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Hybrid Pareto archived dynamically dimensioned search

for multi-objective combinatorial optimization:

application to water distribution network design

Masoud Asadzadeh and Bryan Tolson
ABSTRACT
Pareto archived dynamically dimensioned search (PA-DDS) has been modified to solve combinatorial

multi-objective optimization problems. This new PA-DDS algorithm uses discrete-DDS as a search

engine and archives all non-dominated solutions during the search. PA-DDS is also hybridized by a

general discrete local search strategy to improve its performance near the end of the search. PA-DDS

inherits the simplicity and parsimonious characteristics of DDS, so it has only one algorithm

parameter and adjusts the search strategy to the user-defined computational budget. Hybrid PA-DDS

was applied to five benchmark water distribution network design problems and its performance was

assessed in comparison with NSGAII and SPEA2. This comparison was based on a revised

hypervolume metric introduced in this study. The revised metric measures the algorithm

performance relative to the observed performance variation across all algorithms in the comparison.

The revised metric is improved in terms of detecting clear differences between approximations of

the Pareto optimal front. Despite its simplicity, Hybrid PA-DDS shows high potential for

approximating the Pareto optimal front, especially with limited computational budget. Independent

of the PA-DDS results, the new local search strategy is also shown to substantially improve the final

NSGAII and SPEA2 Pareto fronts with minimal additional computational expense.
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INTRODUCTION
Developing multi-objective optimization (MOO) algorithms

has been an active area of research for many years. Schaffer

() introduced the vector evaluated genetic algorithm

(GA) based on the GA to solve multi-objective problems

(MOPs). Since then, several other multi-objective evolution-

ary algorithms (MOEAs) have been introduced based on

single objective EAs. Example algorithms include PAES by

Knowles & Corne (), SPEA2 by Zitzler et al. (),

NSGAII by Deb et al. (), MOPSO by Parsopoulos &

Vrahatis (), MO shuffled complex evolution by Vrugt

et al. () and MO cross entropy by Perelman et al.

(). MOEAs generate a population of solutions and

evolve it generation by generation until a termination
criterion occurs. They archive some or all non-dominated

solutions and use them as elite solutions for new

generations.

Ideally, solving a combinatorial MOP should identify

the complete set of Pareto optimal solutions. These solutions

are not dominated by any other feasible solution. Usually,

finding all Pareto optimal solutions is very time consuming,

if not impossible. Therefore, the goal of solving a MOP is to

find a set of solutions that represents an approximate front

as close as possible to the Pareto optimal front (proximity)

and as broadly spread out as possible (diversity).

Asadzadeh & Tolson () introduced the Pareto

archived dynamically dimensioned search (PA-DDS) MOO
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algorithm for solving problems with continuous decision

variables and showed good comparative performance on

multi-objective test problems with two objectives. PA-DDS

uses dynamically dimensioned search (DDS) (Tolson &

Shoemaker ) as a search engine and archives all non-

dominated solutions during the search as in (1þ 1)-PAES

(Knowles & Corne ). DDS is a simple single-solution-

based, single objective optimization algorithm that has

only one algorithm parameter with a robust default setting

such that tuning it for each problem is not recommended

(Tolson&Shoemaker ). DDS also adjusts the search strat-

egy to the user input computational budget. In this study, the

DDS component of PA-DDS is substituted with the discrete

DDS (D-DDS) component of hybrid discrete DDS

(HD-DDS) (Tolson et al. ) to solve combinatorial MOPs.

Hybridizing MOO algorithms

Local search techniques can be used to improve proximity

(Ishibuchi & Murata ; Jaszkiewicz ) and/or diver-

sity (Talbi et al. ; Bosman & De Jong ) of the

MOP solution. Heuristic neighbourhood search strategies

such as hill-climbing, simulated annealing, and Tabu

search are probably the most common approaches to hybri-

dize MOO algorithms (example applications are Ishibuchi &

Murata ; Knowles & Corne ; Deb &Goel ; Talbi

et al. ; Jaszkiewicz ; Kleeman et al. ). However,

Brown & Smith () combined the steepest-descent MOO

theory and evolutionary computation to guide the search

towards the dominating search direction in each generation.

Also, Bosman &De Jong () successfully combined three

different gradient techniques (local search strategies) with

typical genetic operators. Moreover, Jourdan et al. ()

introduced LEMMO that uses the learnable evolution

model (LEM) to characterize some rules during the search

of a MOO algorithm such as NSGAII to improve its conver-

gence speed. However, modeller time is required to develop

these problem specific rules which can highly affect the

quality of the coupled NSGAII and LEM solutions.

Deb & Goel () introduced some hybridization termi-

nology to distinguish between applying local search at the

end of the genetic search (posteriori) and during the genetic

search (online). Example posterior hybridization include

Talbi et al. () and Deb & Goel () and example
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
online hybridization include Ishibuchi & Murata (),

Jaszkiewicz (), Brown & Smith () and Bosman &

De Jong (). Goel & Deb () compared posteriori

andonline approaches for hybridizingNSGAIIandconcluded

that the posteriori approach is more efficient since the online

approach places too much emphasis on the local search.

Also, Ishibuchi et al. () pointed out the need for a balance

between global and local searches and applied the local search

to only a few offspring in each generation. Therefore, a new

parameter is often required to divide the computational

budget between local and global searches. Similar to the

other algorithm parameters, finding a proper value for this

parameter might be problem specific and time-consuming.

In this study, a simple posteriori neighbourhood search

strategy replaces the D-DDS sampler in PA-DDS at the

point in the search when the expected value of number of

perturbed decision variables per iteration becomes one.

This approach is based on the hybridization approach in

Tolson et al. () and removes the need for a new algor-

ithm parameter to change the search strategy.

Comparing MOO algorithm performance

Performance metrics aim to measure the quality of an

approximate front by a single number (see Coello et al.

 for a detailed list of MO performance metrics). Zitzler

et al. () defined compatibility and completeness for per-

formance metrics based on the dominance relation. Based

on the definition, comparing two approximate fronts A

and B, a performance metric is complete in terms of the

weak dominance relation, if it prefers A that weakly domi-

nates B. However, if a metric is not complete in terms of

weak dominance, it may fail to prefer A when A weakly

dominates B. A performance metric is compatible in terms

of the weak dominance relation, if its preference in A over

B indicates that A weakly dominates B. However, if a

metric is not compatible in terms of weak dominance, it

may prefer A while A does not weakly dominate B. Only

if a performance metric is complete and compatible in

terms of weak dominance relation, can its result show

whether one approximate front outperforms the other one

(Zitzler et al. ).

Zitzler et al. () studied various performance metrics

and showed that neither a single performance metric nor
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a combination of finite number of performance metrics can

represent a complete and compatible metric with respect to

weak dominance relation. Therefore, they concluded that

based on a single performance metric or a combination of

them it would not be possible to indicate if an approximate

front outperforms the other. However, a performance metric

can at best indicate if an approximate front is not worse than

(weakly dominated by) another one. As Zitzler & Thiele

() showed hypervolume, HV, is a complete metric

with respect to weak dominance relation, that is, if it prefers

solution A to solution B it means that A is not weakly domi-

nated by B.

In this study, HV was revised and used to assess the

results. The revised HV evaluates the algorithm perform-

ance relative to the best and worst observed performance

across all algorithms in the comparison. Similar to the orig-

inal HV, the revised HV is complete. Moreover, it is more

interpretable than HV when the difference between the

worst and the best solutions are practically meaningful.
Figure 1 | Pseudo code of the hybrid PA-DDS.
METHODOLOGY

Hybrid PA-DDS for solving combinatorial MOPs

The proposed MOO algorithm utilizes an implementation of

DDS for solving combinatorial problems referred to as D-

DDS (Tolson et al. ) to first approximate the Pareto opti-

mal front followed by a general local search strategy to

improve the quality of the approximation. The pseudo code

in Figure 1 represents the algorithm in detail.

In addition to having discrete decision variables instead

of continuous decision variables, the only other difference

between the PA-DDS in Figure 1 and the PA-DDS in

Asadzadeh & Tolson () is that the PA-DDS in

Asadzadeh & Tolson () was specifically adapted for

test problems with many local fronts. Unfortunately, this

adaptation introduces an algorithm parameter associated

with how much of the budget should be used initially to

search for individual minima. In order to make the algor-

ithm as simple and parsimonious as possible, we revised

the PA-DDS in this paper (Figure 1) so that no compu-

tational budget needs to be allocated to initially search for

individual minima. Initial testing with PA-DDS on one of
om http://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
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our case studies in this paper indicated that primarily

searching for individual minima was unnecessary.
Discrete DDS (D-DDS)

D-DDS (Tolson et al. ) is the search engine of PA-DDS

for solving combinatorial MOPs. Single objective D-DDS



Figure 2 | Pseudo code of the global search engine of PA-DDS for solving combinatorial

MOPs.

195 M. Asadzadeh & B. Tolson | Hybrid PA-DDS for multi-objective combinatorial optimization: application to WDN Journal of Hydroinformatics | 14.1 | 2012

Downloaded from http
by guest
on 16 August 2022
always uses the overall best solution as the centre of the

search neighbourhood. However, in MOPs instead of a

single current best solution, a set of current non-dominated

solutions exists. Therefore, as noted in Step 1 of Figure 1, the

D-DDS is modified to archive all the non-dominated sol-

utions during the search. Also, whenever the current

selected solution generates a dominated solution as deter-

mined in Step 4 of Figure 1, another current archived non-

dominated solution is selected based on the crowding dis-

tance measure (as in Deb ) as the centre of

neighbourhood. Selection is based on the parameterless pro-

cess roulette-wheel to guide the search towards less crowded

areas in the objective space. The pseudo code in Figure 2

describes this search engine in detail.

Hybridizing the algorithm

Based on the decision to hybridize the D-DDS in Tolson

et al. (), PA-DDS is hybridized when the expected

number of perturbed decision variables per iteration

becomes one (P(i)� 1/D in Step 2 of Figure 2). In other

words, at this time, the D-DDS is replaced by the local

search referred to as L which is defined in Figure 3. L is

designed to polish a current non-dominated solution

by cycling through all possible ways for decreasing or

increasing one decision variable at a time by one discrete

option.

In hybrid PA-DDS, L is called iteratively in Steps 2 and

3 (Figure 1). L is first invoked to polish solutions corre-

sponding to the extreme points of the current approximate

front. For polishing extreme points, L restarts the search at

decision variable 1 to ensure convergence to a solution

that can no longer be improved by L. In Step 3 of Figure 1,

L will polish a portion of the other non-dominated solutions

depending on the remaining computational budget. Unlike

for extreme solutions, L does not restart the search to

converge for other non-dominated solutions. Instead, L

spends at most 2D (twice the number of decision variables)

iterations to polish each of these solutions and this limit

helps to ensure that the local search occurs along the

entire front. If the remaining computational budget in

hybrid PA-DDS is not enough for polishing all archived

non-dominated solutions, the range of the first objective

function is divided into n¼ (the remaining budget)/2D
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
equal intervals and at least one randomly selected non-domi-

nated solution from each nonempty interval is selected to be

polished by L.



Figure 3 | Local search L to polish one solution on the approximate front.
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Optimization model formulation

In this study, the bi-objective WDN design problem is

solved to minimize cost and minimize the highest pressure

deficit throughout the network (the same problem formu-

lation is utilized in Atiquzzaman et al. ; Farmani

et al. ; Perelman et al. ; Di Pierro et al. ).

The two objectives are conflicting since pipes of larger

diameter cost more and usually reduce the pressure deficit.

Decision variables of the problem are pipe diameters that

can be selected from a finite set of available pipe

sizes and all other network characteristics are known.

The mathematical form of the objectives is presented as

follows
om http://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
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min
x

f1 ¼
XD
t¼1

LiCðxiÞ

min
x

f2 ¼ max 0;max
j

fHj � hjðxÞg
� �

Subject to : xi ∈ f1;2; :::; xmax
i g; ∀i ¼ 1; :::;D ð1Þ

where i and j are the pipe and demand node indices respect-

ively, L is the length of each pipe, C is the cost per unit length

of each pipe as a function of the decision variable xi that is an

integer-valued pipe diameter option number for pipe i and is

between option 1 (the smallest diameter) and the maximum

diameter option, xi
max, for all D pipes in the network to be

sized, H is the minimum required pressure head for each

demand node in the network, and h is the pressure at each

demand node as a function of x¼ [x1,…, xD] and is deter-

mined by the network hydraulic simulator which was

EPANET2 in this study.
Benchmark WDN design problems

The following five WDN design problems are selected from

the literature, modelled in EPANET2, and solved in the

bi-objective optimization problem formulation (1). The

EPANET2 input files and all necessary information for repli-

cating these WDNs are available online (http://www.civil.

uwaterloo.ca/btolson/links.htm).
New York tunnels problem (NYTP)

NYTP (Schaake & Lai ; Zecchin et al. ) involves

the rehabilitation of an existing WDN with 21 pipes and

16 design options per pipe (parallelization with one of 15

tunnel sizes or a do-nothing option). This defines a search

space size of 1621 (∼1.93 × 1025). The best known least-cost

design of NYTP costs $38.638 million (Maier et al. ).

Therefore (0 m, $38.638 million) is one of the extreme

points of the Pareto optimal front in problem formulation

(1) for NYTP. Obviously, the other extreme point is (47.6 m,

$0) corresponding to no additional pipe to the current

http://www.civil.uwaterloo.ca/btolson/links.htm
http://www.civil.uwaterloo.ca/btolson/links.htm
http://www.civil.uwaterloo.ca/btolson/links.htm
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network and accepting the maximum of 47.6 m pressure

deficit.
Doubled New York tunnels problem (NYTP2)

NYTP2 (Zecchin et al. ) is twice as big as NYTP

with 42 pipes to be sized from 16 options. This defines

a search space size of 1642 (∼3.74 × 1050). The best

known least-cost design of NYTP2 costs $77.276 million

(Zecchin et al. ). Therefore, the best known Pareto

front for NYTP2 in problem formulation (1) has the

following extreme points: (0 m, $77.276 million) and

(47.6 m, $0).
Hanoi problem (HP)

HP (Fujiwara & Khang ) has 32 pipes with six options

resulting in a search space of 632 combinations (2.87 × 1026

solutions). The single objective version of this problem is

reportedly difficult to simply find a feasible solution

for (Eusuff & Lansey ; Zecchin et al. , ). More-

over, Farmani et al. () noted that in the bi-objective

optimization problem formulation (1), finding a fully feas-

ible solution remains difficult for HP. The best known

least-cost design of HP costs $6.081 million (Perelman &

Ostfeld ) that suggests (0 m, $6.081 million) as an

extreme point of the best known Pareto front in problem

formulation (1). The other true extreme point that corre-

sponds to the smallest pipe size for all pipes is (17,678.5 m,

$1.802 million). Readers are referred to Zecchin et al.

() for detailed information about these first three

networks.
Figure 4 | Normalized hypervolume performance metric for minimization of two

objectives.
GoYang problem (GYP)

GYP (Kim et al. ) is a WDN in South Korea with 30

pipes that should be sized from eight diameter options.

This defines a search space size of 830 (∼1.24 × 1027). The

best known least-cost design of the network costs 177.01

million Won (Tolson et al. ); therefore, one extreme

point of the best known Pareto front is (0 m, 177.01 million

Won) and the other one is (125.1 m, 174.673 million Won).
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
Balerma irrigation network problem (BP)

BP is a large and complexWDNwith 443 demand nodes, 454

pipes, eight loops, and four reservoirs (Reca & Martínez

). Each of the 454 pipes must be sized from 10 possible

diameters that define a search space size of 10454. The best

known least-cost-design of BP costs €1.9409 million

(Tolson et al. ). Therefore, the best known Pareto front

of this network has the following extreme points: (0 m,

€1.9409 million) and (5213.7 m, €0.724 million); the latter

corresponds to the smallest size of all pipes.

Selected performance metrics

Normalized hypervolume (NHV)

The hypervolume (HV) metric (Zitzler & Thiele )

measures the volume bounded by the approximate front

and a reference point (e.g. the shaded area in Figure 4).

Therefore, the bigger HV value is preferred.

Deb () suggested the calculation of HV in the nor-

malized objective space which is called the normalized

hypervolume (NHV) and Van Veldhuizen () proposed

the hypervolume ratio (HVR) that is the ratio of HV for
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the approximate front to the HV for the Pareto optimal

front. Hence, the HVR shows the quality of an approximate

front in comparison with the Pareto optimal front. Although

theoretically the HVR can take any value between 0 and 1,

it is not necessarily close to 0 for all poor approximate

fronts. In fact, as our results show, very different approxi-

mate fronts can have an HVR with a very small numerical

difference. As a result, the interpretation of differences in

the HVR values between algorithms is not always straight-

forward. Therefore, a modified version of the HV is

proposed that is much easier to interpret than the HV

and HVR.
Figure 5 | CNHV performance metric for minimization of two objectives.
Comparative normalized hypervolume (CNHV)

The proposed MOO algorithm performance metric is

referred to as the comparative NHV (CNHV) and is a modi-

fied version of the HVR calculated in the normalized

objective space for comparing multiple optimization trials

of multiple algorithms. With reference to areas A and B in

Figure 5, the CNHV for an approximate front is equal to

B/(AþB). The main difference between CNHV and its pre-

cedent performance metrics HVR and HV can be

summarized as follows.

• The single reference point is replaced by a set of reference

points corresponding to the worst attained front that can

be constructed from all algorithm results in the

comparison.

• Both the best and the worst attained fronts used in the

CNHV are extracted from the results of all MOO algor-

ithms that are included in the comparison while in HV

and the HVR, the reference point and the best known

front are fixed.

To calculate the CNHV, the best and the worst attained

fronts (the solid and dashed lines in Figure 5, respectively)

must be identified. To do this, final approximate fronts of

all the trials of MOO algorithms in the comparison are col-

lected in a set. The best attained front is then identified as

the subset of solutions from this set that are non-dominated.

The worst attained front contains all solutions in this set that

are weakly dominated by at least one solution from each

optimization trial in the comparison.
om http://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
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Similar to the original HV, the CNHV is complete with

respect to the weak dominance relation, that is, it always

prefers an approximate front that weakly dominates the

other one. In other words, comparing two approximate

fronts, the better value of the CNHV indicates that the cor-

responding approximate front is not weakly dominated by

the other one.

The value of the CNHV is more directly interpretable

than the value of HV or the HVR since it determines how

much of all attained results are dominated by each approxi-

mate front. As such, CNHV values close to 0 are relatively

poor and values close to 1 are relatively good. However,

CNHV is not recommended if the best and the worst results

are not practically different. In that situation, all results are

practically the same quality and it might be misleading to

assign a value close to 0 to one or more of the algorithms

in the comparison.

Benchmark optimization algorithms

In order to assess the performance of hybrid PA-DDS,

NSGAII and SPEA2 are implemented and applied to the

same bi-objective WDN design problems. The search

engine of NSGAII and SPEA2 is an integer coded GA
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with a 90% chance of uniform crossover and average

mutation rate of 1/(number of decision variables). The

other parts of NSGAII and SPEA2 are implemented as in

Deb et al. () and Zitzler et al. (), respectively. The

population size in both NSGAII and SPEA2 is set to 100

except for solving GYP with the limited budget of 2000

model evaluations where a smaller population size of 50 is

used. The population size of 100 and the probability of cross-

over and mutation were selected based on the parameter

values specified in Deb et al. () and we did not spend

any further effort to fine tune them.
RESULTS

The results are presented in two subsections. First, a com-

parison is made between hybrid PA-DDS, NSGAII and

SPEA2 for solving problem formulation (1) for all five bi-

objective WDN case studies. Second, the effectiveness of

the local search is evaluated by applying it to both

NSGAII and SPEA2.
Hybrid PA-DDS versus NSGAII and SPEA2

Each of the five WDN case studies is solved by hybrid

PA-DDS, NSGAII, and SPEA2, with a rather large compu-

tational budget (determined from typical budgets utilized

for the case studies in previous publications) and with a

more limited computational budget (one order of magnitude

less). Hybrid PA-DDS has two termination criteria, compu-

tational budget and the local search convergence. For

NYTP, NYTP2 and GYP solved with the higher compu-

tational budget, the local search usually converges before

spending the whole computational budget. This is why the

computational effort for these three cases is less than the

budget. Table 1 summarizes some statistics of the two per-

formance metrics called NHV and CNHV proposed in

this study. Bold numbers in Table 1 represent the best

result for each case study. With the limited computational

budget, Hybrid PA-DDS achieves the best NHV and

CNHV values for all case studies. However, with the

higher computational budget, NSGAII performs better

than Hybrid PA-DDS in NYTP2 and BP.
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
Figure 6 compares the best attained front and the worst

CNHV fronts (corresponding to the italic numbers in

Table 1) for all three algorithms solving each of the five

case studies with the higher computational budget. It

should be noted here that the best attained front is obtained

from results of all trials of all three algorithms and is a dis-

crete front; however, its points are piecewise linearly

connected for illustrative purposes. For NYTP, NYTP2,

and GYP, the best known endpoints (see Benchmark

WDN Design Problems section) are captured in the best

front. However, the best obtained endpoint corresponding

to least-cost design of HP is (0 m, $6.096 M) instead

of (0 m, $6.081 M) and for BP (0 m, €2.115 M) instead of

(0 m, €1.9409 M). The other best known endpoints of

these two cases are identified in the best attained front.

Comparing the NHV and CNHV values in each row of

Table 1, CNHV more clearly detects the difference between

the approximate fronts and therefore between algorithms.

For example, in the HP case study with a computational

budget equal to 10,000, the best trial of hybrid PA-DDS has

a NHV equal to 0.96 while it is 0.94 for the best trial of

NSGAII. This value means that the best trial of Hybrid PA-

DDS covered (dominated) 96% of the area between the best

attained front and the reference point while the best trial of

NSGAII covered 94% of this area. Although this difference

seems negligible, Figure 7(a) shows that there is a considerable

difference between the corresponding approximate fronts. For

the same trials, the CNHV values are 0.98 and 0.84 denoting

that the best trial of hybrid PA-DDS dominated 98% of the

area between the best and worst attained fronts considering

all 150 approximate fronts from 50 trials of each algorithm

compared to only 84% for the best trial of NSGAII. Also com-

paring the best trial of these two algorithms for solving BP

with a computational budget equal to 1,000,000, NHV is

equal to 0.96 and 0.97 for Hybrid PA-DDS and NSGAII

respectively, while CNHV magnifies the difference and results

in 0.82 and 0.92, respectively. Figure 7(b) demonstrates that

the difference detected by CNHV is really considerable and

NSGAII performed better than Hybrid PA-DDS.

Local search performance assessment

To evaluate the effectiveness of the proposed local search

strategy, it was also applied to the results of NSGAII and



Table 1 | Algorithm comparison based on NHV and CNHV

NHV CNHV

Case Study Budgeta Statistic Hybrid PA-DDS NSGAII SPEA2 Hybrid PA-DDS NSGAII SPEA2

NYTP 50 trials 50,000 Avg. 0.85 0.85 0.85 1.00 0.96 0.95
Best 0.85 0.85 0.85 1.00 0.98 0.99
Worst 0.85 0.85 0.85 0.99 0.92 0.80

5,000 Avg. 0.82 0.74 0.76 0.90 0.53 0.62
Best 0.84 0.79 0.81 0.96 0.75 0.83
Worst 0.79 0.67 0.70 0.78 0.27 0.38

NYTP2 50 trials 300,000 Avg. 0.85 0.85 0.85 0.87 0.91 0.84
Best 0.85 0.85 0.85 0.95 0.95 0.92
Worst 0.84 0.85 0.84 0.77 0.83 0.69

30,000 Avg. 0.82 0.79 0.79 0.82 0.60 0.62
Best 0.83 0.82 0.83 0.91 0.81 0.84
Worst 0.80 0.74 0.73 0.69 0.29 0.21

HP 50 trials 100,000 Avg. 1.00 0.98 0.80 0.99 0.96 0.65
Best 1.00 0.98 0.93 1.00 0.97 0.88
Worst 0.99 0.95 0.67 0.99 0.91 0.43

10,000 Avg. 0.92 0.90 0.89 0.96 0.54 0.51
Best 0.96 0.94 0.93 0.98 0.84 0.75
Worst 0.88 0.86 0.82 0.93 0.30 0.04

GYP 50 trials 20,000 Avg. 0.93 0.93 0.93 1.00 1.00 0.99
Best 0.93 0.93 0.93 1.00 1.00 1.00
Worst 0.93 0.93 0.91 1.00 0.99 0.58

2,000 Avg. 0.89 0.62 0.65 0.94 0.43 0.49
Best 0.92 0.79 0.77 0.99 0.74 0.71
Worst 0.83 0.39 0.42 0.83 0.02 0.07

BP 10 trials 1,000,000 Avg. 0.96 0.97 0.93 0.77 0.88 0.35
Best 0.96 0.97 0.94 0.82 0.92 0.45
Worst 0.96 0.96 0.93 0.72 0.83 0.30

100,000 Avg. 0.91 0.83 0.81 0.85 0.35 0.28
Best 0.92 0.84 0.83 0.87 0.42 0.38
Worst 0.90 0.81 0.78 0.78 0.24 0.10

aHybrid PA-DDS converged before spending the entire computational budget in NYTP, NYTP2 and GYP for the higher computational budget. Therefore, its computational effort for these

cases is less than the computational budget. 35,000 for NYTP, 263,400 for NYTP2 and 17,330 for GYP.
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SPEA2. However, as these two algorithms spent the

whole computational budget for the global search, the

local search is only applied to the extreme points of

the resultant fronts with the computational budget equal

to the average budget of local search in Hybrid PA-

DDS. This computational budget and the average improve-

ment in results based on the CNHV are summarized in

Table 2.

Based on Table 2, it can be concluded that although the

local search is only applied to the extreme points of the front

with very limited computational budget, it highly improved

the results of NSGAII and SPEA2 especially when the

total computational budget is limited.
om http://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
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DISCUSSION

It should be noted that the local search L is implemented

such that it always evaluates one option change at a time

relative to the current solution. Therefore, the local

search order (starting for example at decision variable D

instead of decision variable 1 as in our implementation)

can change the results. However, finding the best order

is not the purpose of this study. Moreover, it is not

claimed that the proposed neighbourhood search

strategy is the most efficient local search, but perhaps the

simplest one that adequately improves the algorithm

efficiency.



Figure 6 | Comparison between the best attained front and the worst CNHV trials of all three algorithms solving each case study.
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If the purpose of MOO algorithm comparison is to

assess the performance of various algorithms with various

computational budgets, we recommend using the best and

worst attained fronts corresponding to each computational

budget. This recommendation makes the comparison hard

to replicate. Nonetheless, calculating computational

budget specific CNHV (and thus the best and the worst

attained fronts) is more appropriate since the attainable

objective space obviously varies as a function of compu-

tational budget.

The comparison of algorithms was based on default

configurations/parameter settings that WDN modellers

would most likely utilize when trying to solve their own

MO design problems with these algorithms. Comparative

results might change if each algorithm was fine tuned to

optimally solve each problem but that would generally

require substantial computational experiments. Instead,

parameters of NSGAII and SPEA2 are set to the rec-

ommended values from literature while the design
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
decisions and single parameter value of the Hybrid PA-

DDS algorithm were based on previous decisions for

DDS (Tolson & Shoemaker ) and HD-DDS (Tolson

et al. ).

NSGAII and SPEA2 have a fixed-size archive and if it

becomes full of non-dominated solutions, they ignore

some current non-dominated solutions. Although this strat-

egy controls and limits the complexity of the algorithm, it

may have a disadvantage. Laumanns et al. () showed

that the standard archiving strategy of NSGAII or SPEA2

allows the algorithm eliminate some high quality solutions

that in the long run might even dominate some of the

non-dominated solutions in the final archive. To deal with

this issue some new archiving strategies have been proposed

(see for example Laumanns et al. ; Beume et al. ).

The current version of PA-DDS archives all non-dominated

solutions during the search. Therefore, it does not lose any

non-dominated solution; however, this leads to two related

challenges for PA-DDS.



Figure 7 | Comparison between the best CNHV trial of Hybrid PA-DDS and NSGAII for solving: (a) HP, Extreme solutions (1,7678.5 m, $1.803 M) and (0 m, $7.470 M) are used to normalize

the fronts; and (b) BP, Extreme solutions (5,213.7.5 m, €0.724 M) and (0 m, €2.3620 M) are used to normalize the fronts.
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The first challenge corresponds to the algorithm

efficiency (runtime) for solving large scale problems. In

PA-DDS, any new non-dominated solution is checked

against all current non-dominated solutions. Hence, the

higher number of archived solutions the more time required

for the dominance check. This may affect the efficiency of

PA-DDS for solving problems with many objective functions

and a huge computational budget since either of these
Table 2 | Evaluating the effectiveness of the local search for improving the extreme points of

NSGAII

Case study Global search budget Local search budget Average improvem

NYTP 50,000 49 1.0
5,000 183 34.0

NYTP2 300,000 111 0.0
30,000 413 20.3

HP 100,000 166 1.0
10,000 808 72.2

GYP 20,000 56 0.0
2,000 171 107.0

BP 1,000,000 27,600 6.8
100,000 2,500 193.8

om http://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
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factors can generate excessive non-dominated solutions.

However, in real-world engineering problems, where simu-

lation is very time consuming and hence the total

computational budget is not so huge to allow numerous

solutions in the archive, time of dominance check may not

have a considerable impact on the algorithm runtime. For

these five WDN bi-objective problems, PA-DDS always

had a shorter serial runtime than SPEA2 while NSGA2
the approximate fronts based on the average per cent improvement in CNHV

SPEA2

ent in CNHV (%) Local search budget Average improvement in CNHV (%)

48 1.0
160 17.7

127 0.0
376 19.4

251 36.9
788 84.3

67 1.0
191 83.7

24,200 114.3
2,500 256.0
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was always the quickest among all three algorithms. Over all

of the five case studies with both computational budgets, PA-

DDS runtimes were on average only 13% (with extremes of

7 and 36%) longer than NSGAII. Therefore, the first

challenge was not an important issue for solving these five

problems.

The second possible challenge is related to the selection

process. The current selection scheme of PA-DDS is

designed to sample more from less crowded parts of the

approximate front. However, we believe that the perform-

ance of PA-DDS can be improved by modifying the

selection process to guide the search towards the most inter-

esting parts of the tradeoff, which may not coincide with the

less crowded part of the front. This improvement can be sig-

nificant especially for solving computationally intensive

problems where a limited computational budget is available.

Currently, we are investigating new selection schemes in

PA-DDS.

Although we did not investigate relative PA-DDS per-

formance on large distribution networks (i.e. thousands of

pipes/decision variables), we did apply the algorithm with

the same parameters and configuration to problems with

21–454 decision variables and a computational budget ran-

ging from 2,000 to 1,000,000 hydraulic model evaluations.

As such, PA-DDS could be applied to even larger distri-

bution networks and in such a case we would suggest

applying PA-DDS without any algorithmic and/or par-

ameter modifications. For larger distribution networks, the

efficiency of local search L to refine the extreme solutions

will degrade substantially relative to efficiencies reported

in Table 2. Future algorithm comparison studies focused

only on very large distribution networks are necessary to

properly assess relative PA-DDS performance in this

context.

It should be noted here that, problem formulation (1) is

an artificial WDN bi-objective problem. Therefore, its result

cannot be used for designing real WDN problems. For

example, all Pareto optimal solutions returned in this

study have a pressure deficit (some even have negative press-

ures). Even the extreme point corresponding to the least-cost

design of the network is impractical since it tends to reduce

pipe sizes or completely eliminate some pipes. This may lead

to an insufficient capacity to handle system failures (Walski

). We solved problem formulation (1) as the benchmark
://iwaponline.com/jh/article-pdf/14/1/192/386693/192.pdf
WDN problem type to assess the relative performance of

our proposed MOO algorithm just as many previous studies

have done (e.g. Farmani et al. ; Atiquzzaman et al. ;

Perelman et al. ; Di Pierro et al. ). Although not

demonstrated here, Hybrid PA-DDS can be applied to

more realistic WDN design studies that have more than

two objectives. Further work should be conducted to com-

pare Hybrid PA-DDS performance relative to other

algorithms on problems with more than two objectives.
CONCLUSION

A simple and parsimonious optimization algorithm for sol-

ving combinatorial MOPs was introduced. The algorithm

is hybridized with a straightforward neighbourhood search

and is successfully applied to five benchmark bi-objective

WDN problems. The hypervolume performance metric is

modified to define the new comparative normalized hyper-

volume metric which makes the hypervolume metric more

interpretable for comparing multiple trials of multiple algor-

ithms. Results show the comparable performance of the

proposed algorithm to two of the most well known MOO

algorithms, NSGAII and SPEA2. In the future, we will try

to improve the algorithm performance mainly by modifying

the selection criteria to guide the search towards the most

interesting parts of the front rather than the less crowded

parts of it.

Moreover, we will assess the algorithm performance in

solving real world WDN combinatorial problems with

more than two objectives such as selection and placement

of best management practice for pesticide control (e.g.

Maringanti et al. ) and multi-objective long-term

groundwater monitoring design (e.g. Kollat & Reed ).
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