Hybrid Partial

Amin Shali

Computer Science Department
University of Texas at Austin

amshali@cs.utexas.edu

Abstract

Hybrid partial evaluation(HPE) is a pragmatic approach to partial
evaluation that borrows ideas from both online and offlingigh
evaluation. HPE performs offline-style specializatiomgsan on-
line approach without static binding time analysis. Thel gb&lPE
is to provide a practical and predictable level of optimimatfor
programmers, with an implementation strategy that fits wihin
existing compilers or interpreters. HPE requires the m@ogner
to specify where partial evaluation should be applied. ¢vjates
no termination guarantee and reports errors in situatibas \i-
olate simple binding time rules, or have incorrect use o¢ @t
fects in compile-time code. We formalize HPE for a small ingpe
tive object-oriented language and desciitieet a straightforward
implementation of HPE as a relatively simple extension ofeaJ
compiler. Code optimized by Civet performs as well as andmes
cases better than the output of a state-of-the-art offlinggbaval-
uator.

N

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming LanguagésPartial evaluation

General Terms Languages, Performance

Keywords Partial Evaluation, Object-Oriented Languages, Hy-
brid

1. Introduction

Object-oriented systems are increasingly based on coafitgir
frameworks and reflection. These features are expensivette,
and the costs can limit the ambitions of framework develsper
creating more powerful and general frameworks. These dosis
ever, are often unnecessary because a particular progpocalty
configures and uses the frameworks in a specific way. Configura
tion files, data-driven programming and more sophisticébeahs
of model-driven development often involve dynamic intetption
of large amounts of relatively static data [22]. Avoiding thenalty
of generality requires optimizations that cut across medaund-
aries to simplify the general framework operations withpezs to
the program-specific configuration data.

Partial evaluation is well suited to optimizing such progsa A
partial evaluator caspecializea generic framework in the context
of the usage pattern in a particular program. It can alsavop#

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

Evaluation

William R. Cook

Computer Science Department
University of Texas at Austin

wcook@cs.utexas.edu

across interfaces, allowing programmers to write modgkeneral-
purpose programs, with the assurance that they will be dagptign
automatically.

In this paper we preserttybrid partial evaluation(HPE), a
pragmatic approach to partial evaluation that is designduktef-
fective in existing object-oriented languages. Hybridtiphevalu-
ation provides predictable and reliable optimizationg;dose the
programmer explicitly identifies parts of the program thadwd
be evaluated atompile timeversus normaluntimeevaluation [16].
The following example illustrates how HPE can be used taoigg
a naive regular expression library.

Regex regex = CT(RegexParser.parse("(a|b)*(abbla+b)"));
regex.execute(buffer);

The(T expression tells the compiler to instantiate kagex ob-
ject at compile time. Thexecute method is a simple, naive regular
expression interpreter. When thgecute method is invoked on a
runtime buffer, HPE inlines and specializes the interpretethe
specific pattern, resulting in a set of static methods toiefftty in-
terpret the finite state machine representing the regularession.
This example is discussed in more detail in Section 5.3.

We describe hybrid partial evaluation in the context of alsma
imperative object-oriented language. Like online pasrialuation,
HPE does not perform binding time analysis. The system stgpo
polyvariant specialization of methods and classes, andiaza-
tion of reflective operations. On the other hand, the kindspa-
cializations performed are similar to those performed bpffime
partial evaluator. The goals of HPE are predictabilityeaafsmple-
mentation, and sufficient specialization to optimize comrpoo-
grams.

To achieve predictability, HPE requires programmer annota
tions to indicate which objects should be instantiated anpmite
time, and HPE prohibits migration of compile-time objeaisin-
time. HPE has a simple check to ensure that executing imperat
code at compile time is consistent with the original sentanif the
program. Hybrid partial evaluation rejects programs wittoirrect
binding times, rather than silently generating inefficiessidual
code. These restrictions allow developers to understaddedy on
the optimizations performed by the partial evaluator.

To simplify implementation, a Hybrid partial evaluator is-d
rived from an interpreter (or operational semantics) andidsv
static binding time analysis. In addition, HPE provides anti-
nation guarantee. If the partial evaluating compiler tatkeslong,
the programmer must terminate it just as any other progratm wi
an infinite loop and rewrite the program to avoid the problem.

We have implemented hybrid partial evaluation within the-Ja
tAdd Java compiler [9] and used it to optimize a range of Jawa p
grams. Compared to JSpec [25], an existing offline partialator
for Java, hybrid partial evaluation generates code that effacient
as JSpec’s residual code. Initial results show an averagmest
speedup of specialized programs.

1 2011/4/10

data v =null |vs | vn | v | [v] | Cip
type Prog = CD
data CD = class C(T) {var x; init{e} MD}

data mod = static | method
data MD = mod m(z) {e}

© ® N U A W N e

dataop=+|-|x|/|==|!=|<|>]|%
10

datae=wv constant value

12

| © variable 13
| this self-reference 14
| C class name 1
|var z=¢; e variable declaration -
|z = e assignment 18
le; e sequence 1
| eope binary operator

| if e then e else e conditional

| while e do e iteration

| e.m(e) method invocation

| invoke(e, €, €) reflective method invocation

| new C(€) constructor call

| CT'(e,e) execute at compile time

| RT (e) execute at runtime

| IsCT'(e) tests for a compile-time value

Figure 1. Syntax of MOOL

2. A Miniature Object-Oriented Language

A Miniature Object-Oriented Language (MOOL) is used to expl
hybrid partial evaluation. MOOL is a dynamically typed imaiéve

language based on Java [17]. It includes classes, staticoast
mutable fields, local variables, and reflective method iation. It

does not include inheritance, interfaces, instancedicdtalds, or

non-local control flow constructs such as return, goto oeptons.

Similar to Smalltalk [12], all fields are private and all metis

are public. We believe that MOOL is sufficient to demonsttage
use of partial evaluation in real-world object-orienteddaages. A
more complete implementation in a real Java compiler isriteesd

in Section 4.

2.1 Syntax

Figure 1 gives the syntax for MOOL. A MOOL program is a list
of class definitions. As in Scala, a class definition has alesing
constructor, whose arguments are listed after the clase.rEinese
constructor arguments also become fields of the object. TEss ¢
contains a list of additional fields, methods, and an in##lon
expression. The fields of a class are initialized to an unddfin
value.

A method definition specifies the formal parameters and an ex-
pression which is the body of the method. Thatic modifier
identifies the method as a class-level method, independeartyo
instance. This usage should not be confused with the toaditi
concept of “static” values in partial evaluation, which aadled
“compile-time values” in this paper. Th€T (e, e) and RT(e)
expressions mark expressions as compile time or runtinpeces
tively. IsCT'(e) is a boolean expression which is used to test
whether or not an expression is compile time.

Literal values are of types integey,, booleanuy, stringwvs or
list [v]. Null is also a literal value. Value types also include objec
values,C':p, as described in the next section. Expressions include

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

class Circle(x0,y0,r0) {
var Xx;

method resize(n) { r := nxr; }
class Main() {
static main() {
var sl = CT(new Circle(3, 5, 10), True);
var s2 = new Circle(0, 1, CT(4, True));
sl.resize(2);
s2.resize(3);
}
}

Figure 2. An example program in MOOL syntax

operations on values and statements that affect control dlodv
the state: variable definitions, assignments, controltcocts such
asif andwhile loop method calls, object creation and reflection.
Figure 2 shows an example program written in MOOL syntax. It
shows aircle and aMain class which creates tw@ rcle objects.

2.2 Notation

All the semantics definitions in this paper are written in kidd15],
so they are executable. Literate Haskell [18] is used toaetite
definitions in more conventional style.

One non-standard aspect of the semantic definitions is the pe
vasive use of monads and Hasketls notation to implicitly pass
statethrough each definition in the interpreter. This implicitst
is used for several purposes, but the most familiar one isa8s p
a store representing the mutable locations that are created as an
object-oriented program is interpreted. While a compléseus-
sion of monads is beyond the scope of this paper, we provide a
quick explanation of the notation used in this paper whiobugth
be sufficient to understand the semantic definitions.

At a high level, the semantic functions have the followingnio

command x y = do

z < command z (y / 2)

put z

if z > y then do
a < command (z — 1) y
return a

else
command y z

Each line is either a binding +— expression or an expression
by itself. In either case, the expressions representmandsvhich
may read or modify the implicit program state and producelae
which is optionally bound ta. A command is just a function that
is defined in the context of a hidden state. The final line moa
block must either be a command, whose value is used for the val
of the block, or aeturn statement which returns a specific value.

The type of a state-based computation is specified as a nonadi
type State S T whereS is the type of the hidden state affdis
the type of value produced. The hidden state can be, for ebegiap
single value, a finite map of values, or a tuple of such types.

Since most semantic functions do not directly involve tlagest
it is useful to hide this state using a monad. When the hidtkte s
is needed, it can be read or written using two commapesand

2011/4/10

datap=wv|T|L|w --concreteand abstract values Elwhile e1 do e2] po = do

p:x — 1 --environment maps variables to locations E[if e1 then (e2; while e; do e2) else null]po
o:l— p --store maps locations to values
EL] e — p— v — State (Prog, o, NameMap) v Ele.m(@)]po=do
C:p' + E[el po
Elv]po = return v T < mapM(E[-] po) a
— _(T) {ep} < findMethod C m (length @)
Eler op e2] po = do [T+ 1] < allocate [T +— T
v Eleadpo ELeel ([F = T +9')(C:p')
v + E[ex] po
retumn op(v1,v2) E[invoke(e, em,a)]po = do
m < E[em] po
Elx] po = do Ele.m(@]po
(o, 0,-) < get
return o (p(z)) Elnew C(@)]po = do

class C(Z) {7 init{e.} _} + findClass C
7+ mapM(&E[-] po) a

[T+ 1] < allocate [T +— T

o'« allocate [f — L]

Elthis] po = return o

Elvar z =e1; e2]po=do

v+ E[ei] po €
[z 1] < allocate [z +— v] Eled (@ — U+ p")(C:p")
Ele2l([x — 1] + p)o return C:p’
Elz := e]po=do update | v =do
v < E[elpo (P,o,v) < get
update p(z) v put (P, (l,v):0,v)
return v

allocate = mapM(allocatel)
Eler; e2]po=do

Eleil po allocatel (z,v) = do
Elez2lpo (P,o,v) < get
let | = length o
E[if e1 then ez else es]po=do put (P, (l,v):0,v)
b« E[ei] po return (z,1)
case b of

True — E[e2] po
False — E[es] po

Figure 3. Full evaluation of MOOL expressions

put. For example, the following function ensures that the hidde are expressions. The Haskell source code for HPE can be &tund
state is at least, and return the previous value of the hidden state. the following URL:
http://www.cs.utexas.edu/~amshali/Civet/

ensure n = do An environmentp, maps variable or field names to locations. A
T < get store,o, maps locations to potentially abstract valugsAbstract
if <n then do values,, are described in the next section. They are included here
put n so that the full evaluator can have the same type signatutieeas
return x partial evaluator. AL value for a variable means that the variable
else has not been assigned yet. An object valGep, is a pair where
return z C' is the name of the class that the object is instantiated fyois.

. . the environment for this object, which contains the loaagiof its
The functionensure has typeState Integer Integer, meaning fields.

that it has a hidden integer state variaple, and also realrr'rrgeger. . The function€[-] - is referred to as the “full evaluator” to dis-
There are many papers and tutorials on monads which eXpla'”tinguish it from the “partial evaluator’ defined in SectionThis

the drc]atails on the sfen:].antics and !mplcelmentation of monails [2 ¢,nction, £ e] po, executes the program represented by an expres-
For the purposes of this paper, it is only necessary to UfelS gjg . in the context of an environmeptand current objeat. The

that the store is passed through each line @6 &lock. full evaluator returns a value and potentially modifies tlicit
state [28]. The implicit state has three components: thgram,

2.3 Semantics a store and aVameMap. The full evaluator only manipulates the
The semantics of MOOL is shown in Figure 3. In the cddefers store. The other components are included for consistenttythe
to a location,z refers to a namey refers to a value, and anda partial evaluator, which extends the program during evalna

Hybrid Partial Evaluation, a pragmatic approach to partievaluation 3 2011/4/10

The first two cases specify the behavior of value literaknd
binary operators. The full evaluator applies the binaryrapen op
to its operands and returns the result, taking into accdwntype of
values that it receives with respect to the operation. THi@itlen
of op is omitted.

The next three cases concern variables, declarationssaigha
ment. All variables are bound to locations in the environthand
the locations are then looked up in the store. As mentioneten
previous sectionget is a command which retrieves the program,
the store and the NameMap in a tuple. All variables are assume
to be present in the environment, and their location definetie
store, otherwise an error is thrown.

A variable declarationyar z = e1; ez, evaluates:; to get a
value, then stores the value into a new location, and thenaes
es in an extended environment. Thélocate function takes a
list of name-valuepairs [T +— o] and returns a list ohame-
location pairs[Z + I]. It updates the store so that each location
contains the corresponding value. Assignment= e evaluates
e and then updates the variable’s location to the new value. Th
update function gets the store, and then adds a riéw) pair to
the store to associate locatidomwith value v.

Evaluation ofif andwhile expressions is standard.

The evaluation of a method call, m (a), starts with evaluating
the target expressiore, and all the argument. The evaluator
then finds the methodn, based on the class of the target object.
It then evaluates the body of the method in an environmenthvhi
has the bindings actual parameters and the target objesitls fi'.
The object context is set to the target object:p’.

The invoke expression supports reflective method invocation,

e All variables are assigned values at compile time, but ttheeva
may be a concrete (compile-time) value or an abstract value
representing partial information about the future actafle of
the variable at runtime. A variable’s status, as either d@np
time or runtime, never changes. Compile-time variables are
eliminated from the program.

e Methods and constructors are specialized on every coniaimat
of specific compile-time arguments that arise during phrtia
evaluation. When a constructor is specialized, its clasplis
into compile-time and runtime facets, in effect creating tw
partial objects that exist in different phases.

In the partial evaluator, concrete compile-time valuessargly
the normal values, which can be primitive values or objects that
exist only at compile time. There are two kinds of abstrattes:
unknown valuesT and abstract value%;. A completely unknown
value is represented by. An abstract value™ can be either a
primitive constant that has been marked to exist at runtioney
partial object "C':p. A partial object can specify just the class of a
runtime object, or it can specify the class and some of itddiel

The key point is that compile-time values force specialorat
when used as arguments to methods or constructors, whitlaets
objects allow local propagation of compile-time infornoetibut
do not trigger specialization. For instance, in the progsirown
in Figure 2,s1 is a compile-time circle object whereas is an
abstract runtime circle object, because only the valuesofaitlius
is marked to be known at compile time.

The type of hybrid partial evaluatoR[-]--, is shown in Fig-
ure 4. A hybrid partial evaluator, like an online one, worlerw

where the method name is computed as a value rather than beingmuch like a full evaluator. However, during partial evalaat the

explicit in the syntax of the call. The expressieris the target of
the reflective calle,, is an expression which evaluates to the name
of the method andi is the list of actual parameters. To evaluate
a reflective method invocation, the semantics first evatuéte
method name expression, then performs a normal methodsiadj u
the computed name.

The full evaluator evaluates the object creation expressio
new C(a), by finding the clasg’. It then evaluates all the actual
arguments of the class constructor and binds them to theiesa
in the environment. Then, it binds all the fields of the clasthe
undefined value,, and evaluates the body of the constructor and
returns an objectC:p’. An object’s fields are initialized when the
full evaluator evaluates the body of the construator¢).

3. Hybrid Partial Evaluator for MOOL

In this section we define a hybrid partial evaluator for MO®\ith
partial evaluation, program execution is split into twogsts. The
first stage, where partial evaluation is performed;ampile time
The output of the compile-time stage is a modified progrartheda
residual codewhich is executed in theuntimestage. Values that
exist during the first phase are calleaimpile-timevalues, while all
other values are calledintimevalues.

The key question for partial evaluation is how to identifyath
parts of a program should be evaluated at compile time. Idybri
partial evaluation is based on a few fundamental principles

e A programmer identifies parts of the program to execute at
compile time, creating compile-time values. Any subseguen
operations that involve compile-time objects are executed
compile time, possibly creating more compile-time objeEts
ery object exists either at compile time or runtime and canno
move between phases. On the other hand, primitive values (in
tegers, strings, dates) are automatically moved betweasesh
as needed.

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

store may contain abstract (or approximate) values onee-ep
sented byw. Operations on these abstract values are residualized
to create code that executes at runtime, when the actuas/ahe
known.

The result of hybrid partial evaluation is an expressioroatc
panied with a valuep, which may be a compile-time value or an
abstraction of a runtime value (@r). The expression represents the
residual code. The value is the information about the gbrésal-
uated expression. This information can be as concrete asstect
or as abstract as @ value. Online partial evaluators have tradi-
tionally been defined to return an residual expressioa compile-
time value. Allowing both an expression and a value allowgil
code to be generated while also returning partial inforamaéibout
the value computed by the residual code. Partial evaluafibasic
expressions is given in Figure 4.

Partial evaluation of primitive value constants alwaysdoices
abstract values. This may seem strange, because consehilya
known at compile time. However, if all constants were consid
ered compile-time values, they would cause specializatiban-
ever they were used, which would violate the principle thetgro-
grammer should indicate where specialization is to occur.

Binary operatorsg; op es, return a compile-time value if either
e1 Or eg partially evaluate to a compile-time value, otherwisemetu
an abstract value. This rule follows the principle that egiens
involving compile-time values produce compile-time value

3.1 Variable Declaration and Assignment

Figure 4 also defines the hybrid partial evaluation of vdesbvari-
able declarations and variable assignments. A variablerigpie-
time if it is assigned a compile-time value and it is runtirhi is
aT or an approximate valuéy. HPE binds all the variables in the
environment whether or not they are compile-time.

For variables, partial evaluator returns their value aseébilual
expression if they are compile-time. This is because ca¥ipite

variables are eliminated from the residual code. Otherwise-

4 2011/4/10

data PV = (e, p)
PL1--:e— p— v — State (Prog, o, NameMap) PV

Pl vl po = retun ([v], v)

Pler op e2] po = do

(e1,p1) < Plei]po

(€5, p2) + Plez]po

case (p1,p2) of
(v1,v2) — let v = op(v1,v2) inreturn
(v1, w2) — let v = op(v1,v2) in return
(v1,v2) — let v = op(v1,v2) in return
(w1, v2) — let v = op(v1,v2) in return
else— return ([e} op e5], T)

Pl this] po = return ([this], o)

Plz]po = do
(=y0,_) < get
case o(p(z)) of
v — return ([v], v)
p — return ([z], p)

Plvar z =e1; e2]po=do
(e1,p1) < Pleilpo
[z —] «+ allocate [z — p1]
(e5,p2) + Ple2]([z = 1] + p)o
case p; of
v — return (e5, p2)
else— return ([var z = el; e5],p2)

Plz := e]po=do
(- 0,-) « get

case o(p(z)) of

PLCT (e, e")]po = do v —do -- compile-time variables not residualized
v < E[e']po - Errorif ¢’ is not compile-time v« E[e]po -- Errorif e is not compile-time
if ' = True then do update p(z) v’
v < E[e]po -- Error if e is not compile-time return ([v'], v")
return ([v], v) v — do -- abstract variable must stay abstract
else P[] po (€', p) + Plelpo
update p(z) p
Pl1sCT(e)] po=do return ([z := €], p)
(¢/,p) < Plelpo T — do -- unknown runtime value

case p of
v — return ([True], True)
else— return ([False], False)

PLRT (e)]po=do
(e’,p) <= Plelpo
return ([e'], T)

1 —do

(¢/,p) < Plelpo

return ([z := €'], T)

-- variable is not yet defined

(¢, p) + Plelpo

update p(z) p

case p of --first assignment determines status of variable
v — return ([v], v)

_—return ([z := €], T)

Figure 4. Partial evaluation of basic values, variables, operat@isable declarations, and assignments

turns a residual code which contains the name of the varabte
with the abstract value stored for that variable.

A variable declarationar z = e; - may introduce a compile-
time or runtime variable. If the partial evaluated valuecofs a
compile-time value, then the variable is defined only at citenp
time, and has no existence at runtime. Otherwise, the \lariala
normal runtime variable defined in the generated residudg .co

Partial evaluation of a variable assignment; = ¢, depends on
whether ther is a compile-time or runtime variable. For a compile-
time variablez, the expressiorm must evaluate to a value and the
value of z is updated in the store. For runtime variables, residual
code is returned for the assignment. A valuen the store for a
variable means that the variable is a field and has not be@nass
yet. Thus, it can accept any value and partial evaluator tepda
its value in the store accordingly. When a variable has theeva
T, it means that we have no compile-time information about the
variable. Such variables cannot be updated with any otHeesa
exceptT.

3.2 Special Expressions

The special expressioi'T (e, ¢’) indicates which values should
be created at compile time. ¥ is True, thene is a evaluated at
partial evaluation time using the full evaluator, to cremt®mpile-

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

time value. The result may be a primitive data type, or anaibje
The special expressiodsCT (e), evaluates tdlrue whene is a
compile-time valueRT (e) expression marks an expression as run-
time. The partial evaluator does not do any evaluation orethe
pressione, and simply returns the same expression as the residual
code along with & value.

3.3 Control Flow

Figure 5 defines hybrid partial evaluation of control flowtsta
ments. Sequences are straightforward.

For anif-expression, if the condition is a compile-time value,
then the partial evaluator selects the appropriate braorctufther
evaluation, just like the full evaluator. When the conditie a run-
time value, it is desirable to partially evaluate both brexof the
conditional. The problem is that branches may make incoitvpat
changes to the store, so that it is not clear which modifietesto
should be used for the evaluation of the remainder of therpmg

This problem is illustrated in Figure 6 [20]. In this examplés
a runtime variable. Thus, the partial evaluation of thecondition,

a < x, results in the expressian< 3, which is not a value. During
runtime, only one branch must take place, in which case,dhev
of x after the evaluation af f-expression would be 9 and the value
of y can be either 4 or 6 based on the branch taken.

5 2011/4/10

Pler; ex]po=do
(eh,p1) < Plelpo
(€5, p2) < Plez]po
return ([e1; eb], p2)

PLif e1 then ez else es3]po = do
(€1, p1) < Pleilpo
case p; of

True — Plez] po
False — P[es] po
else— checkStore p o (if €} then

Plwhile e do ex]po = do
(e1,p1) < Plei]po
case p; of

True — Plez; while e; do ez2] po
False — P[null] po
else— do

sanitize p

checkStore p o (while -

else) ez e3

do ‘) e1 e2

checkStore p o f ez e3 = do
(P, store,v) < get -- capture the initial store
(e, p2) < Ple2]po -- evaluate the then branch
(,01,-) < get -- snapshot the resulting store
put (P, store,v) -- reset store to initial conditions
(es,ps) < Pleslpo --run the else branch
(o, 02,-) < get -- snapshot the else store
cmp < 01 =, 02 -- check that changes are consistent

sanitize p -- erase abstract values
if cmp then -- success

return ([f e5 es], L)
else -- report inconsistency

inconsistentChangeError p o1 o2

Figure 5. Partial evaluation of control flow constructs

method iftest(a) {
var x = CT(3, True);
var y = CT(4, True);

if (a < x) {
y =250
X =3 +y;

}

else
X =5+ y;

}

Figure 6. The problematic example of anf-expression for the
partial evaluation

Hybrid Partial Evaluation, a pragmatic approach to partiaaluation

A polyvariant computation scheme [10] deals with this peoil
by partially evaluating both branches and inserting neogsas-
signments calleexplicator at the end of new residual branches.
Meyer [20] proposed a solution that joins the environmemts r
sulted from the two branches. In a semantics based on centinu
ation, the rest of the program is specialized separatelyeémh
branch [23, 27]. However, this has the potential to duptidatge
amounts of code.

HPE has a pragmatic approach to this problem. dthekStore
function (See Figure 5) evaluates both branches and thé&s foo
inconsistencies in the state. It alsanitizeghe store by converting
all partially abstract values to. If the resulting storeso(;, o2) are
different with respect to the initial environment)(HPE raises an
error. Otherwise, it continues with the generation of thdecéor
theif and partial evaluation of the rest of the program. The same
approach is used fahile expressions, except that the store is also
sanitized at the top of the loop. We have found that this petgm
approach is sufficient for many common programming idionss, a
shown in Section 4.

For the example in Figure 6, the hybrid partial evaluatortsta
with the environment{z = 3,y = 4}. The first branch changes
the environment tdz = 9,y = 6}. The partial evaluation of the
second branch results fc = 9,y = 4}. The two branches make
inconsistent changes to the environment and therefore lHREs
an error.

3.4 Class Specialization and Partial Objects

For an object creation expressiaorw C (@), HPE specializes the
classC if any of the parameters to the constructor call are compile-
time. Class specialization is defined in Figure 7. For classial-
ization, the partial evaluator binds the actual parametttse con-
structor in the environment. It then finds if this class witicls ac-
tual parameters has been already specializedfihld@/emoClass
returns the name of the specialized class, if there is oreadyr
along with its class definition. Otherwise, it generates\a name
and returns it with the original class definition.

When the class has not been specialized, HPE specializes the
body of the constructor in an environment containing thelioig
for the parameterghis and fields. Fields are initialized ta. All
the methods of the class are likewise specialized. The nasscl
and methods are added to the program. The resulting residdel
is an expression that instantiates the new class with angireng
runtime parameters. Along with the residual code, HPE nstan
abstract object which has the name of the new class and thalpar
environment of the object.

When the clasg’ with those actual parameters has been already
specialized, the hybrid partial evaluator evaluates thatytaf the
constructor after allocating the fields and theis object in the
store and returns an approximate object with the requirsiduel
code.

3.5 Method Specialization

HPE can specialize method catlsm (a) on compile-time objects,
which were introduced in Section 3.1. Since a compile-titject
is never residualized, its identity and field values exisy aluring
partial evaluation. In this case, hybrid specializationymesult in
full evaluationof the call, or create eesidual class method
The cases for method calls on compile-time objects are dakfine

in Figure 8. If all the arguments to the method call are coeipihe
values, then the call is processed as a normal method catinie
but not all of the method arguments are compile-time valtnes, it
must be specialized to create a new method in the residugigro
Since the target object does not exist in the residual pmgthe
new method must betatic. The functionS[e] ™" po C m a
(See Figure 9) creates a specialized version of a methadislndse

6 2011/4/10

Plnew C(a)]po=do
(@, 7) « mapMP[1po) @
if any isCompileTime p’ then do
memc <+ findMemoClass C p’
let (z,C’,class _(T) {f init{e.} ™m}) = memc
[T — 1] < allocate [T — pP']
let T4 = getRuntimeNames T (a’,p’)
let @y = getRuntimeEzprs (a’,p’)
o'« allocate [f — L]
(el) — Pled(F = 1+) (o)
when (- z) (do
m’ < mapMM[-1p'(C":p")) m
f" < getRuntimeFields f p’
addClass class C'(Tg) {f’ init{c.} m'})
return ([new C’(aq)], C":p’)
else do
class _(_) {7 init{_} _} < findClass C
o'« allocate [f + T]
return {[new C(a’)], C:p")

findMemoClass C [T5 — U5 = do
(p,o,n) < get --nis NameMap
case n((C [Ts — U5])) of
I,[C] — do
cdef < findClass (C' +"$" + 1)
return True, C' 4+ "$" + [, cdef
Nothing — do
let | = (length n) + 1
put (9,0, (C [= 75, (L[C])) : n)
cdef < findClass C
return False, C'+ "$" + [, cdef

M modifier m(T) {e}]po = do
p' < allocate [(z,T) | z + T]
(¢',2) < Plel(p+p')o
return modifier m (%) {e'}

Figure 7. Partial evaluation of constructors for partial objects

the new method is marked a&tic. New methods are stored in a
cache, so that the same specialization of a method is notajede
twice. The method specializéi] e] ™**#*"po C' m @ binds all the
parameters in the environment and partially evaluates tthod
body. It then adds the method to the corresponding classeimchs
the residual method call expression with runtime arguments

Program point specialization is a technique that is usedde p
vent the specializer from running into the infinite loop oésializ-
ing a recursive function [1, 5, 14]. The hybrid partial eahr uses
the polyvariant specializatiofd, 8, 24] strategy for program point
specialization. It memoizes a call expressienm (a), so that it
can be reused from other call sites. It also memoizes objeet c
ation expressions (constructor calls). Memoization isl@mgnted
in the findMemoCall and findMemoClass. The partial evaluator
saves the name of either method or class along with the guadal
rameters passed to that and the content of the store at theofim
specialization. These information are stored in MeneMap part
of the state monad.

Now consider the method cadl. m (@) in which o is a partial
object. The hybrid partial evaluator knows the class of diglar

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

Ple.m(@)]po=do
(¢p) Plelpo
(a’,p’) < mapM(P[-]po) @
case p of
C:p) — do
if all isCompileTime p’ then do
— _(T) {ep} < findMethod C m (length @)
[T+ 1] < allocate [T +— p']
v Eled ([T =1 +p')p
return ([v], v)
else
SII C]Istaticp/T Cm <?7 F>
“C:p' — --targetis an approximate object
if any isCompile Time p’ then do
Sﬂ:e/]Imethodp/p Cm <?7 F)

else
return ([e¢’.m(a”)], T)
else— --targetis unknown

if any isCompileTime p’ then do
m’ < specializeAll p o m {a’,p’)
let @g = getRuntimeEzprs {a’,p’)
return ([e'.m’(aq)], T)
else
return ([e’.m(a”)], T)
‘Plinvoke(e, em,a)] po=do
(€m,p) < Plemlpo
case ¢, of
m — Ple.m(@)] po
else— do
(¢/,p") + Plelpo
(@, 7) « mapM(P[1po) a
return ([invoke(e’,e},,a’)], T)

Figure 8. Partial evaluation of method calls and reflective method
calls for partial objects

object. When some of the actual parameters in the method call
expression are compile-time values or objects, HPE speewl
using the functiors and creates a residuaktancemethod. This is
shown in Figure 8. When all of the parameters are runtimeeglu
the partial evaluator generates a residual code for theadetall.

If the target of the call is not known and the partial evaluato
has no information about it and some of the actual parameters
are compile-time values, HPE specializes the method calteS
the class of the target is not known, all the methods in all the
classes with the same name and the same number of the parmmete
are specialized. ThepecializeAll function finds all the methods
with the same name and the same number of parameters in all the
classes. It then partially evaluates each method with a cbiye
store. Thereatfter, it checks all the stores resulting froengartial
evaluation of each method to make sure that partial evalvatf
methods has not caused any inconsistency in the state.

When the target is unknown and none of the parameters are
compile-time or abstract values, HPE only generates a uakid
code.

3.5.1 Reflective Calls

Figure 8 also defines the partial evaluation of reflectivisc#hen
the partial evaluation of,, results in a string valuep, the name

7 2011/4/10

S[el™ " po C m (a7, ") = do

(z,m',_ _(Z) {ep}) + findMemoCall C m p’ 2
let @y = getRuntimeEzprs {a’,p’) j
when (- z) (do 5
[T — 1] « allocate [T — p’] 6
(et p) < Pled([F oD +p)o ;

let Tqg = getRuntimeNames T (a’,p’) 9
addMethod C modifier m'(Zq) {ey}) 10
return {Je.m’(aq)], T) E
findMemoCall C ma = do 13
mdef < findMethod C' m (length @) 14
(p,o,n) < get --nisthe NameMap B
case n((m (length @) @)) of 1:
l,cs — do 18

if (elem C cs) then

return True, m + "$" + [, mdef
else do
put (p,o, (m (length @) a, (I, C : cs)) : n)
return False, m 4+ "$" + [, mdef
Nothing — do

let | = (length n) + 1

put (p, o, (m (length @) @, (1,[C])) : n)

return False, m + "$" + [, mdef

Figure 9. Helper function for partial evaluation of method calls

© ® N U A W N e

10

of the method to be called is known at compile time. Thereforé&
partial evaluator can specialize the method using the afjeation
process of a normal method call. Otherwise, when the nanteeof ti
reflective method call is not known, it partially evaluatks target
expression and the arguments and generates an expresstbe fo ;4
invoke.

As an example, consider the following example of reflective
method invocation:

Method m = obj.class.getMethod(name, Integer.TYPE);
m.invoke(obj, arglist);

if name is known at compile time to betest" then the code above
is optimized to [2]:

obj.test(arglist);

UoA W N e

3.6 Examples

In this section we show some examples in MOOL programs ang
and their generated residual code. The first example is agent
exponentiation. This function works by squaring based erfaélst s
that whenn is evenz™ = z"/? x z™/? and whenn is odd ¢
z" = x x 2" '. Figure 10 shows the MOOL program which
implements this function. Figure 11 shows the residual dode *
the power function when the exponent has a compile-time valu&
of 11. Thepowers1 is the residual function which takes only one’
parameter, the base of exponentiation, and returns thepbitbr
of that. 16

The next example is a regular expression matcher prograis. Thy
program is based on the idea of using derivatives of a reguar 1s
pression pattern [3]. This way of constructing a regulareggion 19
matcher does not require using NFA, DFA or back-tracking- Fi 2

ure 12 shows the code for matching algorithm. In this code thé }

regular expression is a compile-time value. The input hevés
dynamic. The partial evaluator specializes the matchiggraghm

and generates a new code which has no trace of the classes and

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

1 class Main() {

static main(a) {
this.power(CT(11),a);

method power(n,x) {

var i = n;
var y = 1;
var p = Xx;

while (i > 0) {
if ((1%2) =1)

y =Yy *p;
i:=1/ 2;
if (i > 0)
pi=p*p;
Y
}

Figure 10. Exponentiation Function

class Main() {

static main(a) {
this.power$l(a);

}
method power$l(x) {

var y = 1;
var p = Xx;
y i=Yy *p;
p =p *p;
y i=y *p;
p =p *p;
p i=p *p;
y i=y *p;
Y
}

Figure 11. Exponentiation Function Residual Code

function calls on the input regular expression. The redidode is
shown in Figure 13.

public abstract class Regex {

public abstract Regex derivative(Character c);
public abstract boolean canBeEmpty();
public Set<Character> first();
public static boolean match(Regex e, String input) {
if(input.length() == 0) return e.canBeEmpty();
Character ¢ = input.charAt(0);
for (Character ce : e.first())
if(c.equals(ce))
return match(e.derivative(ce),
input.substring(1));
return false;

}

public static void main(String[] args) {
@StaticStage
Regex re = RegexParser.parse("(alb)*(abbla+b)");
String in = "abababababb";

boolean matched = match(re, in);
System.out.println(matched);
}

Figure 12. Regular expression matcher

8 2011/4/10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

L N

public abstract class Regex {
public abstract Regex derivative(Character c);
public abstract boolean canBeEmpty();
public Set<Character> first();
public static void main(String[] args) {
String in = "abababababbb";
boolean matched = match$1000001(in);
java.lang.System.out.println(matched);
}
public static boolean match$1000001(String input) {
if(input.length() == 0) return false;
Character c¢ = input.charAt(0);
if(c.equals(’'b’))
return match$1000002 (input.substring(1));
if(c.equals(’a’))
return match$1000012(input.substring(1));
return false;

}
// ...
public static boolean match$1000013(String input) {
if(input.length() == 0) return true;

Character c¢ = input.charAt(0);
if(c.equals(’'b’))
return match$1000005(input.substring(1));
if(c.equals(’'a’))
return match$1000006 (input.substring(1));
return false;
}
}

Figure 13. Regular expression matcher residual code

3.7 Discussion

Hybrid partial evaluation does not guarantee that all pogy
which execute correctly by themselves can be partiallyuatald
to produce residual code. In other words, hybrid partialuation
can fail even if the program being analyzed is an otherwidiel va
program. Unfortunately, the error cases are not completghyicit

in the semantic evaluation functions. One important emdrich
can occur anywhere, is an attempt to create residual cotedha
tains an instantiated compile-time object. For example foHow-
ing code instantiates a hash table at compile time, but ttiempts
to use the hash table at runtime to lookup a runtime inpuigtri

var o = CT(new HashTable());
o.put("one", 1); .; o.put("nine", 9);
var r = o.get(readLine());

if (r != null) System.out.println(r);

The hybrid partial evaluator raises an error in this caseabse
the residual codg(HashTable:p).get(readLine())] is invalid,
as code cannot contain an instantiated compile-time abjéut
partial evaluator would try to specialize th@t method, but it
cannot specialize system methods. HPE issues a compitar-er
when processing the above code.

It is possible to rewrite this example to avoid the problem, b
taking more advantage of compile-time information and ¢firag
when operations take place. This kind of change is knowbiras
ing time improvementn this case, the trick is to iterate over the
compile-time hashtable:

var o = CT(new HashTable());

o.put("one", "1"); .; o.put("nine", "9");
var input = readLine();

for test : o.keys()

if input.equals(test) then
System.out.println(o.get(test));

In this version of the program, boihand test variables are
compile-time values, which are not included in the resiciale.

Hybrid Partial Evaluation, a pragmatic approach to partiavaluation

UoA W N e

The residual code has unrolled and specialized the loopcath&
get only involves compile-time values, so it is specialized ywa

var input = readlLine();

if input.equals("one") then System.out.println("1");
if input.equals("two") then System.out.println("2");
if input.equals("nine") then System.out.println("9");

Conversely, the partial evaluator may also through ertfoas i
expression is marked a3 but involves runtime data. These places
are noted in Figure 4.

4. Civet: A Hybrid Partial Evaluator for Java

We have implemented a hybrid partial evaluator for the Jawa |
guage, based on the semantics we explained in the previgus se
tion. This hybrid partial evaluator is calleZivet.. For implement-
ing Civet, we have extended a Java compiler written uskagr
tAdd Compiler Compile[9]. The modular structure of the JastAdd
helped us easily extend the Java compiler. The Civet is aARQ0
lines. It can be found at the following URL:
http://www.cs.utexas.edu/~amshali/Civet/

Civet currently uses annotations to specify compile-tirag-v
ables rather than a special expressith, as in semantics. In Civet,
the specification is given usir@fompileTime and@CompileTimeIf

Java annotations. TheCompileTimeIf(other_var) annotation
indicates a conditional situation where a variable is coeapine
only if another variable with the nameher_var is also a compile-
time variable. Civet follows the closest scope rule to fing th
other_var. It generates pure Java code after partial evaluation,
which makes it easier for debugging and further analysis.

There are several issues in the specialization of Java gresyr
One issue is in the class specialization. When Civet speegh
class constructor, it creates a new class which is a subcfabe
class being specialized. It then copies the body of the stipes
constructor to the subclass and then follows the semariftivs.
problem arises when some fields of the class are private. \tfigen
fields are private the new subclass cannot access them frarimwi
the constructor or methods.

Moreover, because partial evaluator creates a new cotmtruc
in the new generated class, it requires the original cladwat@

a default constructor. This is because the original clagghtmot
have any constructor of the same parameters as the newliggsztia
one. Thus, it must have at least a default constructor soes th
program be able to create an object of the specialized tygagiu
runtime. In addition, a class cannot fieal because it cannot
be inherited from. These restrictions in Civet only applieghe
classes which are going to be specialized.

5. Evaluation

We evaluate the performance and scalability of Civet on $asnp
from several sources.

5.1 JSpec Suite

The JSpec test suite is created by Schultz et al. [25]. Wadiste
of the examples from this suite with a short description:

e FFT: Fast Fourier Transform. The compile-time input forsthi
case study is the size of radix which in our experiments are se
to 16, 32 and 64.

e Romberg: This is an integration method. The compile-time
input in this case study is the number of iteration which tdse
2 in our experiment.

1Civet is an animal that eats coffee beans and produces Ilyadigested
coffee berries which produce highly priced coffee.

9 2011/4/10

Time (ms)
1800

B Original B JSpec O Our tool

1600

1400

1200

1000

800

600

mL

Romberg Visitor Strategy

FFT16

FFT32 FFT64 Power ArithInt Pipe

Benchmark

Figure 14. Time comparison between JSpec and Civet

e Power: Power functiony™, wheren is a natural number. The
exponent is a compile-time value in this experiment.

¢ Pipe: Function composition. The composition is fixed.

e Visitor: Visitor pattern for operations on a binary tree.eTh
choice of operations is known at compile time.

e Strategy: this is an image processing example using thegjra
pattern. The specific operator is known at compile time.

e Arithint: This case study is a simple arithmetic expression

terpreter. !

3
4

5.1.1 Performance

We compare the performance of Civet with JSpec on benchmarks for (A_Promotion promotion :

from JSpec suite. We run Civet on the same original prograitis w 6
the same set of partial inputs in order to get specializedrnaros. ’
We then, run each specialized program with the rest of inants ~ °

measure the run-times. Each benchmark is run ten times and \llge}

11 ...

take the average run-time of all the ten execution to reptebe

Note that we could not generate any code with JSpec because
the tool is not available. We were only able to compile andthen
generated code by JSpec.

5.2 ModelTalk Case Study

ModelTalkis a domain specific model driven framework [13]. It
has an interpretive approach to model driven developmenteS
the execution is interpreter based, it is a good target fotigha
evaluation. We specialized@ynamic pricing systeroalledPontis
based on ModelTalk. The dynamic pricing system is a system fo
calculating the prices of different products by applyinged of
price promotionsto each of them. The promotions are known at
compile time while the products are known at runtime. The run
time of the original system on a set of productsJor 10° iteration

is 3153 ms, while the run-time of the specialized version of the
system using Civet is abo€ifi2 ms. This is a factor of 6 speedup.
This speedup is mainly gained by specializing the reflectie¢hod
calls and turning them into normal method calls.

Figure 15 gives some code taken from the Pontis example.
Figure 16 gives the specialized version of the code example.
The original code has been partially evaluated with a cosapil
time list of price promotions As shown in the Figure 16, the
calcPromotionalPrice method call on the@romotion object has
been turned into a static method call on themotion class. In
addition, the reflective method callsigEligible has been turned
into a normal method call. The specialized method names have
been appended by a $ and a number.

class PromotionSystem {

2 ...

double calcPromotionalPrice(An_Event ev) {
double result = ev.getListPrice();

promotions) {
double p = promotion.calcPromotionalPrice(ev);
if (p < result) result = p;

}

return result;

final reported run-time. We run all the benchmarks on an e, 3

2 Duo CPU P8400 2.26GHz machine with 2.8GiB of memory ang
running Ubuntu 10.04. 1

class Promotion {

Figure 14 compares execution time between JSpec and ClvetDouble calcPromotionalPrice(An_Event ev) {

for all the case studies. Time is measured in millisecondgjube 16
JavacurrentTimeMillis() call. This figure also shows the run- ¥/
time of the original programs. Civet performs better thapetS *°
on all FFTs’, Arithint, Pipe, Visitor and Strategy and it fems
slightly worse on the rest. The average speedup of JSpease th

examples is 5.19 and the average speedup of Civet is 5.7. »

Double result = null;
if (eligibility.isEligible(ev))
result = discounter.calcDiscountedPrice(ev);
else result = ev.getListPrice();
return result;

1}

We measured the number of lines generated by Civet on difr }

ferent case studies. The number of lines of code of the pnogra.

class EligibilityByPropertyValue {

would increase after specialization because of methodrggoe, 2 ...

loop unrolling etc. Nevertheless the effective code sike,dode 2
which is used during the execution, might be smaller. Thelrarm %
of lines of code increase on almost all the examples is ab@ut 128
to 2 times the number of lines of code in the original. On FFT ex30
amples, however, due to a lot of loop unrolling, the increfaseor

goes up to 7.6 on FFT64. -

boolean isEligible(An_Event ev) {
boolean result = false;
try {
String propertyValue = (String)
ev.getClass().getMethod("get"+propertyName, null).
invoke(ev, null);

We compared the bytecode size of the generated programsHy } catch (Exception e) {}

JSpec and Civet. The bytecode size would increase for the sam

reasons the lines of code would. The average bytecode sizage 34

on these case studies for Civet is 1.37, while it is 1.39 fqredS 35 - --

Again, the effective bytecode size, the code that will belémhinto 3¢
the memory, might be smaller. That is because specializatm
eliminate some classes and therefore the residual progi@mot
need to load them during runtime.

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

if (propertyValue.contains(value)) result = true;
return result;
}
}
Figure 15. Pontis System
10 2011/4/10

17

19
20
21

class PromotionSystem {

static double calcPromotionalPrice$10508(An_Event ev) {
double result = ev.getlListPrice();
double p = com.pontis.promotion.Promotion
.calcPromotionalPrice$10509(ev);
if (p < result) result = p;
return result;

}

class Promotion {

static Double calcPromotionalPrice$10509(An_Event ev) {
Double result = null;
if (com.pontis.eligibility.EligibilityByPropertyValue
.isEligible$10510(ev))
result = com.pontis.discounter.PercentageDiscounter
.calcDiscountedPrice$10511(ev);
else result = ev.getListPrice();
return result;

}

2 ...
23 }

24
25
26
27
28
29

30

31

32
33

class EligibilityByPropertyValue {

static boolean isEligible$10510(An_Event ev) {
boolean result = false;
try {
String propertyValue = ((com.pontis.event.
MovieRentalEvent) ev).getDirector();
if (propertyValue.contains("Cameron")) result = true

} catch (Exception e) {}
return result;

}

34 ...

35

}

Figure 16. Specialized Pontis System

Program

Original regex state machine
Specialized regex state machine
dk.brics.automaton regex library

Time (ms)
1189
573
816

Table 1. The time comparison of regular expression matching be-
tween the state machine before and after specializationhanfast
Brics Automaton

5.3 Regular Expression Case Study

The motivation behind this case study is to show the succkss o
the partial evaluation in the optimization of general peogs. This
program is a pattern matching application using regulares<
sions. For the purpose of pattern matching of a regular sspe

we developed a simple and naive deterministic state madhine
brary. This state machine library simply tests the input anadkes
transitions. After consuming all of the input it reports @cessful
match if itis in a final state.

We compare the run-time of the original state-based machine
regular expression matcher with the specialized versigheo$tate
machine for detecting the occurrence of this regular exjas
(a|b)*(abb | (a+ b)). We also compare the run-times against that
of dk.brics.automatoif21]. Brics Automaton is a highly tuned au-
tomaton library which claims to do fast regular expressiatain-

ing.

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

Example NOA LOC NOA/LOC
Power 2 116 1.72
Romberg 6 127 472
Pipe 3 149 2.01
Arithint 2 176 1.13
FFT 35 185 18.9
Visitor 5 226 2.21
StateMachine 1 325 0.30
Strategy 4 362 1.10
Pontis 2 938 0.21

Table 2. Number Of Annotations (NOA), Lines Of Code (LOC),
and NOA/LOC factor for all the examples

Table 1 shows the run-time(in milliseconds) of the three- pro
grams for an input of length0”. Not surprisingly, the run-time of
the specialized version of the state machine is less thaoriti@al
state machine for the mentioned regular expression. Hawthe
run-time of the specialized version is also less than thd@rafs
Automaton. This shows how partial evaluation can be usee@ioe g
erate efficient programs out of naive and general ones wtdoh ¢
compete with highly tuned hand-written codes for the sanme-fu
tionality. For the same reason we mentioned before, we aootd
compare our results with that of JSpec on this case.

5.4 Scalability

There are two important aspects to scalability of hybridtipar
evaluation. One is how much effort it requires to annotagectbde
for large programs. Second one is how much time it would teke t
specialize a program.

To measure the first aspect of the scalability of our methad, w
define and measure a factor called NOA/LOC. NOA is the number
of annotations and LOC is the lines of code of the program. The
NOA/LOC factor is the percentage of annotation with respettie
program size. We have listed the NOA/LOC for all the exampies
Table 2. The value of this factor for all of the examples exdbp
FFT is under %5 and their average is %1.3. This means that when
using Civet, on average, we only need to annotate about %1.3 o
the program regardless of the size of the program. This trésul
promising that we can expect almost the same constant fattor
effort for even larger programs.

We investigated the reasons for high NOA/LOC factor in the
FFT example. In this example there are many local and loop var
ables that must be tagged which increase the number of annota
tions. Civet is an implementation of the semantics of HPEs It
faithful to the semantics but it does not fully implement segnan-
tics. Thus, in some cases programmer needs to specify miore pr
to partial evaluation. The full implementation of the set@nin
Civet s left as future work.

Time scalability, on the other hand, depends on input and how
much of the code is going to be affected by that input. Fortell t
examples, the time taken to specialize was less than a séapnd
each. We anticipate that even for larger programs with moae t
100K lines of code, the time for partial evaluation would ine&rly
proportional to the code size.

6. Related Work

Partial evaluation has a long history. In this section weuls the
most relevant related work, specifically online partial lestion
of imperative languages, and partial evaluation of obgzinted
languages.

An online partial evaluator makes decisions about what & sp
cialize during the specialization process, while an offlpzetial

11 2011/4/10

evaluator makes all the decisions before specializatiofidenti-
fies two ways in which online partial evaluators can produstten
results than offline partial evaluators [23]. On one hantlinef par-
tial evaluators must approximate the situations that cise at run-
time, so they are not as precise as is possible in an onlitiegedn
the other hand, they also cannot identify commonalitiesveen
situations that depend on actual values of data. Hybridgbanal-
uation supports the improvements identified by Ruf, but twi$
of HPE is ease of use and implementation, not better spesiali
tion. Since hybrid partial evaluation is guided by the pesgmer,
the opportunities for specialization are likewise limited

Hybrid partial evaluation uses an online strategy because w
believe it is more direct and fits within existing compileFée ap-
proach has some potential disadvantages. Online partialaion
are often slower than offline partial evaluators, becausg thake
complicated decisions at specialization time, and oftgreae the
same analysis [24]. However, if specialization time is alspeart
of the overall product development process, then speat#diz per-
formance is not a major issue. Programmer’s efficiency, dfid e
ciency of the final software product are the most importaciiofis.

Meyer presents the semantics of online partial evaluatoafo
Pascal-like language [20]. The language is imperative asdbi-
nary and unary operations and control flow structures, ¢iamdi
als and loops. Meyer uses a continuation-passing semaaotics
plement state, but do not clone the continuation as sugtjéste
Ruf [23]. Meyer has a more complex treatment of conditionals
than the one given here, in which the stores produced by tbe tw
conditional branches are merged. In practice, we have nwoidfa
need for the more complex approach. Meyer provides a colsst
proof of this Pascal-like language, but no practical evébna \We
leave the correctness proof of the hybrid partial evalmedi®future
works.

There are some works on partial evaluation of object-ogiént
languages such as Java [7, 19, 25, 26]. Schultz et al. [25Epte
a tool for automatic specialization of Java programs. Tl
is an offline partial evaluator. They show how partial evébra
can be used to reduce the overhead of object-oriented atisira
in generic programs [25]. Their tool does not support exoept
multi-threading and reflection. Similarly, our methodotand tool
do not offer anything for exceptions and multi-threadingstoucts
yet. But we do have semantics and implementation for refiecti

Le Meur et al. [16] present a language which allows program-
mers to provide specifications in order to guide the partialie
ator. The specification tells the partial evaluator how toppgate
the compile-time data throughout the program. The ideagbeh
their work and ours have similar roots. They use the programm
provided annotations to guide the offline partial evaluatod a
high level language which is similar to C. They have adapied t
Tempo [6] partial evaluator so that it uses the provided ifipae
tions by programmers instead of the information gatherethby
binding time analyzer.

7. Conclusion

We presented a hybrid approach to partial evaluation ofabbje
oriented languages, giving a formal definition of the tegheifor
a miniature object-oriented language, MOOL. In MOOL, peogr
mer must specify the compile-time expressions in prograrhs.
hybrid partial evaluator uses the provided specificatiorinfer
what parts of the code should be specialized. Moreovergdripo-
rates the specification as seeds for exploiting opporemfor fur-
ther specializations in other parts of the code. This hyapproach
supports method and class specialization, including ajfieation
of partially objects. It can also convert reflective methatiscinto
ordinary calls. However, it does not suppsslf-applicationand

Hybrid Partial Evaluation, a pragmatic approach to partiavaluation

therefore it can only provide the first of the three Futamumge-
tions [11].

We described how the approach was used to build a hybrid par-
tial evaluator for Java called Civet. While Civet is suffiti¢o op-
timize a number of real-world examples, in the current pxqgie
some aspects of Java interfere with specialization. Thedede
final andprivate modifiers on declarations. The burden of speci-
fication is light. One goal of our work is to develop technigjtieat
can be incorporated into existing compilers. The entirea Jaar-
tial evaluator took 4 person-months to build as an extengiam
existing Java compiler.

The system was evaluated on a number of examples, includ-
ing several Java programs written by other groups. Theime-t
of a small version of the Pontis dynamic pricing system, Wwhic
uses model interpretation and reflection, was reduced bgtarfaf
6 (1/6 of the original run-time). The code generated by Cpest
forms as well and in some cases even better than the codeaggsther
by a state-of-the-art offline partial evaluator for JavgelS which
is based on Tempo [6]. Civet also handles reflection.

References

[1] Andersen, L.: Program Analysis and Specialization fier€ Program-
ming Language. Ph.D. thesis (1994), dIKU Research Repdét894

[2] Braux, M., Noyé, J.: Towards partially evaluating reflen in java.
In: PEPM ’00: Proceedings of the 2000 ACM SIGPLAN workshop
on Partial evaluation and semantics-based program mautigul pp.
2-11. ACM, New York, NY, USA (1999)

[3] Brzozowski, J.A.: Derivatives of regular expressiahsACM 11, 481—
494 (October 1964)http://doi.acm.org/10.1145/321239.
321249

[4] Bulyonkov, M.: A theoretical approach to polyvariantxed compu-
tation. PEMC pp. 51-64 (1988)

[5] Consel, C.: Polyvariant binding-time analysis for dpative lan-
guages. PEPM93 pp. 66—77 (1993)

[6] Consel, C., Hornof, L., Marlet, R., Muller, G., Thibau$., Volanschi,
E.N., Lawall, J., Noyé, J.: Tempo: specializing systemsliegiions
and beyond. ACM Comput. Surv. p. 19

[7] Dean, J., Chambers, C., Grove, D.: Identifying profieabpecializa-
tion in object-oriented languages. PEPM94 pp. 85-96 (1994)

[8] Dussart, D., Bevers, E., Vlaminck, K.D.: Polyvarianinstructor spe-
cialisation. PEPM95 pp. 54-65 (1995)

[9] Ekman, T., Hedin, G.: The jastadd system — modular extéms
compiler construction. Sci. Comput. Program. 69(1-3),2642007)

[10] Ershov, A.P., Ostrovski, B.N.: Controlled mixed contgiion and its
application to systematic development of language-cetmarsers.
In: The IFIP TC2/WG 2.1 Working Conference on Program specifi
cation and transformation. pp. 31-48. North-Holland Falitig Co.
(1987)

[11] Futamura, Y.: Partial evaluation of computation pixe an ap-
proach to a compiler-compiler. Systems, Computers, Cengo45—
50 (1999)

[12] Goldberg, A., Robson, D.: Smalltalk 80 : The Languagedi&on-
Wesley Series in Computer Science, Addison-Wesley Priofesis
(January 1989)

[13] Hen-Tov, A., Lorenz, D.H., Schachter, L.: Modeltalkframework for
developing domain specific executable models. CoRR ab&/8923
(2009)

[14] Jones, N.D., Gomard, C.K., Sestoft, P.: Partial ewidnaand auto-
matic program generation. Prentice-Hall, Inc., Upper $&adRiver,
NJ, USA (1993)

[15] Jones, S.P.: Haskell 98 Language and Libraries. Calgéruniversity
Press (2003)

[16] Le Meur, A.F., Lawall, J.L., Consel, C.: Specializatiscenarios: A
pragmatic approach to declaring program specializatioghét Order
Symbol. Comput. 17(1-2), 47-92 (2004)

12 2011/4/10

[17] Lindholm, T., Yellin, F.: Java(TM) Virtual Machine Spiication, The
(2nd Edition). Prentice Hall PTR, 2 edn. (April 1999)

[18] L&h, A.: Ihs2texhttp://people.cs.uu.nl/andres/lhs2tex/

[19] Marquard, M., Steensgaard, B.: Partial Evaluation of @bject-
Oriented Imperative Language. Master’s thesis (April 992

[20] Meyer, U.: Correctness of on-line partial evaluati@m & pascal-like
language. Sci. Comput. Program. 34(1), 55-73 (1999)

[21] Mgller, A.: dk.brics.automaton — finite-state autoenand regular
expressions for Java (201@)ttp://www.brics.dk/automaton/

[22] Poole, J.D.: Model-driven architecture: Vision, stards and emerg-
ing technologies. In: In In ECOOP 2001, Workshop on Metartinde
and Adaptive Object Models (2001)

[23] Ruf, E., Weise, D.: Opportunities for online partialavation. Tech.
Rep. CSL-TR-92-516, Computer Systems Laboratory, Stelriftri-
versity, Stanford, CA (April 1992)

[24] Ruf, E.S.: Topics in online partial evaluation. Ph.Besis, Stanford
University, Stanford, CA, USA (1993)

[25] Schultz, U.P., Lawall, J.L., Consel, C.: Automatic gram specializa-
tion for java. ACM Trans. Program. Lang. Syst. 25(4), 4523-@3)03)

[26] Schultz, U.P.: Partial evaluation for class-basededbpriented lan-
guages. In: PADO '01: Proceedings of the Second SymposiuRr@n
grams as Data Objects. pp. 173-197. Springer-Verlag, Lmnndé&
(2001)

[27] Thiemann, P., Dussart, D.: Partial evaluation for leigbrder lan-
guages with state (1996)

[28] Wadler, P.: Monads for functional programming. In: Auxhced
Functional Programming, First International Spring S¢haro Ad-
vanced Functional Programming Techniques-Tutorial Tgxt24-52.
Springer-Verlag, London, UK (1995)

Hybrid Partial Evaluation, a pragmatic approach to partievaluation

13

2011/4/10

