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Abstract
Hybrid partial evaluation(HPE) is a pragmatic approach to partial
evaluation that borrows ideas from both online and offline partial
evaluation. HPE performs offline-style specialization using an on-
line approach without static binding time analysis. The goal of HPE
is to provide a practical and predictable level of optimization for
programmers, with an implementation strategy that fits wellwithin
existing compilers or interpreters. HPE requires the programmer
to specify where partial evaluation should be applied. It provides
no termination guarantee and reports errors in situations that vi-
olate simple binding time rules, or have incorrect use of side ef-
fects in compile-time code. We formalize HPE for a small impera-
tive object-oriented language and describeCivet, a straightforward
implementation of HPE as a relatively simple extension of a Java
compiler. Code optimized by Civet performs as well as and in some
cases better than the output of a state-of-the-art offline partial eval-
uator.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Partial evaluation

General Terms Languages, Performance

Keywords Partial Evaluation, Object-Oriented Languages, Hy-
brid

1. Introduction
Object-oriented systems are increasingly based on configurable
frameworks and reflection. These features are expensive at runtime,
and the costs can limit the ambitions of framework developers in
creating more powerful and general frameworks. These costs, how-
ever, are often unnecessary because a particular program typically
configures and uses the frameworks in a specific way. Configura-
tion files, data-driven programming and more sophisticatedforms
of model-driven development often involve dynamic interpretation
of large amounts of relatively static data [22]. Avoiding the penalty
of generality requires optimizations that cut across module bound-
aries to simplify the general framework operations with respect to
the program-specific configuration data.

Partial evaluation is well suited to optimizing such programs. A
partial evaluator canspecializea generic framework in the context
of the usage pattern in a particular program. It can also optimize
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across interfaces, allowing programmers to write modular,general-
purpose programs, with the assurance that they will be optimized
automatically.

In this paper we presenthybrid partial evaluation(HPE), a
pragmatic approach to partial evaluation that is designed to be ef-
fective in existing object-oriented languages. Hybrid partial evalu-
ation provides predictable and reliable optimizations, because the
programmer explicitly identifies parts of the program that should
be evaluated atcompile timeversus normalruntimeevaluation [16].
The following example illustrates how HPE can be used to optimize
a naive regular expression library.

1 Regex regex = CT(RegexParser.parse("(a|b)*(abb|a+b)"));
2 regex.execute(buffer);

TheCT expression tells the compiler to instantiate theRegex ob-
ject at compile time. Theexecute method is a simple, naive regular
expression interpreter. When theexecute method is invoked on a
runtime buffer, HPE inlines and specializes the interpreter on the
specific pattern, resulting in a set of static methods to efficiently in-
terpret the finite state machine representing the regular expression.
This example is discussed in more detail in Section 5.3.

We describe hybrid partial evaluation in the context of a small
imperative object-oriented language. Like online partialevaluation,
HPE does not perform binding time analysis. The system supports
polyvariant specialization of methods and classes, and specializa-
tion of reflective operations. On the other hand, the kinds ofspe-
cializations performed are similar to those performed by anoffline
partial evaluator. The goals of HPE are predictability, ease of imple-
mentation, and sufficient specialization to optimize common pro-
grams.

To achieve predictability, HPE requires programmer annota-
tions to indicate which objects should be instantiated at compile
time, and HPE prohibits migration of compile-time objects to run-
time. HPE has a simple check to ensure that executing imperative
code at compile time is consistent with the original semantics of the
program. Hybrid partial evaluation rejects programs with incorrect
binding times, rather than silently generating inefficientresidual
code. These restrictions allow developers to understand and rely on
the optimizations performed by the partial evaluator.

To simplify implementation, a Hybrid partial evaluator is de-
rived from an interpreter (or operational semantics) and avoids
static binding time analysis. In addition, HPE provides no termi-
nation guarantee. If the partial evaluating compiler takestoo long,
the programmer must terminate it just as any other program with
an infinite loop and rewrite the program to avoid the problem.

We have implemented hybrid partial evaluation within the Jas-
tAdd Java compiler [9] and used it to optimize a range of Java pro-
grams. Compared to JSpec [25], an existing offline partial evaluator
for Java, hybrid partial evaluation generates code that is as efficient
as JSpec’s residual code. Initial results show an average 6 times
speedup of specialized programs.
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data v = null | vs | vn | vb | [v ] | C :ρ

type Prog = CD

data CD = class C (x) {var x; init{e} MD}

data mod = static | method
data MD = mod m(x) {e}

data op = + | - | * | / | == | != | < | > | %

data e = v constant value
| x variable
| this self-reference
| C class name
| var x = e; e variable declaration
| x := e assignment
| e; e sequence
| e op e binary operator
| if e then e else e conditional
| while e do e iteration
| e.m(e) method invocation
| invoke(e, e, e) reflective method invocation
| new C (e) constructor call
| CT (e, e) execute at compile time
| RT (e) execute at runtime
| IsCT (e) tests for a compile-time value

Figure 1. Syntax of MOOL

2. A Miniature Object-Oriented Language
A Miniature Object-Oriented Language (MOOL) is used to explain
hybrid partial evaluation. MOOL is a dynamically typed imperative
language based on Java [17]. It includes classes, static methods,
mutable fields, local variables, and reflective method invocation. It
does not include inheritance, interfaces, instanceof, static fields, or
non-local control flow constructs such as return, goto or exceptions.
Similar to Smalltalk [12], all fields are private and all methods
are public. We believe that MOOL is sufficient to demonstratethe
use of partial evaluation in real-world object-oriented languages. A
more complete implementation in a real Java compiler is described
in Section 4.

2.1 Syntax

Figure 1 gives the syntax for MOOL. A MOOL program is a list
of class definitions. As in Scala, a class definition has a single
constructor, whose arguments are listed after the class name. These
constructor arguments also become fields of the object. The class
contains a list of additional fields, methods, and an initialization
expression. The fields of a class are initialized to an undefined
value.

A method definition specifies the formal parameters and an ex-
pression which is the body of the method. Thestatic modifier
identifies the method as a class-level method, independent of any
instance. This usage should not be confused with the traditional
concept of “static” values in partial evaluation, which arecalled
“compile-time values” in this paper. TheCT (e, e) and RT (e)
expressions mark expressions as compile time or runtime respec-
tively. IsCT (e) is a boolean expression which is used to test
whether or not an expression is compile time.

Literal values are of types integervn, booleanvb, stringvs or
list [v ]. Null is also a literal value. Value types also include object
values,C :ρ, as described in the next section. Expressions include

1 class Circle(x0,y0,r0) {

2 var x;

3 var y;
4 var r;

5 init {

6 x := x0;
7 y := y0;

8 r := r0;

9 }

10 method resize(n) { r := n*r; }
11 }

12 class Main() {

13 static main() {
14 var s1 = CT(new Circle(3, 5, 10), True);

15 var s2 = new Circle(0, 1, CT(4, True));

16 s1.resize(2);

17 s2.resize(3);
18 }

19 }

Figure 2. An example program in MOOL syntax

operations on values and statements that affect control flowand
the state: variable definitions, assignments, control constructs such
as if andwhile loop, method calls, object creation and reflection.
Figure 2 shows an example program written in MOOL syntax. It
shows aCircle and aMain class which creates twoCircle objects.

2.2 Notation

All the semantics definitions in this paper are written in Haskell [15],
so they are executable. Literate Haskell [18] is used to render the
definitions in more conventional style.

One non-standard aspect of the semantic definitions is the per-
vasive use of monads and Haskell’sdo notation to implicitly pass
statethrough each definition in the interpreter. This implicit state
is used for several purposes, but the most familiar one is to pass
a store representing the mutable locations that are created as an
object-oriented program is interpreted. While a complete discus-
sion of monads is beyond the scope of this paper, we provide a
quick explanation of the notation used in this paper which should
be sufficient to understand the semantic definitions.

At a high level, the semantic functions have the following form:

command x y = do

z ← command x (y / 2)
put z

if x > y then do

a ← command (x − 1) y
return a

else

command y z

Each line is either a bindingx ← expression or an expression
by itself. In either case, the expressions representcommandswhich
may read or modify the implicit program state and produce avalue,
which is optionally bound tox . A command is just a function that
is defined in the context of a hidden state. The final line in ado
block must either be a command, whose value is used for the value
of the block, or areturn statement which returns a specific value.

The type of a state-based computation is specified as a monadic
typeState S T whereS is the type of the hidden state andT is
the type of value produced. The hidden state can be, for example, a
single value, a finite map of values, or a tuple of such types.

Since most semantic functions do not directly involve the state,
it is useful to hide this state using a monad. When the hidden state
is needed, it can be read or written using two commands,get and
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data p = v | ⊤ | ⊥ | ṽ -- concrete and abstract values
ρ :: x → l -- environment maps variables to locations
σ :: l → p -- store maps locations to values
E [[ ·]] · · ::e → ρ→ v → State (Prog , σ,NameMap) v

E [[v ]]ρo = return v

E [[e1 op e2]]ρo = do

v1 ← E [[e1]]ρo
v2 ← E [[e2]]ρo
return op(v1, v2)

E [[x ]]ρo = do

( , σ, )← get

return σ(ρ(x))

E [[this]]ρo = return o

E [[var x = e1; e2]]ρo = do

v ← E [[e1]]ρo
[x 7→ l]← allocate [x 7→ v ]
E [[e2]]([x 7→ l] + ρ)o

E [[x := e]]ρo = do

v ← E [[e]]ρo
update ρ(x) v
return v

E [[e1; e2]]ρo = do

E [[e1]]ρo
E [[e2]]ρo

E [[if e1 then e2 else e3]]ρo = do

b ← E [[e1]]ρo
case b of

True → E [[e2]]ρo
False → E [[e3]]ρo

E [[while e1 do e2]]ρo = do

E [[if e1 then (e2; while e1 do e2) else null]]ρo

E [[e.m(a)]]ρo = do

C :ρ′ ← E [[e]]ρo
v ← mapM(E [[ ·]]ρo) a

(x) {eb}← findMethod C m (length a)

[x 7→ l]← allocate [x 7→ v]

E [[eb]]([x 7→ l] + ρ′)(C :ρ′)

E [[invoke(e, em, a)]]ρo = do

m ← E [[em]]ρo
E [[e.m(a)]]ρo

E [[new C (a)]]ρo = do

class C (x) {f init{ec} }← findClass C

v ← mapM(E [[ ·]]ρo) a
[x 7→ l]← allocate [x 7→ v]

ρ′ ← allocate [f 7→ ⊥]

E [[ec]]([x 7→ l] + ρ′)(C :ρ′)
return C :ρ′

update l v = do

(P, σ, ν)← get

put (P, (l , v) : σ, ν)

allocate = mapM(allocate1 )

allocate1 (x , v) = do

(P, σ, ν)← get

let l = length σ
put (P, (l , v) : σ, ν)
return (x , l)

Figure 3. Full evaluation of MOOL expressions

put . For example, the following function ensures that the hidden
state is at leastn, and return the previous value of the hidden state.

ensure n = do

x ← get

if x < n then do

put n

return x

else

return x

The functionensure has typeState Integer Integer , meaning
that it has a hidden integer state variable, and also returnsan integer.

There are many papers and tutorials on monads which explain
the details on the semantics and implementation of monads [28].
For the purposes of this paper, it is only necessary to understand
that the store is passed through each line of ado block.

2.3 Semantics

The semantics of MOOL is shown in Figure 3. In the code,l refers
to a location,x refers to a name,v refers to a value, ande anda

are expressions. The Haskell source code for HPE can be foundat
the following URL:
http://www.cs.utexas.edu/~amshali/Civet/

An environment,ρ, maps variable or field names to locations. A
store,σ, maps locations to potentially abstract values,p. Abstract
values,̃v , are described in the next section. They are included here
so that the full evaluator can have the same type signature asthe
partial evaluator. A⊥ value for a variable means that the variable
has not been assigned yet. An object value,C :ρ, is a pair where
C is the name of the class that the object is instantiated from.ρ is
the environment for this object, which contains the locations of its
fields.

The functionE [[ ·]] ·· is referred to as the “full evaluator” to dis-
tinguish it from the “partial evaluator” defined in Section 3. This
function,E [[e]]ρo, executes the program represented by an expres-
sione in the context of an environmentρ and current objecto. The
full evaluator returns a value and potentially modifies the implicit
state [28]. The implicit state has three components: the program,
a store and aNameMap. The full evaluator only manipulates the
store. The other components are included for consistency with the
partial evaluator, which extends the program during evaluation.
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The first two cases specify the behavior of value literalsv and
binary operators. The full evaluator applies the binary operationop
to its operands and returns the result, taking into account the type of
values that it receives with respect to the operation. The definition
of op is omitted.

The next three cases concern variables, declarations, and assign-
ment. All variables are bound to locations in the environment, and
the locations are then looked up in the store. As mentioned inthe
previous section,get is a command which retrieves the program,
the store and the NameMap in a tuple. All variables are assumed
to be present in the environment, and their location defined in the
store, otherwise an error is thrown.

A variable declaration,var x = e1; e2, evaluatese1 to get a
value, then stores the value into a new location, and then evaluates
e2 in an extended environment. Theallocate function takes a
list of name-valuepairs [x 7→ v] and returns a list ofname-
location pairs [x 7→ l]. It updates the store so that each location
contains the corresponding value. Assignmentx := e evaluates
e and then updates the variable’s location to the new value. The
update function gets the store, and then adds a new(l , v) pair to
the store to associate locationl with valuev .

Evaluation ofif andwhile expressions is standard.
The evaluation of a method call,e.m(a), starts with evaluating

the target expression,e, and all the arguments,a. The evaluator
then finds the method,m , based on the class of the target object.
It then evaluates the body of the method in an environment which
has the bindings actual parameters and the target object’s fields,ρ′.
The object contexto is set to the target objectC :ρ′.

The invoke expression supports reflective method invocation,
where the method name is computed as a value rather than being
explicit in the syntax of the call. The expressione is the target of
the reflective call.em is an expression which evaluates to the name
of the method anda is the list of actual parameters. To evaluate
a reflective method invocation, the semantics first evaluates the
method name expression, then performs a normal method call using
the computed name.

The full evaluator evaluates the object creation expression,
new C (a), by finding the classC . It then evaluates all the actual
arguments of the class constructor and binds them to their names
in the environment. Then, it binds all the fields of the class to the
undefined value,⊥, and evaluates the body of the constructor and
returns an objectC :ρ′. An object’s fields are initialized when the
full evaluator evaluates the body of the constructor(init).

3. Hybrid Partial Evaluator for MOOL
In this section we define a hybrid partial evaluator for MOOL.With
partial evaluation, program execution is split into two stages. The
first stage, where partial evaluation is performed, iscompile time.
The output of the compile-time stage is a modified program, called
residual code, which is executed in theruntimestage. Values that
exist during the first phase are calledcompile-timevalues, while all
other values are calledruntimevalues.

The key question for partial evaluation is how to identify what
parts of a program should be evaluated at compile time. Hybrid
partial evaluation is based on a few fundamental principles:

• A programmer identifies parts of the program to execute at
compile time, creating compile-time values. Any subsequent
operations that involve compile-time objects are executedat
compile time, possibly creating more compile-time objects. Ev-
ery object exists either at compile time or runtime and cannot
move between phases. On the other hand, primitive values (in-
tegers, strings, dates) are automatically moved between phases
as needed.

• All variables are assigned values at compile time, but the value
may be a concrete (compile-time) value or an abstract value
representing partial information about the future actual value of
the variable at runtime. A variable’s status, as either compile-
time or runtime, never changes. Compile-time variables are
eliminated from the program.

• Methods and constructors are specialized on every combination
of specific compile-time arguments that arise during partial
evaluation. When a constructor is specialized, its class issplit
into compile-time and runtime facets, in effect creating two
partial objects that exist in different phases.

In the partial evaluator, concrete compile-time values aresimply
the normal valuesv , which can be primitive values or objects that
exist only at compile time. There are two kinds of abstract values:
unknown values⊤ and abstract values,ṽ . A completely unknown
value is represented by⊤. An abstract valuẽv can be either a
primitive constant that has been marked to exist at runtime,or a
partial object C̃ :ρ. A partial object can specify just the class of a
runtime object, or it can specify the class and some of its fields.

The key point is that compile-time values force specialization
when used as arguments to methods or constructors, while abstract
objects allow local propagation of compile-time information but
do not trigger specialization. For instance, in the programshown
in Figure 2,s1 is a compile-time circle object whereass2 is an
abstract runtime circle object, because only the value of its radius
is marked to be known at compile time.

The type of hybrid partial evaluator,P [[ ·]] ··, is shown in Fig-
ure 4. A hybrid partial evaluator, like an online one, works very
much like a full evaluator. However, during partial evaluation, the
store may contain abstract (or approximate) values ones repre-
sented bỹv . Operations on these abstract values are residualized
to create code that executes at runtime, when the actual values are
known.

The result of hybrid partial evaluation is an expression accom-
panied with a value,p, which may be a compile-time value or an
abstraction of a runtime value (or⊤). The expression represents the
residual code. The value is the information about the partially eval-
uated expression. This information can be as concrete as a constant
or as abstract as a⊤ value. Online partial evaluators have tradi-
tionally been defined to return an residual expressionor a compile-
time value. Allowing both an expression and a value allows residual
code to be generated while also returning partial information about
the value computed by the residual code. Partial evaluationof basic
expressions is given in Figure 4.

Partial evaluation of primitive value constants always produces
abstract values. This may seem strange, because constants are fully
known at compile time. However, if all constants were consid-
ered compile-time values, they would cause specializationwhen-
ever they were used, which would violate the principle that the pro-
grammer should indicate where specialization is to occur.

Binary operators,e1 op e2, return a compile-time value if either
e1 or e2 partially evaluate to a compile-time value, otherwise return
an abstract value. This rule follows the principle that operations
involving compile-time values produce compile-time values.

3.1 Variable Declaration and Assignment

Figure 4 also defines the hybrid partial evaluation of variables, vari-
able declarations and variable assignments. A variable is compile-
time if it is assigned a compile-time value and it is runtime if it is
a⊤ or an approximate value,̃v . HPE binds all the variables in the
environment whether or not they are compile-time.

For variables, partial evaluator returns their value as theresidual
expression if they are compile-time. This is because compile-time
variables are eliminated from the residual code. Otherwise, it re-
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data PV = 〈e, p〉

P [[ ·]] · · ::e → ρ→ v → State (Prog , σ,NameMap) PV

P [[v ]]ρo = return 〈[[v ]], ṽ〉

P [[e1 op e2]]ρo = do

〈e′1, p1〉 ← P [[e1]]ρo
〈e′2, p2〉 ← P [[e2]]ρo
case (p1, p2) of
(v1, v2)→ let v = op(v1, v2) in return 〈[[v ]], v〉
(v1, ṽ2)→ let v = op(v1, v2) in return 〈[[v ]], v〉
( ṽ1, v2)→ let v = op(v1, v2) in return 〈[[v ]], v〉
( ṽ1, ṽ2)→ let v = op(v1, v2) in return 〈[[v ]], ṽ〉
else→ return 〈[[e′1 op e′2]],⊤〉

P [[this]]ρo = return 〈[[this]], o〉

P [[CT (e, e ′)]]ρo = do

v ′ ← E [[e ′]]ρo -- Error if e′ is not compile-time
if v ′ ≡ True then do

v ← E [[e]]ρo -- Error if e is not compile-time
return 〈[[v ]], v〉

else P [[e]]ρo

P [[IsCT (e)]]ρo= do

〈e ′, p〉 ← P [[e]]ρo
case p of

v → return 〈[[True ]],True〉
else→ return 〈[[False ]],False〉

P [[RT (e)]]ρo= do

〈e ′, p〉 ← P [[e]]ρo
return 〈[[e ′]],⊤〉

P [[x ]]ρo = do

( , σ, )← get

case σ(ρ(x)) of
v → return 〈[[v ]], v〉
p → return 〈[[x ]], p〉

P [[var x = e1; e2]]ρo = do

〈e′1, p1〉 ← P [[e1]]ρo
[x 7→ l]← allocate [x 7→ p1]
〈e′2, p2〉 ← P [[e2]]([x 7→ l] + ρ)o
case p1 of

v → return 〈e′2, p2〉
else→ return 〈[[var x = e′1; e′2]], p2〉

P [[x := e]]ρo = do

( , σ, )← get

case σ(ρ(x)) of
v → do -- compile-time variables not residualized
v ′ ← E [[e]]ρo -- Error if e is not compile-time
update ρ(x) v ′

return 〈[[v ′]], v ′〉
ṽ → do -- abstract variable must stay abstract
〈e ′, p〉 ← P [[e]]ρo
update ρ(x) p̃

return 〈[[x := e ′]], p〉
⊤ → do -- unknown runtime value
〈e ′, p〉 ← P [[e]]ρo
return 〈[[x := e ′]],⊤〉
⊥ → do -- variable is not yet defined
〈e ′, p〉 ← P [[e]]ρo
update ρ(x) p
case p of -- first assignment determines status of variable

v → return 〈[[v ]], v〉
→ return 〈[[x := e ′]],⊤〉

Figure 4. Partial evaluation of basic values, variables, operators,variable declarations, and assignments

turns a residual code which contains the name of the variablealong
with the abstract value stored for that variable.

A variable declarationvar x = e; · may introduce a compile-
time or runtime variable. If the partial evaluated value ofe is a
compile-time value, then the variable is defined only at compile
time, and has no existence at runtime. Otherwise, the variable is a
normal runtime variable defined in the generated residual code.

Partial evaluation of a variable assignment,x := e, depends on
whether thex is a compile-time or runtime variable. For a compile-
time variablex , the expressione must evaluate to a value and the
value ofx is updated in the store. For runtime variables, residual
code is returned for the assignment. A value⊥ in the store for a
variable means that the variable is a field and has not been assigned
yet. Thus, it can accept any value and partial evaluator updates
its value in the store accordingly. When a variable has the value
⊤, it means that we have no compile-time information about the
variable. Such variables cannot be updated with any other values
except⊤.

3.2 Special Expressions

The special expressionCT (e, e ′) indicates which values should
be created at compile time. Ife ′ is True, thene is a evaluated at
partial evaluation time using the full evaluator, to createa compile-

time value. The result may be a primitive data type, or an object.
The special expression,IsCT (e), evaluates toTrue whene is a
compile-time value.RT (e) expression marks an expression as run-
time. The partial evaluator does not do any evaluation on theex-
pression,e, and simply returns the same expression as the residual
code along with a⊤ value.

3.3 Control Flow

Figure 5 defines hybrid partial evaluation of control flow state-
ments. Sequences are straightforward.

For anif-expression, if the condition is a compile-time value,
then the partial evaluator selects the appropriate branch for further
evaluation, just like the full evaluator. When the condition is a run-
time value, it is desirable to partially evaluate both branches of the
conditional. The problem is that branches may make incompatible
changes to the store, so that it is not clear which modified store
should be used for the evaluation of the remainder of the program.

This problem is illustrated in Figure 6 [20]. In this example, a is
a runtime variable. Thus, the partial evaluation of theif-condition,
a < x, results in the expressiona < 3, which is not a value. During
runtime, only one branch must take place, in which case, the value
of x after the evaluation ofif-expression would be 9 and the value
of y can be either 4 or 6 based on the branch taken.
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P [[e1; e2]]ρo = do

〈e′1, p1〉 ← P [[e1]]ρo
〈e′2, p2〉 ← P [[e2]]ρo
return 〈[[e′1; e′2]], p2〉

P [[if e1 then e2 else e3]]ρo = do

〈e′1, p1〉 ← P [[e1]]ρo
case p1 of

True → P [[e2]]ρo
False → P [[e3]]ρo
else→ checkStore ρ o (if e′1 then · else ·) e2 e3

P [[while e1 do e2]]ρo = do

〈e′1, p1〉 ← P [[e1]]ρo
case p1 of

True → P [[e2; while e1 do e2]]ρo
False → P [[null]]ρo
else→ do

sanitize ρ
checkStore ρ o (while · do ·) e1 e2

checkStore ρ o f e2 e3 = do

(P, store , ν)← get -- capture the initial store
〈e′2, p2〉 ← P [[e2]]ρo -- evaluate the then branch
( , σ1, )← get -- snapshot the resulting store
put (P, store , ν) -- reset store to initial conditions
〈e′3, p3〉 ← P [[e3]]ρo -- run the else branch
( , σ2, )← get -- snapshot the else store
cmp ← σ1 =ρ σ2 -- check that changes are consistent
sanitize ρ -- erase abstract values
if cmp then -- success

return 〈[[f e′2 e′3]],⊥〉
else -- report inconsistency
inconsistentChangeError ρ σ1 σ2

Figure 5. Partial evaluation of control flow constructs

1 method iftest(a) {
2 var x = CT(3, True);

3 var y = CT(4, True);

4 if (a < x) {

5 y := 2 * x;
6 x := 3 + y;

7 }

8 else
9 x := 5 + y;
10 }

Figure 6. The problematic example of anif-expression for the
partial evaluation

A polyvariant computation scheme [10] deals with this problem
by partially evaluating both branches and inserting necessary as-
signments calledexplicator at the end of new residual branches.
Meyer [20] proposed a solution that joins the environments re-
sulted from the two branches. In a semantics based on continu-
ation, the rest of the program is specialized separately foreach
branch [23, 27]. However, this has the potential to duplicate large
amounts of code.

HPE has a pragmatic approach to this problem. ThecheckStore
function (See Figure 5) evaluates both branches and then looks for
inconsistencies in the state. It alsosanitizesthe store by converting
all partially abstract values to⊤. If the resulting stores (σ1, σ2) are
different with respect to the initial environment (ρ), HPE raises an
error. Otherwise, it continues with the generation of the code for
theif and partial evaluation of the rest of the program. The same
approach is used forwhile expressions, except that the store is also
sanitized at the top of the loop. We have found that this pragmatic
approach is sufficient for many common programming idioms, as
shown in Section 4.

For the example in Figure 6, the hybrid partial evaluator starts
with the environment{x = 3, y = 4}. The first branch changes
the environment to{x = 9, y = 6}. The partial evaluation of the
second branch results in{x = 9, y = 4}. The two branches make
inconsistent changes to the environment and therefore HPE raises
an error.

3.4 Class Specialization and Partial Objects

For an object creation expression,new C (a), HPE specializes the
classC if any of the parameters to the constructor call are compile-
time. Class specialization is defined in Figure 7. For class special-
ization, the partial evaluator binds the actual parametersof the con-
structor in the environment. It then finds if this class with such ac-
tual parameters has been already specialized. ThefindMemoClass
returns the name of the specialized class, if there is one already,
along with its class definition. Otherwise, it generates a new name
and returns it with the original class definition.

When the class has not been specialized, HPE specializes the
body of the constructor in an environment containing the binding
for the parameters,this and fields. Fields are initialized to⊥. All
the methods of the class are likewise specialized. The new class
and methods are added to the program. The resulting residualcode
is an expression that instantiates the new class with any remaining
runtime parameters. Along with the residual code, HPE returns an
abstract object which has the name of the new class and the partial
environment of the object.

When the classC with those actual parameters has been already
specialized, the hybrid partial evaluator evaluates the body of the
constructor after allocating the fields and thethis object in the
store and returns an approximate object with the required residual
code.

3.5 Method Specialization

HPE can specialize method callso.m(a) on compile-time objects,
which were introduced in Section 3.1. Since a compile-time object
is never residualized, its identity and field values exist only during
partial evaluation. In this case, hybrid specialization may result in
full evaluationof the call, or create aresidual class method.

The cases for method calls on compile-time objects are defined
in Figure 8. If all the arguments to the method call are compile-time
values, then the call is processed as a normal method call. Ifsome
but not all of the method arguments are compile-time values,then it
must be specialized to create a new method in the residual program.
Since the target object does not exist in the residual program, the
new method must bestatic. The functionS [[e]]modifierρo C m a
(See Figure 9) creates a specialized version of a method. In this case

Hybrid Partial Evaluation, a pragmatic approach to partialevaluation 6 2011/4/10



P [[new C (a)]]ρo = do

〈a ′, p′〉 ← mapM(P [[ ·]]ρo) a
if any isCompileTime p′ then do

memc ← findMemoClass C p′

let (z , C′, class (x) {f init{ec} m}) = memc

[x 7→ l]← allocate [x 7→ p′]

let xd = getRuntimeNames x 〈a ′, p′〉

let ad = getRuntimeExprs 〈a ′, p′〉

ρ′ ← allocate [f 7→ ⊥]

〈e′c, 〉 ← P [[ec]]([x 7→ l] + ρ′)( C̃′:ρ′)
when (¬ z) (do

m′ ← mapM(M[[ ·]]ρ′( C̃′:ρ′)) m

f ′ ← getRuntimeFields f ρ′

addClass class C′
(xd) {f ′ init{e′c} m′})

return 〈[[new C′
(ad)]], C̃

′:ρ′〉
else do

class ( ) {f init{ } }← findClass C

ρ′ ← allocate [f 7→ ⊤]

return 〈[[new C (a′)]], C̃ :ρ′〉

findMemoClass C [xs 7→ vs] = do

(p, σ,n)← get -- n is NameMap
case n(( C [xs 7→ vs])) of
l , [C ]→ do

cdef ← findClass (C + "$"+ l)
return True,C + "$" + l , cdef

Nothing → do

let l = (length n) + 1
put (p, σ, ( C [xs 7→ vs], (l , [C ])) : n)
cdef ← findClass C

return False,C + "$"+ l , cdef

M[[modifier m(x) {e}]]ρo = do

ρ′ ← allocate [(x ,⊤) | x ← x ]
〈e ′, 〉 ← P [[e]](ρ+ ρ′)o
return modifier m(x) {e ′

}

Figure 7. Partial evaluation of constructors for partial objects

the new method is marked asstatic. New methods are stored in a
cache, so that the same specialization of a method is not generated
twice. The method specializerS [[e]]modifierρo C m a binds all the
parameters in the environment and partially evaluates the method
body. It then adds the method to the corresponding class and returns
the residual method call expression with runtime arguments.

Program point specialization is a technique that is used to pre-
vent the specializer from running into the infinite loop of specializ-
ing a recursive function [1, 5, 14]. The hybrid partial evaluator uses
thepolyvariant specialization[4, 8, 24] strategy for program point
specialization. It memoizes a call expression,e.m(a), so that it
can be reused from other call sites. It also memoizes object cre-
ation expressions (constructor calls). Memoization is implemented
in thefindMemoCall andfindMemoClass . The partial evaluator
saves the name of either method or class along with the actualpa-
rameters passed to that and the content of the store at the time of
specialization. These information are stored in theNameMap part
of the state monad.

Now consider the method callo.m(a) in which o is a partial
object. The hybrid partial evaluator knows the class of a partial

P [[e.m(a)]]ρo = do

〈e ′, p〉 ← P [[e]]ρo
〈a ′, p′〉 ← mapM(P [[ ·]]ρo) a
case p of

C :ρ′ → do

if all isCompileTime p′ then do

(x) {eb}← findMethod C m (length a)

[x 7→ l]← allocate [x 7→ p′]

v ← E [[eb]]([x 7→ l] + ρ′)p
return 〈[[v ]], v〉

else

S [[C ]] staticρ′⊤ C m 〈a ′, p′〉
C̃ :ρ′ → -- target is an approximate object
if any isCompileTime p′ then do

S [[e ′]] methodρ′p C m 〈a ′, p′〉
else

return 〈[[e ′
.m(a′)]],⊤〉

else→ -- target is unknown
if any isCompileTime p′ then do

m ′ ← specializeAll ρ o m 〈a ′, p′〉

let ad = getRuntimeExprs 〈a ′, p′〉
return 〈[[e ′

.m ′
(ad)]],⊤〉

else

return 〈[[e ′
.m(a′)]],⊤〉

P [[invoke(e, em, a)]]ρo = do

〈e′m, p〉 ← P [[em]]ρo
case e′m of

m → P [[e.m(a)]]ρo
else→ do

〈e ′, p′〉 ← P [[e]]ρo
〈a ′, p′〉 ← mapM(P [[ ·]]ρo) a
return 〈[[invoke(e ′, e′m, a′)]],⊤〉

Figure 8. Partial evaluation of method calls and reflective method
calls for partial objects

object. When some of the actual parameters in the method call
expression are compile-time values or objects, HPE specializes
using the functionS and creates a residualinstancemethod. This is
shown in Figure 8. When all of the parameters are runtime values,
the partial evaluator generates a residual code for the method call.

If the target of the call is not known and the partial evaluator
has no information about it and some of the actual parameters
are compile-time values, HPE specializes the method call. Since
the class of the target is not known, all the methods in all the
classes with the same name and the same number of the parameters
are specialized. ThespecializeAll function finds all the methods
with the same name and the same number of parameters in all the
classes. It then partially evaluates each method with a copyof the
store. Thereafter, it checks all the stores resulting from the partial
evaluation of each method to make sure that partial evaluation of
methods has not caused any inconsistency in the state.

When the target is unknown and none of the parameters are
compile-time or abstract values, HPE only generates a residual
code.

3.5.1 Reflective Calls

Figure 8 also defines the partial evaluation of reflective calls. When
the partial evaluation ofem results in a string value,m , the name
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S [[e]]modifierρo C m 〈a ′, p′〉 = do

(z ,m ′, (x) {eb})← findMemoCall C m p′

let ad = getRuntimeExprs 〈a ′, p′〉
when (¬ z) (do

[x 7→ l]← allocate [x 7→ p′]

〈e′b, p〉 ← P [[eb]]([x 7→ l] + ρ)o

let xd = getRuntimeNames x 〈a ′, p′〉
addMethod C modifier m ′

(xd) {e′b})
return 〈[[e.m ′

(ad)]],⊤〉

findMemoCall C m a = do

mdef ← findMethod C m (length a)
(p, σ,n)← get -- n is the NameMap
case n(( m (length a) a)) of
l , cs → do

if (elem C cs) then
return True ,m + "$" + l ,mdef

else do

put (p, σ, ( m (length a) a, (l ,C : cs)) : n)
return False ,m + "$" + l ,mdef

Nothing → do

let l = (length n) + 1
put (p, σ, ( m (length a) a, (l , [C ])) : n)
return False,m + "$"+ l ,mdef

Figure 9. Helper function for partial evaluation of method calls

of the method to be called is known at compile time. Therefore
partial evaluator can specialize the method using the specialization
process of a normal method call. Otherwise, when the name of the
reflective method call is not known, it partially evaluates the target
expression and the arguments and generates an expression for the
invoke.

As an example, consider the following example of reflective
method invocation:

Method m = obj.class.getMethod(name, Integer.TYPE);

m.invoke(obj, arglist);

if name is known at compile time to be"test" then the code above
is optimized to [2]:

obj.test(arglist);

3.6 Examples

In this section we show some examples in MOOL programs and
and their generated residual code. The first example is an integer
exponentiation. This function works by squaring based on the fact
that whenn is evenxn = xn/2 × xn/2 and whenn is odd
xn = x × xn−1. Figure 10 shows the MOOL program which
implements this function. Figure 11 shows the residual codefor
the power function when the exponent has a compile-time value
of 11. Thepower$1 is the residual function which takes only one
parameter, the base of exponentiation, and returns the 11thpower
of that.

The next example is a regular expression matcher program. This
program is based on the idea of using derivatives of a regularex-
pression pattern [3]. This way of constructing a regular expression
matcher does not require using NFA, DFA or back-tracking. Fig-
ure 12 shows the code for matching algorithm. In this code the
regular expression is a compile-time value. The input however is
dynamic. The partial evaluator specializes the matching algorithm
and generates a new code which has no trace of the classes and

1 class Main() {

2 static main(a) {

3 this.power(CT(11),a);
4 }

5 method power(n,x) {

6 var i = n;
7 var y = 1;

8 var p = x;

9 while (i > 0) {

10 if ((i % 2) = 1)
11 y := y * p;

12 i := i / 2;

13 if (i > 0)
14 p := p * p;

15 }

16 y;

17 }
18 }

Figure 10. Exponentiation Function

1 class Main() {
2 static main(a) {

3 this.power$1(a);
4 }

5 method power$1(x) {
6 var y = 1;

7 var p = x;

8 y := y * p;
9 p := p * p;

10 y := y * p;

11 p := p * p;

12 p := p * p;
13 y := y * p;

14 y;

15 }
16 }

Figure 11. Exponentiation Function Residual Code

function calls on the input regular expression. The residual code is
shown in Figure 13.

1 public abstract class Regex {

2 public abstract Regex derivative(Character c);

3 public abstract boolean canBeEmpty();

4 public Set<Character> first();
5 public static boolean match(Regex e, String input) {

6 if(input.length() == 0) return e.canBeEmpty();

7 Character c = input.charAt(0);
8 for (Character ce : e.first())

9 if(c.equals(ce))
10 return match(e.derivative(ce),

11 input.substring(1));
12 return false;
13 }

14 public static void main(String[] args) {

15 @StaticStage
16 Regex re = RegexParser.parse("(a|b)*(abb|a+b)");
17 String in = "abababababb";

18 boolean matched = match(re, in);
19 System.out.println(matched);

20 }

21 }

Figure 12. Regular expression matcher
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1 public abstract class Regex {

2 public abstract Regex derivative(Character c);

3 public abstract boolean canBeEmpty();
4 public Set<Character> first();

5 public static void main(String[] args) {

6 String in = "abababababbb";
7 boolean matched = match$1000001(in);

8 java.lang.System.out.println(matched);

9 }

10 public static boolean match$1000001(String input) {
11 if(input.length() == 0) return false;
12 Character c = input.charAt(0);

13 if(c.equals(’b’))
14 return match$1000002(input.substring(1));

15 if(c.equals(’a’))
16 return match$1000012(input.substring(1));

17 return false;
18 }

19 // ...

20 public static boolean match$1000013(String input) {

21 if(input.length() == 0) return true;
22 Character c = input.charAt(0);

23 if(c.equals(’b’))
24 return match$1000005(input.substring(1));
25 if(c.equals(’a’))
26 return match$1000006(input.substring(1));

27 return false;
28 }
29 }

Figure 13. Regular expression matcher residual code

3.7 Discussion

Hybrid partial evaluation does not guarantee that all programs
which execute correctly by themselves can be partially evaluated
to produce residual code. In other words, hybrid partial evaluation
can fail even if the program being analyzed is an otherwise valid
program. Unfortunately, the error cases are not completelyexplicit
in the semantic evaluation functions. One important error,which
can occur anywhere, is an attempt to create residual code that con-
tains an instantiated compile-time object. For example, the follow-
ing code instantiates a hash table at compile time, but then attempts
to use the hash table at runtime to lookup a runtime input string.

1 var o = CT(new HashTable());

2 o.put("one", 1); ...; o.put("nine", 9);

3 var r = o.get(readLine());
4 if (r != null) System.out.println(r);

The hybrid partial evaluator raises an error in this case, because
the residual code[[(HashTable:ρ).get(readLine())]] is invalid,
as code cannot contain an instantiated compile-time object. The
partial evaluator would try to specialize theput method, but it
cannot specialize system methods. HPE issues a compiler-error
when processing the above code.

It is possible to rewrite this example to avoid the problem, by
taking more advantage of compile-time information and changing
when operations take place. This kind of change is known asbind-
ing time improvement. In this case, the trick is to iterate over the
compile-time hashtable:

1 var o = CT(new HashTable());

2 o.put("one", "1"); ...; o.put("nine", "9");

3 var input = readLine();

4 for test : o.keys()
5 if input.equals(test) then

6 System.out.println( o.get(test) );

In this version of the program, botho and test variables are
compile-time values, which are not included in the residualcode.

The residual code has unrolled and specialized the loop. Thecall to
get only involves compile-time values, so it is specialized away:

1 var input = readLine();

2 if input.equals("one") then System.out.println( "1" );

3 if input.equals("two") then System.out.println( "2" );
4 ...

5 if input.equals("nine") then System.out.println( "9" );

Conversely, the partial evaluator may also through errors if an
expression is marked asCT but involves runtime data. These places
are noted in Figure 4.

4. Civet: A Hybrid Partial Evaluator for Java
We have implemented a hybrid partial evaluator for the Java lan-
guage, based on the semantics we explained in the previous sec-
tion. This hybrid partial evaluator is calledCivet1. For implement-
ing Civet, we have extended a Java compiler written usingJas-
tAdd Compiler Compiler[9]. The modular structure of the JastAdd
helped us easily extend the Java compiler. The Civet is about4600
lines. It can be found at the following URL:
http://www.cs.utexas.edu/~amshali/Civet/

Civet currently uses annotations to specify compile-time vari-
ables rather than a special expressionCT , as in semantics. In Civet,
the specification is given using@CompileTime and@CompileTimeIf
Java annotations. The@CompileTimeIf(other_var) annotation

indicates a conditional situation where a variable is compile-time
only if another variable with the nameother_var is also a compile-
time variable. Civet follows the closest scope rule to find the
other_var. It generates pure Java code after partial evaluation,
which makes it easier for debugging and further analysis.

There are several issues in the specialization of Java programs.
One issue is in the class specialization. When Civet specializes a
class constructor, it creates a new class which is a subclassof the
class being specialized. It then copies the body of the super-class
constructor to the subclass and then follows the semantics.The
problem arises when some fields of the class are private. Whenthe
fields are private the new subclass cannot access them from within
the constructor or methods.

Moreover, because partial evaluator creates a new constructor
in the new generated class, it requires the original class tohave
a default constructor. This is because the original class might not
have any constructor of the same parameters as the new specialized
one. Thus, it must have at least a default constructor so as the
program be able to create an object of the specialized type during
runtime. In addition, a class cannot befinal because it cannot
be inherited from. These restrictions in Civet only appliesto the
classes which are going to be specialized.

5. Evaluation
We evaluate the performance and scalability of Civet on samples
from several sources.

5.1 JSpec Suite

The JSpec test suite is created by Schultz et al. [25]. We listsome
of the examples from this suite with a short description:

• FFT: Fast Fourier Transform. The compile-time input for this
case study is the size of radix which in our experiments are set
to 16, 32 and 64.

• Romberg: This is an integration method. The compile-time
input in this case study is the number of iteration which is set to
2 in our experiment.

1 Civet is an animal that eats coffee beans and produces partially digested
coffee berries which produce highly priced coffee.
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Figure 14. Time comparison between JSpec and Civet

• Power: Power function,xn, wheren is a natural number. The
exponent is a compile-time value in this experiment.

• Pipe: Function composition. The composition is fixed.

• Visitor: Visitor pattern for operations on a binary tree. The
choice of operations is known at compile time.

• Strategy: this is an image processing example using the strategy
pattern. The specific operator is known at compile time.

• ArithInt: This case study is a simple arithmetic expressionin-
terpreter.

5.1.1 Performance

We compare the performance of Civet with JSpec on benchmarks
from JSpec suite. We run Civet on the same original programs with
the same set of partial inputs in order to get specialized programs.
We then, run each specialized program with the rest of inputsand
measure the run-times. Each benchmark is run ten times and we
take the average run-time of all the ten execution to represent the
final reported run-time. We run all the benchmarks on an IntelCore
2 Duo CPU P8400 2.26GHz machine with 2.8GiB of memory and
running Ubuntu 10.04.

Figure 14 compares execution time between JSpec and Civet
for all the case studies. Time is measured in milliseconds using the
JavacurrentTimeMillis() call. This figure also shows the run-
time of the original programs. Civet performs better than JSpec
on all FFTs’, ArithInt, Pipe, Visitor and Strategy and it performs
slightly worse on the rest. The average speedup of JSpec on these
examples is 5.19 and the average speedup of Civet is 5.7.

We measured the number of lines generated by Civet on dif-
ferent case studies. The number of lines of code of the program
would increase after specialization because of method generation,
loop unrolling etc. Nevertheless the effective code size, the code
which is used during the execution, might be smaller. The number
of lines of code increase on almost all the examples is about 1.2
to 2 times the number of lines of code in the original. On FFT ex-
amples, however, due to a lot of loop unrolling, the increasefactor
goes up to 7.6 on FFT64.

We compared the bytecode size of the generated programs by
JSpec and Civet. The bytecode size would increase for the same
reasons the lines of code would. The average bytecode size increase
on these case studies for Civet is 1.37, while it is 1.39 for JSpec.
Again, the effective bytecode size, the code that will be loaded into
the memory, might be smaller. That is because specialization can
eliminate some classes and therefore the residual program may not
need to load them during runtime.

Note that we could not generate any code with JSpec because
the tool is not available. We were only able to compile and runthe
generated code by JSpec.

5.2 ModelTalk Case Study

ModelTalk is a domain specific model driven framework [13]. It
has an interpretive approach to model driven development. Since
the execution is interpreter based, it is a good target for partial
evaluation. We specialized aDynamic pricing systemcalledPontis
based on ModelTalk. The dynamic pricing system is a system for
calculating the prices of different products by applying a set of
price promotionsto each of them. The promotions are known at
compile time while the products are known at runtime. The run-
time of the original system on a set of products for2×106 iteration
is 3153 ms, while the run-time of the specialized version of the
system using Civet is about512 ms. This is a factor of 6 speedup.
This speedup is mainly gained by specializing the reflectivemethod
calls and turning them into normal method calls.

Figure 15 gives some code taken from the Pontis example.
Figure 16 gives the specialized version of the code example.
The original code has been partially evaluated with a compile-
time list of price promotions. As shown in the Figure 16, the
calcPromotionalPrice method call on thepromotion object has
been turned into a static method call on thePromotion class. In
addition, the reflective method calls inisEligible has been turned
into a normal method call. The specialized method names have
been appended by a $ and a number.

1 class PromotionSystem {

2 ...

3 double calcPromotionalPrice(An_Event ev) {
4 double result = ev.getListPrice();

5 for (A_Promotion promotion : promotions) {

6 double p = promotion.calcPromotionalPrice(ev);
7 if (p < result) result = p;

8 }

9 return result;

10 }
11 ...

12 }

13 class Promotion {

14 ...
15 Double calcPromotionalPrice(An_Event ev) {

16 Double result = null;
17 if (eligibility.isEligible(ev))
18 result = discounter.calcDiscountedPrice(ev);

19 else result = ev.getListPrice();

20 return result;

21 }
22 ...

23 }

24 class EligibilityByPropertyValue {
25 ...

26 boolean isEligible(An_Event ev) {

27 boolean result = false;
28 try {
29 String propertyValue = (String)

30 ev.getClass().getMethod("get"+propertyName, null).
invoke(ev, null);

31 if (propertyValue.contains(value)) result = true;
32 } catch (Exception e) {}

33 return result;

34 }
35 ...

36 }

Figure 15. Pontis System
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1 class PromotionSystem {

2 ...

3 static double calcPromotionalPrice$10508(An_Event ev) {
4 double result = ev.getListPrice();

5 double p = com.pontis.promotion.Promotion

6 .calcPromotionalPrice$10509(ev);
7 if (p < result) result = p;

8 return result;

9 }

10 ...
11 }

12 class Promotion {

13 ...
14 static Double calcPromotionalPrice$10509(An_Event ev) {

15 Double result = null;
16 if (com.pontis.eligibility.EligibilityByPropertyValue

.isEligible$10510(ev))
17 result = com.pontis.discounter.PercentageDiscounter

18 .calcDiscountedPrice$10511(ev);

19 else result = ev.getListPrice();

20 return result;
21 }

22 ...

23 }
24 class EligibilityByPropertyValue {

25 ...

26 static boolean isEligible$10510(An_Event ev) {

27 boolean result = false;
28 try {

29 String propertyValue = ((com.pontis.event.

MovieRentalEvent) ev).getDirector();
30 if (propertyValue.contains("Cameron")) result = true

;

31 } catch (Exception e) {}

32 return result;
33 }

34 ...

35 }

Figure 16. Specialized Pontis System

Program Time (ms)
Original regex state machine 1189
Specialized regex state machine 573
dk.brics.automaton regex library 816

Table 1. The time comparison of regular expression matching be-
tween the state machine before and after specialization andthe fast
Brics Automaton

5.3 Regular Expression Case Study

The motivation behind this case study is to show the success of
the partial evaluation in the optimization of general programs. This
program is a pattern matching application using regular expres-
sions. For the purpose of pattern matching of a regular expression
we developed a simple and naive deterministic state machineli-
brary. This state machine library simply tests the input andmakes
transitions. After consuming all of the input it reports a successful
match if it is in a final state.

We compare the run-time of the original state-based machine
regular expression matcher with the specialized version ofthe state
machine for detecting the occurrence of this regular expression:
(a | b)∗(abb | (a+ b)). We also compare the run-times against that
of dk.brics.automaton[21]. Brics Automaton is a highly tuned au-
tomaton library which claims to do fast regular expression match-
ing.

Example NOA LOC NOA/LOC
Power 2 116 1.72
Romberg 6 127 4.72
Pipe 3 149 2.01
ArithInt 2 176 1.13
FFT 35 185 18.9
Visitor 5 226 2.21
StateMachine 1 325 0.30
Strategy 4 362 1.10
Pontis 2 938 0.21

Table 2. Number Of Annotations (NOA), Lines Of Code (LOC),
and NOA/LOC factor for all the examples

Table 1 shows the run-time(in milliseconds) of the three pro-
grams for an input of length107. Not surprisingly, the run-time of
the specialized version of the state machine is less than theoriginal
state machine for the mentioned regular expression. However, the
run-time of the specialized version is also less than that ofBrics
Automaton. This shows how partial evaluation can be used to gen-
erate efficient programs out of naive and general ones which can
compete with highly tuned hand-written codes for the same func-
tionality. For the same reason we mentioned before, we couldnot
compare our results with that of JSpec on this case.

5.4 Scalability

There are two important aspects to scalability of hybrid partial
evaluation. One is how much effort it requires to annotate the code
for large programs. Second one is how much time it would take to
specialize a program.

To measure the first aspect of the scalability of our method, we
define and measure a factor called NOA/LOC. NOA is the number
of annotations and LOC is the lines of code of the program. The
NOA/LOC factor is the percentage of annotation with respectto the
program size. We have listed the NOA/LOC for all the examplesin
Table 2. The value of this factor for all of the examples except the
FFT is under %5 and their average is %1.3. This means that when
using Civet, on average, we only need to annotate about %1.3 of
the program regardless of the size of the program. This result is
promising that we can expect almost the same constant factorof
effort for even larger programs.

We investigated the reasons for high NOA/LOC factor in the
FFT example. In this example there are many local and loop vari-
ables that must be tagged which increase the number of annota-
tions. Civet is an implementation of the semantics of HPE. Itis
faithful to the semantics but it does not fully implement theseman-
tics. Thus, in some cases programmer needs to specify more prior
to partial evaluation. The full implementation of the semantics in
Civet is left as future work.

Time scalability, on the other hand, depends on input and how
much of the code is going to be affected by that input. For all the
examples, the time taken to specialize was less than a secondfor
each. We anticipate that even for larger programs with more than
100K lines of code, the time for partial evaluation would be linearly
proportional to the code size.

6. Related Work
Partial evaluation has a long history. In this section we discuss the
most relevant related work, specifically online partial evaluation
of imperative languages, and partial evaluation of object-oriented
languages.

An online partial evaluator makes decisions about what to spe-
cialize during the specialization process, while an offlinepartial
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evaluator makes all the decisions before specialization. Ruf identi-
fies two ways in which online partial evaluators can produce better
results than offline partial evaluators [23]. On one hand, offline par-
tial evaluators must approximate the situations that can arise at run-
time, so they are not as precise as is possible in an online setting. On
the other hand, they also cannot identify commonalities between
situations that depend on actual values of data. Hybrid partial eval-
uation supports the improvements identified by Ruf, but the focus
of HPE is ease of use and implementation, not better specializa-
tion. Since hybrid partial evaluation is guided by the programmer,
the opportunities for specialization are likewise limited.

Hybrid partial evaluation uses an online strategy because we
believe it is more direct and fits within existing compilers.The ap-
proach has some potential disadvantages. Online partial evaluation
are often slower than offline partial evaluators, because they make
complicated decisions at specialization time, and often repeat the
same analysis [24]. However, if specialization time is a small part
of the overall product development process, then specialization per-
formance is not a major issue. Programmer’s efficiency, and effi-
ciency of the final software product are the most important factors.

Meyer presents the semantics of online partial evaluator for a
Pascal-like language [20]. The language is imperative and has bi-
nary and unary operations and control flow structures, condition-
als and loops. Meyer uses a continuation-passing semanticsto im-
plement state, but do not clone the continuation as suggested by
Ruf [23]. Meyer has a more complex treatment of conditionals
than the one given here, in which the stores produced by the two
conditional branches are merged. In practice, we have not found a
need for the more complex approach. Meyer provides a correctness
proof of this Pascal-like language, but no practical evaluation. We
leave the correctness proof of the hybrid partial evaluation as future
works.

There are some works on partial evaluation of object-oriented
languages such as Java [7, 19, 25, 26]. Schultz et al. [25] present
a tool for automatic specialization of Java programs. Theirtool
is an offline partial evaluator. They show how partial evaluation
can be used to reduce the overhead of object-oriented abstraction
in generic programs [25]. Their tool does not support exceptions,
multi-threading and reflection. Similarly, our methodology and tool
do not offer anything for exceptions and multi-threading constructs
yet. But we do have semantics and implementation for reflection.

Le Meur et al. [16] present a language which allows program-
mers to provide specifications in order to guide the partial evalu-
ator. The specification tells the partial evaluator how to propagate
the compile-time data throughout the program. The ideas behind
their work and ours have similar roots. They use the programmer
provided annotations to guide the offline partial evaluation of a
high level language which is similar to C. They have adapted the
Tempo [6] partial evaluator so that it uses the provided specifica-
tions by programmers instead of the information gathered bythe
binding time analyzer.

7. Conclusion
We presented a hybrid approach to partial evaluation of object-
oriented languages, giving a formal definition of the technique for
a miniature object-oriented language, MOOL. In MOOL, program-
mer must specify the compile-time expressions in programs.The
hybrid partial evaluator uses the provided specification toinfer
what parts of the code should be specialized. Moreover, it incorpo-
rates the specification as seeds for exploiting opportunities for fur-
ther specializations in other parts of the code. This hybridapproach
supports method and class specialization, including specialization
of partially objects. It can also convert reflective method calls into
ordinary calls. However, it does not supportself-applicationand

therefore it can only provide the first of the three Futamura projec-
tions [11].

We described how the approach was used to build a hybrid par-
tial evaluator for Java called Civet. While Civet is sufficient to op-
timize a number of real-world examples, in the current prototype
some aspects of Java interfere with specialization. These include
final andprivate modifiers on declarations. The burden of speci-
fication is light. One goal of our work is to develop techniques that
can be incorporated into existing compilers. The entire Java par-
tial evaluator took 4 person-months to build as an extensionto an
existing Java compiler.

The system was evaluated on a number of examples, includ-
ing several Java programs written by other groups. The run-time
of a small version of the Pontis dynamic pricing system, which
uses model interpretation and reflection, was reduced by a factor of
6 (1/6 of the original run-time). The code generated by Civetper-
forms as well and in some cases even better than the code generated
by a state-of-the-art offline partial evaluator for Java, JSpec, which
is based on Tempo [6]. Civet also handles reflection.
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