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ABSTRACT

We propose a tracking algorithm based on a combination of

Particle Filter and Mean Shift, and enhanced with a new adaptive

state transition model. Particle Filter is robust to partial and total

occlusions, can deal with multi-modal pdf s and can recover lost

tracks. However, its complexity dramatically increases with the

dimensionality of the sampled pdf. Mean Shift has a low complex-

ity, but is unable to deal with multi-modal pdf s. To overcome these

problems, the proposed tracker first produces a smaller number of

samples than Particle Filter and then shifts the samples toward a

close local maximum using Mean Shift. The transition model pre-

dicts the state based on adaptive variances. Experimental results

show that the combined tracker outperforms Particle Filter and

Mean Shift in terms of accuracy in estimating the target size and

position while generating 80% less samples than Particle Filter.

1. INTRODUCTION

Tracking algorithms can be classified into two major groups, namely

Target Representation and Localization algorithms and Filtering

and Data Association algorithms [1].

The Mean Shift (MS) algorithm [1] is a non-parametric method

which belongs to the first group. MS is an iterative kernel-based

deterministic procedure which converges to a local maximum of

the measurement function under certain assumptions on the kernel

behaviors. On the one hand, MS is a low complexity algorithm,

which provides a general and reliable solution independently from

the features representing the target. On the other hand, MS fails in

tracking small and fast moving targets and in recovering a track af-

ter a total occlusion [1]. Particle Filter (PF) is a parametric method

which belongs to the second group. PF solves non-linear and non-

Gaussian state estimation problems [2, 3, 4] and can deal with

multi-modal pdf s. The ability to recover from lost tracks makes

PF one of the most used tracking algorithm. Unfortunately, PF

is heavily dependent on the parameter settings which in turns de-

pends on the scene content. Moreover, the number of particles

needed to model the variations of the underlying pdf increases ex-

ponentially with the dimensionality of the state space, thus dra-

matically increasing the computational load.

In this paper, we propose a hybrid PF and MS tracking algo-

rithm that overcomes the above mentioned drawbacks of MS and

PF. Moreover, we use a new adaptive state transition model with

updating variances. The update process is driven by the variability

of the target in the previous frames. Hybrid methods have already

been presented in the literature. In [5, 6] a mode detection MS pro-

cedure is applied over a continuous pdf generated from the particle

weights. The novelty of our hybrid approach is that the tracker first

generates the particles using a zero-order model and then uses an

independent MS procedure that drives each particle in the position

state sub-space.

The paper is organized as follows. Section 2 introduces the

target model, existing tracking algorithms and the proposed hy-

brid tracking with adaptive state transition model. Experimental

results are presented in Section 3. Finally, in Section 4 we draw

the conclusions.

2. TWO STAGE HYBRID TRACKER WITH ADAPTIVE

STATE TRANSITION MODEL

2.1. Target Representation

A widely used form of target representation is the color histograms,

because of its independence from scaling and rotation and its ro-

bustness to partial occlusions [1, 3].

Let us define the target model as its normalized color his-

togram, q = {qu}1,...m
, where m is the number of bins. The nor-

malized color distribution of a target candidate p(y) = {pu(y)}
1,...m

centered in y can be calculated as

pu(y) = Ch
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where {xi}i=i,...nh
are the nh pixel locations of the target can-

didate in the target area, b(xi) associates the pixel xi to the his-

togram bin, k(x) is the kernel profile with bandwidth h, and Ch is

a normalization function defined as

Ch =
1�nh

i=1
k
���y−xi

h

��2
� . (2)

The same equations are used to obtain the target model q.

In order to calculate the likelihood of a candidate we need a

similarity function which defines a distance between the model

and the candidate. A metric can be based on the Bhattacharryya

coefficient [7], defined between two normalized histograms p(y)
and q as

ρ [p(y), q] =
m�

u=1

�
pu(y) · qu. (3)

Hence we define the distance as

d [p(y), q] =
�

1 − ρ [p(y), q]. (4)



2.2. Mean Shift (MS)

The MS algorithm is an iterative process that aims at minimizing

the distance in Eq. (4). The process is initialized with the location

of the target in the previous frame, y0. The shape of the kernel is

chosen so that the distance becomes a smooth function [1]. Then,

based on gradient information, the MS algorithm converges to the

nearest local minimum. Looking at Eq. (4) and Eq. (3), it is pos-

sible to notice that minimizing Eq. (4) corresponds to maximizing

Eq. (3). To this end, by computing the Taylor expansion of the

Bhattacharryya coefficient around the starting position y0 we ob-

tain, using the Eq. (1), the following expression

ρ [p(y), q] ≈ 1
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In this form, the first term of the r.h.s. does not depend on y. There-

fore we need to minimize only the second term of Eq. (5). At each

step of the iterative process, the estimated target moves from y0 to

the new location y1, defined as

y1 =

�nh

i=1
xiωig

���y−xi

h
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If g(x) = −k′(x), then y1 − y0 is in the gradient direction. The

iterative process stops when ‖y1 − y0‖ < ǫ. Usually ǫ = 1 pixel.

In Eq. (6) it is possible to notice that the maximum area where

the target can be correctly localized is the kernel size. For this

reason, if the center of the object shifts more than this size in two

consecutive frames, then the MS vector is no more correlated with

the object itself and therefore the track is likely to be lost.

2.3. Particle Filter (PF)

The PF algorithm belongs to the Filtering and Data Association

class of tracking algorithms. PF solves the tracking problem based

on the state equation

xt = ft(xt−1,vt), (7)

and on the measurement equation

zt = ht(xt,nt), (8)

where ft and ht are non-linear and time-varying functions. {vt}t=1,...

and {nt}t=1,... are assumed to be independent and identically dis-

tributed stochastic processes. The problem consists in calculating

the pdf p(xt|z1:t) at each time instant t. This pdf can be obtained

recursively in two steps, namely prediction and update. The pre-

diction step uses the state Eq. (7) to obtain the prior pdf as

p(xt|z1:t−1) =

�
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (9)

with p(xt−1|z1:t−1) known from the previous iteration and p(xt|xt−1)
determinated by Eq. (7). When the measurement zt is available, it

is possible to perform the update step using the Bayes’ rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)	

p(zt|xt)p(xt|z1:t−1)dxt

. (10)
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Fig. 1. Schematic representation of the Particle Filter algorithm

PF approximates the densities p(xt|z1:t) with a sum of Ns Dirac

functions centered in


xi

k

�
i=1,...Ns

as

p(xt|z1:t) ≈
Ns�
i=1

ωi
tδ
�
xt − x

i
t

�
, (11)

where ωi
t are the weights associated to the particles and are calcu-

lated as

ωi
t ∝ ωi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1
, zt)

. (12)

q(.) is the importance density function which is often chosen to be

p(xt|xi
t−1) and this leads to ωi

t ∝ ωi
t−1p(zt|xi

t).

A re-sampling algorithm can then be applied to avoid the de-

generacy problem [2]. In this case the weights are set to ωi
t−1 =

1/Ns ∀ i, therefore

ωi
t ∝ p(zt|xi

t). (13)

The weights are therefore proportional to the likelihood function,

i.e. to the Bhattacharryya coefficient ρ (Eq. (3)). Figure (1) shows

an example of PF with re-sampling. The re-sampling step derives

the particles depending on the weights of the previous step, then

all the new particles receive a starting weight equal to 1/Ns which

will be updated by the next frame likelihood function.

The best state at the time t is derived based on the discrete ap-

proximation of Eq. (11). The most common solution is the Monte

Carlo approximation of the expectation

E[xt|z1:t] ≈ 1

Ns

Ns�
i=1

ωi
tx

i
t. (14)

PF is much more complex than MS and, if the parameter are set

properly, it can track fast small targets and can recover a track even

after a total occlusion.

The major limit of PF is the limited capability of the particles

to describe the pdf when the state space is not densely sampled.

To overcome this problem, a large number of particles is required

thus increasing the computational load.



      Re-sampling

E[x]

Mean Shift 

   Weighting

Fig. 2. Schematic representation of the Two Stage Hybrid Tracker

In the next section we propose an alternative method which

requires about 80% less samples than PF while improving its per-

formance.

2.4. Hybrid Tracker (TSHT)

We can divide the proposed tracker in four main steps (Fig. (2)).

The first step generates particles using Eq. (7) and re-samples them;

the second step applies MS independently to each particle until

all particles have reached a stable position. The third step re-

calculates the weights using the Bhattacharryya coefficients. Fi-

nally, the fourth step calculates the weighted average to obtain the

best state as in Eq. (14).

The selection of a state transition model is an important issue

for the first step of the proposed algorithm. Most of the PF ap-

proaches learn the model from a training set or based on the previ-

ous frames. These solutions are often implemented using first- or

second-order models [3]. The posterior probability (Eq. 11) is well

approximated when the particles are concentrated in a small area.

However, if the concentration of the particles is too high, the flex-

ibility of the algorithm is reduced and it becomes difficult to deal

with maneuvering targets. A first attempt to overcome this limit

using an adaptive motion model was presented in [4]. Here a first-

order model is coupled with adaptive Gaussian noises dependent

on the state prediction error in the previous frame.

In order to stabilize the behavior of PF in the presence of false

targets and to handle unexpected events like fast changes in target

speed or direction, we employ a zero-order adaptive model that

learns the variability of the target state. This model is based on

calculating the average state velocity in the previous k frames as

Ek[∆x] =
1

k

t�
n=t−k

|xn − xn−1| , (15)

therefore the state transition model can be defined as

xt = xt−1 + Ctvt, (16)

where Ct ∝ Ek[∆x], and vt = N (0, I) is jointly Gaussian.

We can better explain the second step of the algorithm defining

the Mean Shift operator MS : Rd → Rd, where d is the state space

dimensionality. Now we can rewrite Eq. (11) as

p(xt|z1:t) ≈
Ns�
i=1

ωi
tδ
�
xt − MS(xi

t)
�

. (17)

Note that MS is a d-dimension operator, but in the proposed al-

gorithm it operates on the bi-dimensional position sub-space only.

Each MS procedure guides the generated particle over the sub-

space independently from all the others.

The third and fourth step are the same as in the standard PF, but

operate on particles that are close to local maxima. Therefore, the

approximation of Eq. (14) is performed using samples better repre-

senting the state space than those generated by PF. For this reason,

these particles are more efficient than those in the standard PF.

The TSTH algorithm is more than a simple multiple initialization

of MS since the particles are filtered and selected by PF depending

on their likelihood. This feature gives to TSHT the possibility to

treat multi-modal pdf s.

3. EXPERIMENTAL RESULTS

In this section we present the comparison between PF, MS, and

TSHT. Figure (3) shows sample results from the test sequences

Highway, Table tennis, and Soccer. All the sequences are in CIF

at 30 Hz, except Highway which is at 25 Hz. The ground truth

information of the coordinates and sizes of each target has been

generated. The three algorithms under test are initialized using the

ground truth. The histograms are calculated in the RGB space with

10x10x10 bins. MS runs 5 times with different kernel sizes up to

+/-10% that of the previous frame. In order to have a fair com-

parison with MS, we use a 3-dimensional state model for PF and

TSHT. The state model is composed of the target position, (x, y),

and the target size, h. PF uses a zero-order motion model with

fixed σx = σy = 5 and σh = 0.05. (Note that the scale change is

a percent while the position is in pixels.) The initial values for the

adaptive state transition model are σ0

x = σ0

y = 14 and σ0

h = 0.13;

kp = 10 frames for the position and ks = 5 frames for the size.

PF uses 150 samples and TSHC uses 30 samples only.

In Fig. (3)(a) MS and TSHT successfully track the car, whereas

PF loses the target because the values of the variances are too large

for the object behavior. This problem is not encountered by TSHT

thanks to the adaptive state transition model. In Fig. (3)(b) TSHT

only succeeds in maintaining the track of the ball. PF recovers the

target position for few frames after the bouncing of the ball but

then fails. A comparison of the tracking accuracy of the three al-

gorithms for Table tennis is reported in Fig. (4). In Fig. (3)(c) MS

is not able to track the ball kicked by the player. TSHT is faster

than PF in reacting to the abrupt shift of the ball, and it is better

in recovering the ball size (frame 54). In Soccer and Table tennis

the target is moving in unexpected directions with shifts that are

larger than the kernel size, moreover during the fast movements

the object shape is affected by camera blur, hence the effectiveness

of the MS vector is decreased. In TSHT the multiple MS initial-

ization created by PF solves the problem. Table (1) summarizes

the results presented in this section. TSHT achieves better perfor-

mance than PF for both position and size recovery. Furthermore,

TSHT is 32% faster than PF. MS looses the track in Table tennis

and Soccer even though it is 46% faster than TSHT. Hence at the

price of a slower speed TSHT achives an improved reliability.
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Fig. 3. Comparison of tracking performance between MS,PF

and TSHT. (a) Highway (frames 101, 245, 301), (b) Table ten-

nis (frames 1, 9, 37, 53) (c) Soccer (frames 1, 7, 13, 54).

In each group of pictures, the top row reports the results of

MS, the middle row the results of PF, and the bottom row the

results of TSHT. The videos with the results are available at

http://www.elec.qmul.ac.uk/staffinfo/andrea/TSHT.html

4. CONCLUSIONS

We presented a hybrid tracking algorithm based on a combination

of Particle Filter and Mean Shift with an adaptive state transition

model. The Mean Shift is inserted in a Particle Filter framework in

order to make each particle independent and therefore more flexi-

ble to local conditions. The adaptive state transition model stabi-

lizes the Particle Filter behavior. This effect is obtained by adapt-

Fig. 4. Comparison of tracking accuracy for Table tennis.

MS PF TSHT

“Highway” APE 0.95 12.8(TL) 0.88

ASE 2.74 22.3(TL) 3.58

“Table tennis” APE 43.2(TL) 24.1(TL) 2.0

ASE 6.7(TL) 3.3(TL) 2.8

“Soccer” APE 242(TL) 3.9 3.2

ASE 18.2(TL) 10.8 9.8

Table 1. Deviation from the ground truth of the three trackers. TL:

Track Lost; APE: Average Position Error (pixels), ASE: Average

Size Error. ASE=
√

W 2 + H2. W: Width Error, H: Height Error.

ing the searched area of the state space to the average state velocity.

Experimental results showed that the proposed algorithm is faster

and more accurate than Particle Filter and more reliable than Mean

Shift with fast moving objects. Future work includes investigating

a new target representations scheme with spatial information.
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