data
on distributed-memory architectures,” in PRS ’95: Proceedings of
the IEEE symposium on Parallel rendering. New York, NY, USA:
ACM, 1995, pp. 23–30.

[12] C. Bajaj, I. Ihm, G. Joo, and S. Park, “Parallel ray casting of visibly
human on distributed memory architectures,” in VisSym’99 Joint
EUROGRAPHICS-IEEE TVCG Symposium on Visualization, 1999,
pp. 269–276.

[13] P. Sabella, “A Rendering Algorithm for Visualizing 3D Scalar
Fields,” SIGGRAPH Computer Graphics, vol. 22, no. 4, pp. 51–58,
1988.

[14] C. Upson and M. Keeler, “V-buffer: visible volume rendering,”
in SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques. New York, NY, USA:
ACM, 1988, pp. 59–64.

[15] J. Nieh and M. Levoy, “Volume Rendering on Scalable Shared-
Memory MIMD Architectures,” in Proceedings of the 1992 Workshop
on Volume Visualization. ACM SIGGRAPH, October 1992, pp. 17–
24.

[16] C. Müller, M. Strengert, and T. Ertl, “Optimized volume raycast-
ing for graphics-hardware-based cluster systems,” in Proceedings
of Eurographics Parallel Graphics and Visualization, 2006, pp. 59–66.

[17] B. Moloney, M. Ament, D. Weiskopf, and T. Moller, “Sort First
Parallel Volume Rendering,” IEEE Transactions on Visualization and
Computer Graphics, vol. 99, no. PrePrints, 2010.

[18] H. Childs, M. A. Duchaineau, and K.-L. Ma, “A scalable, hybrid
scheme for volume rendering massive data sets,” in Eurographics
Symposium on Parallel Graphics and Visualization, 2006, pp. 153–162.

[19] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur, “A
Configurable Algorithm for Parallel Image-compositing Applica-
tions,” in Supercomputing ’09: Proceedings of the 2009 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2009,
pp. 1–10.

[20] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross,
“Accelerating and Benchmarking Radix-k Image Compositing at
Large Scale,” in Proceedings of Eurographics Parallel Visualization
and Graphics, Nörkopping, Sweden, May 2010.

[21] G. Hager, G. Jost, and R. Rabenseifner, “Communication Char-
acteristics and Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-core SMP Nodes,” in Proceedings of Cray User
Group Conference, 2009.

[22] D. Mallón, G. Taboada, C. Teijeiro, J. Tourino, B. Fraguela,
A. Gómez, R. Doallo, and J. Mourino, “Performance Evalua-
tion of MPI, UPC and OpenMP on Multicore Architectures,” in
16th European PVM/MPI Users’ Group Meeting, (EuroPVM/MPI’09),
September 2009.

[23] T. Peterka, R. Ross, H. Yu, K.-L. Ma, W. Kendall, and J. Huang,
“Assessing improvements in the parallel volume rendering

14

pipeline at large scale,” in Proc. SC’08 Ultrascale Visualization
Workshop, Austin, TX, 2008.

[24] T. Fogal, H. Childs, S. Shankar, J. Krüger, D. Bergeron, and
P. Hatcher, “Large data visualization on distributed memory
multi-GPU clusters,” in Proceedings of High Performance Graphics,
2010.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI – The Complete Reference: The MPI Core, 2nd edition. Cam-
bridge, MA, USA: MIT Press, 1998.

[26] D. R. Butenhof, Programming with POSIX threads. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[27] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel programming in OpenMP. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2001.

[28] NVIDIA Corporation, NVIDIA CUDATM Programming Guide
Version 3.0, 2010, http://developer.nvidia.com/object/cuda 3 0
downloads.html.

[29] “The top 500 supercomputers,” 2009, http://www.top500.org.
[30] J. K. Lawder and P. J. H. King, “Using Space-filling Curves for

Multi-dimensional Indexing,” in Lecture Notes in Computer Science,
2000, pp. 20–35.

PLACE
PHOTO
HERE

Mark Howison is an application scientist at
Brown University’s Center for Computation and
Visualization and a computer systems engineer
in Lawrence Berkeley National Laboratory’s Vi-
sualization Group. His research interests include
scientific computing, visualization, graphics, and
parallel I/O. Howison has an MS in computer sci-
ence from the University of California, Berkeley.
Contact him at mhowison@brown.edu.

PLACE
PHOTO
HERE

E. Wes Bethel is a staff scientist at Lawrence
Berkeley National Laboratory, where he con-
ducts and leads research, development, and de-
ployment activities in high-performance, parallel
visual data exploration algorithms and architec-
tures. Bethel has a PhD in computer science
from the University of California, Davis. He’s a
member of ACM Siggraph and IEEE. Contact
him at ewbethel@lbl.gov.

PLACE
PHOTO
HERE

Hank Childs is a computer systems engineer
at Lawrence Berkeley National Laboratory and a
researcher at the University of California, Davis.
His research interests include parallel visual-
ization and production visualization applications.
Childs has a PhD in computer science from the
University of California at Davis. Contact him at
hchilds@lbl.gov.

