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I. Introduction

U
 nmanned Aerial Vehicle (UAV) is becoming an integral 

part of future military forces and will be used for com-

plex tasks including surveillance, reconnaissance, preci-

sion strike and aerial refueling missions in the presence 

of disturbances, failures, and complicated battlefield subjected to 

uncertainties and variations. Therefore, more attention is now paid 

to various control problems associated with multi-UAV moving 

in formation [1]–[4]. The benefits of formation flight (as shown in 

Fig. 1) include fuel savings at certain close formation positions, 

tanker formation operations where flights of UAVs are ferried by 

a single tanker, and mission success in terms of redundancy and 
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Abstract—Given the initial state of an Unmanned Aerial Vehicle (UAV) system 
and the relative state of the system, the continuous inputs of each flight unit are 
piecewise linear by a Control Parameterization and Time Discretization (CPTD) 
method. The approximation piecewise linearization control inputs are used to sub-
stitute for the continuous inputs. In this way, the multi-UAV formation reconfigura-
tion problem can be formulated as an optimal control problem with dynamical and 
algebraic constraints. With strict constraints and mutual interference, the multi-UAV 
formation reconfiguration in 3-D space is a complicated problem. The recent boom 
of bio-inspired algorithms has attracted many researchers to the field of applying 
such intelligent approaches to complicated optimization problems in multi-UAVs. 
In this paper, a Hybrid Particle Swarm Optimization and Genetic Algorithm 
(HPSOGA) is proposed to solve the multi-UAV formation reconfiguration prob-
lem, which is modeled as a parameter optimization problem. This new approach 
combines the advantages of Particle Swarm Optimization (PSO) and Genetic Algo-
rithm (GA), which can find the time-optimal solutions simultaneously. The pro-
posed HPSOGA will also be compared with basic PSO algorithm and the series of 
experimental results will show that our HPSOGA outperforms PSO in solving 
multi-UAV formation reconfiguration problem under complicated environments.

battle damage assessment. Therefore, formation control is 

becoming more and more important. There are three main 

approaches to formation control, namely Leader-Wingman, 

Virtual Leader, and Behavioral Structures, which have been 

studied thoroughly [5]–[10]. In the Leader-Wingman struc-

ture, one of the UAVs in the formation is designated as the 

leader, with the rest of the UAVs (Wingmen) treated as fol-

lowers. The basic idea is that the followers track the position 

and orientation of the leader. Because of its simplicity, the 

Leader-Wingman structure is widely used in control and 

management of multi-vehicle formations [5]–[9]. The com-

mon weaknesses as reported in [5]–[9] are that the rear UAV 

usually exhibits a poorer response than its reference due to 

error propagations and the leader is a single point of failure 

for the formation.

In the Virtual Leader structure, the entire formation is 

treated as a single structure. Each UAV receives the same infor-

mation, which is the trajectory of the Virtual Leader. It has 

been applied to formations of spacecraft in [11]. The strength 

of the Virtual Leader structure is that it is easy to prescribe the 

formation behavior. However, its disadvantage is that there is 

no explicit feedback to the formation.

A different strategy is represented by a Behavioral approach. 

The basic idea of this approach is to prescribe several behaviors 

for each aircraft and to make the control action of each aircraft 

a weighted average of the control for each behavior. The 

behaviors may be obstacle avoidance, collision avoidance, target 

seeking, and formation keeping. It was first introduced by 

Anderson and Robbins [10] before it was further exploited by 

Giulietti [12] with the introduction of an imaginary point in 

the formation called the Formation Geometry Center (FGC). 

Asada, et al [13] successfully used a behavioral-based control to 

display soccer-playing robots. Since the sensors used for data 

acquisition introduce noise into the system, the handling of 

sensor data needs to be improved.

The application of behavioral approach to aircraft formation 

flight is described in [10], where the control strategies are 

inspired by instinctive behaviors of birds, fishes, insects, and herds. 

Balch and Arkin [14] presented a behavioral-based approach to 

robot formation keeping, where control strategies are formed by 

averaging several competing behaviors. In [15], obstacle avoid-

ance while keeping formation is achieved using basic behaviors, 

such as move-to-goal, avoid-obstacle, maintain-relative-distance, 

maintain-relative-angle, and stop move to the target destination. 

However, in [10], [14], [15], the common shortcomings are that 

the information needed are too plentiful and the characteristics 

of the formation (like stability) cannot generally be guaranteed.

Many researchers have investigated the formation control 

problems, but very few literatures focus on the reconfiguration 

issue of UAV formation [16]. Reconfigurable control may be 

needed in cases of failure in one or more communication chan-

nels [16], sensor/actuator failures [17], flight path constraints or 

even the total loss of the aircraft without impairing its mission. 

This work mainly focuses on formation reconfiguration 

problem, which was first addressed by Wang and Hadaegh [18]. 

The concept of formation reconfiguration involves determin-

ing aircraft separation distance, position and orientation, identi-

fying the process that optimally transforms an initial formation 

configuration into a final configuration and identifying cooper-

ative autonomous control (CAC) of individual aircrafts to 

achieve a desired final configuration. Determining the transfor-

mation process incorporates three main technologies: constraint 

satisfaction, quality determination, and planning. Formation 

reconfiguration can be classified into two basic types. For 

type 1, each aircraft is required to occupy a specified position in 

the desired reconfigured formation, while for type 2, a specified 
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position in the desired reconfigured formation may be occu-

pied by any aircraft of a particular type. 

Several approaches have been applied to the formation 

reconfiguration problem. By formulating the formation 

reconfiguration process into a sequence of basic maneuvers, 

Wang and Hadaegh [19] obtained simple solutions for for-

mation reconfiguration. Fierro and Das [20] considered the 

singularities and collision constraints to dynamically recon-

figure the team of autonomous robots. Wang and Zheng 

[21] presented a Hierarchical Evolutionary Trajectory Plan-

ner (HETP), which has two levels that perform global plan-

ning and multiple optimal or near optimal trajectory designs 

respectively for spacecraft formation reconfiguration in 3-D 

space. Sauter and Palmer [22] developed a semi-analytic 

approach and applied it to satellites for a rapid onboard, 

fuel-minimized, and collision-free path generation, which 

can significantly increase the responsiveness of the forma-

tion to reconfiguration events. Ma et al. [23] designed a 

general formulation for time optimal trajectory planning of 

satellites formation reconfiguration using pseudospetral 

method, and the optimization Nonlinear Programming 

(NLP) problem was solved by searching the state and con-

trol vectors to minimize an objective function. 3-D poten-

tial field method was used in [24] to solve formation flight 

and formation reconfiguration of multi-UAVs, including 

obstacle and collision avoidance.

By following the inspirational previous works, lots of evo-

lutionary computation methods have been proposed, devel-

oped and studied for scientific research and engineering 

applications [25]. Gueret et al. [26] applied soft computing 

methods to two of the Semantic Web reasoning tasks; an evo-

lutionary approach to querying, and a swarm algorithm for 

entailment. Muhleisen and Dentler [27] proposed a 

novel  concept for reasoning within a fully distributed and 

self-organized storage system based on the collective behavior 

of swarm individuals. Meng et al. [28] presented a hierarchical 

mechanochemical model for self-reconfiguration of modular 

robots in changing environments. Le et al. [29] also presented 

a theoretic model of symbiotic evolution for the design of 

water clusters potential model.

The formation reconfiguration problem can be formulated 

as an optimal control problem with dynamical and algebraic 

constraints. For this reason, artificial intelligence algorithms 

and/or other optimization methods can be utilized to find the 

optimal solution [30], [31]. 

Furakawa et al. [32] presented a method, where the control 

strategies are based on the Control Parameterization and Time 

Discretization (CPTD) method, to solve the time-optimal con-

trol of the relative formation of multi-robotic vehicles. How-

ever, in their method, time is a fixed value and it is not always 

possible to obtain the optimal solution at the given value. 

Xiong, et al. [33] proposed an improved Genetic Algorithm 

(GA), which incorporates CPTD, for multi-fighter formation 

reconfiguration optimization. In [33], time is an optimization 

parameter but this method can only be used in 2-D environ-

ments, which limits its application range. The improved GA can 

be used to transform the problem of time-optimal control for 

formation reconfiguration into discrete optimization problem 

with a free terminal state constraint by CPTD, and the experi-

mental results show that it’s suitable for obtaining the global 

optima of time-optimal control of formation reconfiguration 

in two dimensions.

In this paper, formation reconfiguration in 3-D space is 

modeled as a parameter optimization problem and a Hybrid 

Particle Swarm Optimization and Genetic Algorithm 

(HPSOGA) is proposed. There are two critical issues in the 
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basic GA, one is its premature convergence, and the other is its 

weak local searching ability. Furthermore, GA also suffers from 

a slow convergence speed. Particle Swarm Optimization 

(PSO) is an efficient optimization algorithm for solving com-

plicated continuous problems. PSO is similar to the continu-

ous GA in that it begins with a random population matrix. 

Unlike the GA, PSO has no evolution operators such as cross-

over and mutation. One of the most obvious advantages of 

PSO over GA is its algorithmic simplicity as it uses a few 

parameters and is easy to implement. PSO can often locate 

nearly optimal solutions with a fast convergence speed, but 

usually fails to adjust its velocity step size for fine tuning in the 

search space, which often leads to premature convergence. 

Combining the advantages of PSO and GA, our hybrid 

approach can find time-optimal solutions simultaneously. 

Series of comparative results also show that our proposed 

HPSOGA outperforms PSO.

The rest of this paper is organized as follows. Section II 

introduces the basic principles of GA and PSO. Section III 

gives a description of time-optimal control problems for 

multi-UAV under the free terminal state constraint. Section IV 

introduces the application of HPSOGA to formation recon-

figuration. Section V describes the HPSOGA implementation 

to solve the optimization problem. The experimental results 

are given in Section VI, followed by concluding remarks in 

Section VII.

II. The Standard GA and Standard PSO

A. Standard Genetic Algorithm

GA was first introduced by Holland in the early 1970s [34]. 

Generally, GA comprises three different phases in the global 

searching process: 

 ❏ Phase 1: creating an initial population.

 ❏ Phase 2: evaluating a fitness function.

 ❏ Phase 3: producing a new population. 

A genetic search starts with a randomly generated initial 

population, within which each individual is evaluated by 

means of a fitness function. Individuals in this and subse-

quent generations are duplicated or eliminated according to 

their fitness values. Individuals are further manipulated by 

applying GA operators. There are usually three GA operators 

in a typical genetic algorithm [38]. The first is the produc-

tion operator (elitism) which makes one or more copies of 

any individual, with a high probability that possesses a high 

fitness value, conversely the individual with a low fitness 

value is eliminated with a high probability from the solution 

pool. The second operator is the crossover operator. This 

operator selects two individuals from the population in the 

current generation and a crossover point (taking the one-

point crossover for example) and carries out a swapping 

operation on the elements to the right hand side of the 

crossover point of both individuals. The third operator is the 

mutation operator. This operator acts as a background opera-

tor and is used to explore some of the invested points in the 

search space. Since frequent application of this operator 

would lead to a completely random search, a very low prob-

ability is usually assigned to its operation. 

B. Standard PSO

The PSO was formulated in terms of social and cognitive 

behavior by Kennedy and Eberhart in 1995 [36, 37], and has 

found wide applications in engineering. The PSO algorithm 

simulates social behavior among bird individuals (particles) fly-

ing through a multi-dimensional search space, each particle 

representing a point. The particles assess their positions by a fit-

ness function and particles in a local neighborhood share mem-

ories of their best position, while using those memories to 

update their velocities and positions. 

Particle updates in basic PSO are accomplished according to 

(1) and (2) [38]. Equation (1) calculates a new velocity for each 

particle based on its previous velocity ( ),vid  the particle’s loca-

tion at which the best fitness has been achieved ( )p id  so far, and 

the best particle among its neighbors ( )pgd  at which the best 

fitness has been achieved so far. Equation (2) updates each par-

ticle’s position ( )x id  in the solution hyperspace. The two ran-

dom numbers r1  and r2  are independently generated and c1  

and c2  are learning factors. The use of the inertia weight w pro-

vides improved performance. 

 ( ) ( )v wv c r p x c r p xid id id id gd id1 1 2 2$ $ $ $= + - + -  (1)

 x x vid id id= + . (2)

There are three parts on the right side of (1). The first part 

is the velocity part, which represents the influence of the previ-

ous velocity of the particle. The second part is the cognition 

part, which represents the private thinking of the particle. The 

third part is the social part, which represents the collaboration 

of the particles. 

III. Time-Optimal Control for Multi-UAV

A. Equation of Motion

Assume the number of UAV in formation is N. The terminal 

time is .t T=  T is not a given value but a parameter that 

should be optimized. The ith UAV’s control inputs (including 

thrust, load factor, bank angle) are represented as 

( ) | [ , ] , , , .u u t t T i N0 1i i
ri

6 0 6 g! ! != " ", ,  The forma-

tion control input vector is , , ,U u uN1 g= ^ h  while the con-

tinuous control input vector of the formation can be 

described as , , ( ) | [ , ] .U Uu u t t T0N1 g 6 != =^ h " ,  The ith 

UAV’s state is [ , , , , , ] , , , ,v x y z i N1X i i i i i i i
T 6
0 6 g! !c |= " ,  

where  ( , , )x y zi i i  denotes its coordinates and , ,v i i ic |  denote its 

airspeed, flight path angle and heading angle respectively. 

Therefore, the formation system state can be defined as 

, , .X x x
T

N
T T N

1
6

g 0!=
)^ h  Consider a non-linear system in 

the standard form [32]: 

 ( ) ( , ( ), ( ))X Xt f t t U t=
o . (3)
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Given a set of continuous control inputs U and the initial  

state ( )X X0 0= , the state of the system at any time ( , ]t T0!  

can be determined uniquely in the form:

 ( ) ( ) ( , ( ), ( ))X X X Ut f d0
t

0
x x x x= +

-

# . (4) 

This means that given the initial state X(0), the state X(t) 

can be specified only by the control inputs U in the form 

( | ) .X t U  

B. Objective Function and Constraints

It is well-known that the canonical form of the objective func-

tion can be expressed as [33]:

 ( ) ( ( )) ( , ( ), ( ))U X U X U UJ T L t t t dt
T

0 0
0

e eU= + # . (5)

The problem may also be subject to a variety of other con-

straints, generally in the form: 

 
( ) ( ( )) ( , ( ), ( ))

, , .

U X U X U Ug L t t t dt

i M

0

1

i i i i
0

i

e e

6 g

#

!

xU= +
x

" ,

#
 

(6)

For a single system, the optimal control problem can be for-

mulated as finding the continuous control inputs U and termi-

nal time T that minimize the objective function J(U ):

 ( )min min UJ
, ,u T u TN1

g  (7)

 ( ),min U TJ . (8)

The function U and time T are normally constrained by the 

following equation.

 ( ) , [ , ), .U U Ut t T T0 0min max 6 2# # !  (9)

Defining the mth UAV as the formation center, the free ter-

minal constraint is given by:

 

( , ) {[( ( ) ( )) ]

[( ( ) ( )) ]

[( ( ) ( )) ] } ,

Ug t x T x T x

y T y T y

z T z T z 0

i m i
m

i

N

i m i
m

i m i
m

1
2

1

2

2

D = - -

+ - -

+ - - =

=

/

 (10)

where , , ,m N1 g! " ,  [ , , ]x y zi
m

i
m

i
m T  represents the desired rel-

ative coordinates of the ith UAV with respect to the mth UAV.

The distance between any two UAVs i and j is defined to be: 

 ( ( ), ( ))
( ) ( ) ( ) ( )

( ) ( )
d x t x t

x t x t y t y t

z t z t
,i j

i j
i j i j

i j

2 2

2=
- + -

+ -

^ ^

^

h h

h
. (11)

In order to avoid collision, ( ( ), ( ))d x t x t,i j
i j  must be greater 

than the safety collision distance Dsafe .

 
( ( ), ( )) ,

[ , ], , , , .

d x t x t D

t T i j N0 1

,
safe

i j
i j

i j6 6 g

$

! !! " ,
 

(12)

In order for real-time communication between the 

UAVs to update one another on the combat situation of the 

formation, ( ( ), ( ))d x t x t,i j
i j  must be smaller than the commu-

nication distance.

 
( ( ), ( )) [ , ]

, , , .

d r t m t D t T

i j N

0

1

,
comm

i j

i j

6

6 g

$ !

!! " ,
 

(13)

IV. HPSOGA Based Formation  

Reconfiguration Time-Optimal Controller

PSO and GA are global optimization algorithms and are 

suitable for solving optimization problems with linear or 

non-linear objective functions; Therefore, they are suitable 

for solving non-linear formation reconfiguration problem. 

However, the control inputs of each flight unit are continu-

ous and the HPSOGA cannot solve the continuous control 

input problem. In order to solve this problem, the control 

inputs of each flight unit are piecewise linearized, and the 

approximation piecewise linearization control inputs are 

used to substitute the continuous inputs, then HPSOGA is 

used to find the global optimal solution. Based on the above 

ideas, this paper adopts the CPTD method, obtaining the 

approximate objective function and constraints condition, 

simplifying the problem in description and handling, and 

then using HPSOGA to find the approximate solution 

( ; , )U t n p Xt  until satisfying the constraints of Eq. (12), (13), 

(18), (19) and (20).

A. Formation Reconfiguration Time-Optimal  

Control Discrete Based on CPTD Method 

The continuous control inputs u i  are approximated by a piece-

wise function with a set of static parameters (in practice these 

static parameters are constants). The terminal time T is first par-

titioned into n p  time intervals. Partitioning is conducted to 

introduce a piecewise function with n p  constants that substi-

tute the continuous control inputs. 

The terminal time T is formulated as a function of time 

interval t pD , which is used for numerical integration.

The static control parameter is set and the time intervals are 

found by minimizing the objective function with a standard 

non-linear parametric optimization method.

The proposed method takes three steps to derive this 

approximate solution of the problem. The following subsec-

tions describe these steps.

1) The division of the terminal time T: The terminal time T 

is par titioned into { , , }n 1 2p g!  intervals, each 

t p 0!D
+ , so 

 T n tp pD= . (14)

At each time interval t pD , according to the corresponding 

control inputs, equation (3) does numerical integration.

2) The piecewise linearization of control inputs: For the n p  

intervals, define r ni p#  constants for the ith UAV as 

| , , , , ,j n i N1 1i j
i r

p
i
0 6 g 6 g! ! !vX = "" ",, , . Then, 
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each of the continuous control inputs for the ith UAV 

can be approximated by a piecewise function with con-

stant as follows [3]: 

 ( ; , ) ( ) ( )u t n t u ti p i j
i

j

j

n

i

1

p

,v |X =

=

t / , (15)

where ( )tj|  is given by 

 ( )
( )

otherwise.
t

j t t j t1

0

1
j

p p# #
|

D D
=

-'  (16)

Define the set of all piecewise constants for all UAVs as 

, , N1 gX X X= " , . The set of approximated control 

inputs  for  all the UAVs can be written as ( ; , )U t n p X =t

( ; , ), , ( ; , ) .u t n u t np N p N1 1 gX Xt t" ,  F i n d i n g  ( ; , )U t n p Xt  

therefore results in finding the parameter set .X  The most 

important thing for this approximation in practical imple-

mentations is an appropriate choice for .n p  Increasing n p  

results in an exponentially increase in computation time, 

while reducing n p  results in loss of accuracy. 

3) Approximation of control inputs: The approximation 

( ; , ) ( ; , ), , ( ; , )U u ut n t n t np p N p N1 1 gX X X=
t t t" ,  can be de-

rived from X and .t pD  In fact, finding ( ; , )U t n p Xt  and T  is 

equivalent to finding X and t pD  introduces an approximate 

objective function and constraint function J. As a result, the 

dynamic optimization problem ( ) ( , ( ), ( ; , ))X X Ut t t t nf p, Xo t  

can be transformed into the static optimization problem:

 ( )minJ n t
, t

p p
p

, D
DX

. (17)

Subject to bounds

 
( ) ( ) , , ,

, , , .

u u i N

j n t

1

1 0

min maxi j
i

i

p p

6 g

6 g 1

# # !

!

v

D

"

"

,

,
 
(18)

And the free terminal constraint:

 

( , ) {[( ( ) ( )) ]

[( ( ) ( )) ]

[( ( ) ( )) ] } .

g t x T x T x

y T y T y

z T z T z 0

i m i
m

i

N

i m i
m

i m i
m

1
2

1
2

2

DX = - -

+ - -

+ - - =

=

t /

 

(19)

 The state of the system can be appropriately written as  

follows:

 ( ) ( , ( ), ( ; , ))X t f t X t U t n Wp=
to . (20)

Numerically, the formation reconfiguration problem is 

formulated as a parameter optimization problem with a non-

linear objective function and constraints. It can now be solved 

with the proposed HPSOGA. However, the solution found 

by HPSOGA will be near-optimal due to the CPTD method.

B. Time-Optimal Control of Formation  

Reconfiguration Based on HPSOGA

The construction of a particle’s position is as follows: 

, , N1 gX X X= " , combines with t pD  as the particle’s posi-

tion. Thus, the position of each particle can be expressed as 

[ , , , , ] .P tN p1 2 g DX X X=  Control parameter iX  is a constant 

array, that is , , , ,i N j1 2i

i

r
i

i

r
i

n
i

n r
i

11

1

21

2

1

i i

p

p i

h h

g

j

g

h 6 g 6! !

v

v

v

v

v

v

X = > H " ,

, , ,n1 2 pg" ,  , , .k r1 2 i jk
i

6 g! v" ,  is the kth component of 

( ; , )u t ni p iXt  at the jth time interval. Because each column of 

iX  represents the control parameter of the ith UAV at a partic-

ular time interval, we expand iX  by column and combine it 

with t pD , eventually straightening it into a floating point code 

series of length N n r 1p i# # + . Finally, the particle’s position 

can be expressed as:

 
[(( , , , ), , ( , , )), ,

(( , , , ), , ( , , )), ] .

X

t

r n n n r

N N
r
N

n
N

n
N

n r
N

p

11
1

12
1

1
1

1
1

2
1 1

11 12 1 1 2

i p p p i

i p p p i

g g g g

g g g

v v v v v v

v v v v v v D

=

 
(21)

In HPSOGA, the position and velocity are randomly initialized.

The objective function can be calculated as follows: Consid-

ering the time-optimal control constraints, the extended objec-

tive function is defined as:

 

{( ) ( , )

[ ( , ( ( ), ( )))

( , ( ( ), ( )) )]},

J min

max

max

n t g t

D d x t x t

d x t x t D

0

0

extend
,

safe
,

' ,
comm

t
p p

ij

j i

N

i

N
i j

i j

ij
i j

i j

1

11

1

p

v

v

v

D DX= +

+ -

+ -

)

DX

= +=

-

t

//  

(22)

where ijv  and '
ijv  are the safety distance punishment coeffi-

cient and communication distance punishment coefficient,  

respectively. v)  is the punishment coefficient of the terminal 

constraint. As long as ijv , '
ijv , and v)  are large enough (must be 

a positive number), the primitive objective function expression 

(17) and the constraint conditions (12) (13) (19) will be equiv-

alent to (22). The fitness function in GA is .Jf extend=

Therefore, the formation reconfiguration is classified as a 

constrained parametric optimization problem with non-linear 

objective function and constraint functions. This can be 

solved with a standard non-linear programming method 

HPSOGA, though the global optimality of the solution 

depends upon the convexity of the objective function and 

constraint functions.

V. Hybrid Algorithm Description

Based on the above description, HPSOGA can solve formation 

reconfiguration problem. The algorithm can be divided into 

two stages, the PSO stage and the GA stage. The solutions can 

be found by the following steps:

Step 1: Initialize M particles randomly, the max iteration 

time Ncmax, and the parameters in HPSOGA. The crossover 

probability and mutation probability are 0.9 and 0.05 respectively.
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FIGURE 2 The detailed flow chart of HPSOGA.

Step 2: Calculate the objective function values of all parti-

cles, store the position of the particle with the minimum 

objective function value as the global best particle.

Step 3: Divide the particles into two groups based on 

the hybrid probability P, one group, with an expected size 

of ,M P)  uses PSO to update their positions and the other 

group uses GA.

Step 4: PSO stage. Particles update their velocities and 

positions according to (23) and (24). Two pseudo-random 

sequences, ( , )r U 0 11 +  and ( , )r U 0 12 +  are used to effect the 
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stochastic algorithm nature. For all dimensions ....j n1! , let 

, ,pbestx v, , ,i j i j i j  be the jth dimension of the current position, 

current velocity and current personal best position of the ith 

particle and Gbestpso  is the global best position of the M P)  

particles. Fi  is the current personal best particle’s objective 

function value and Gpso  is the global best particle’s objective 

function value. The velocity update step is:

 
(pbest )

(Gbest ),

v wv c r x

c r x

, , , ,

pso, ,

i j i j i j i j

j i j

1 1

2 2

$ $

$ $

= + -

+ -
 

(23)

where [39]

, .

w

c c

2 4

2

4

2

1 2 2

{ { {

{ {

=

- - -

= +

The updated velocity is then added to the current position 

of the particle to obtain the new position:

 x x v, , ,i j i j i j= + . (24)

Then, we can get the new objective function value of x i  

and record it as F '
i . If F

'
i  is less than Fi , the current personal 

best particle’s objective function is F '
i , and the current personal 

best position is the new position. If F '
i  is less than Gpso , the 

global best particle’s objective function value is F '
i  and the 

global best position is the new position.

Step 5: GA stage. GA has three operators, namely selection, 

crossover, and mutation, described as follows:

1) Selection Operator

Roulette wheel selection strategy is widely used in GA because 

it can ensure that the selection probability of each particle is 

proportional to its fitness, i.e. the better a particle’s fitness, the 

more likely it will be selected.

2) Crossover Operator

Crossover happens between two parents which are indepen-

dently selected from the population. Children are created  

by the single-point crossover operation. It can be defined  

as follows:

 ( )P P P1new
1 1 2$ $~ ~= + -  (25)

 ( )P P P1new
2 2 1$ $~ ~= + - , (26)

TABLE 1 State at initial and terminal time.

STATE VARIABLE UAV1 UAV2 UAV3 UAV4 UAV5

INITIAL STATE XI (KM) -12 -10 5 20 20

INITIAL STATE YI (KM) 10 30 50 30 10

INITIAL STATE ZI (KM) 2 4 6 8 10

RELATIVE STATE 
XT(KM)

-20 -10 0 -10 -20

RELATIVE STATE 
YT(KM)

20 10 0 -10 -20

RELATIVE STATE 
ZT(KM)

0 0 0 0 0

0 100 200 300 400
0

5

10

15
x 1010

Iteration

J

PSO-GA

PSO

FIGURE 3 Comparison evolution cure of PSO and HPSOGA.
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where P1  and P2  are parent particles, Pnew
1  and Pnew

2  are child 

particles, ~ is a random number such that [ , ] .0 1!~

3) Mutation Operator

Mutation operator can maintain particle diversity and avoid 

premature convergence. It is executed on a particle which is 

selected based on its fitness. We adopt the adaptive acceleration 

mutation operator which can be defined as follows:

 ( ) ( ) ( ) ( )P k P k P k sP k1i
j

i
j

i
j

i
j

$ $b tD+ = + + , (27)

where

 
( ) ( ( ) ( )) ( , )

( ) acc ( ) ( ) ( ) .

P k P k P k N

sP k k P k sP k

0 1

1

best
i
j

i i
j

i
j j

i
j

i
j

$

$ $ $b t

D

D

= -

+ = +

 

( )P ki
j

 is the ith dimension of the jth particle in the kth genera-

tion, ( )P k
best  is the best individual in the kth generation. t  and   

b  are the learning speed and inertia constant respectively, and 

they are set as 0.6 and 0.4 based on trial experiments. ( , )N 0 1  is 

the normal random distribution function, and acc ( )kj  is 

defined as follows:

 acc ( )
,

,

if new fitness greater than before

else.
k

1

0
j
= '  (28)

The position Gbestga  and objective function value Gga  of 

the best particle that the GA can find are stored. The best objec-

tive function value is the reciprocal of the maximum fitness.
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FIGURE 6 The horizontal trajectory obtained by HPSOGA.
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Step 6: Comparing Gpso  and Gga , if Gpso  is less than ,Gga  

the global best position is Gbestpso  and Gbestga  is replaced by 

Gbestpso  and Gga  by .Gpso  Else, the global best position is 

Gbest ,ga  replace Gbestpso  by Gbestga  and Gpso  by .Gga

Step 7: Repeat step 2 to step 6 until the ending condi-

tion is met.

The flow chart of our proposed HPSOGA is shown in Fig. 2.

VI. Experiments and Analysis

Considering N UAVs, the flight altitude of the ith UAV is 

denoted as [ , , , , , ] , , ,v x y z i N1i i i i i i i
T 6
0 6 g! !| c |= " , , 

where x i , y i , and z i  are the coordinates of the center of the ith 

UAV.  The UAV model is simplified in this formation reconfig-

uration problem, and the outer loop variables such as thrust Ti , 

load factor n i , and bank angle iz  are chosen as control inputs 

( )u i  to each UAV. The equations of motion for the ith UAV are 

as follows [33]:

 [( )/ ]sinv g T D Wi i i i ic= - -
:

 (29)

 ( / ) ( )cos cosg v ni i i i ic cz= -
:

 (30)

 ( )/( )sin cosgn vi i i i i| cz=
:

 (31)

 cos cosvx i i i ic |=
:

 (32)

 cos siny vi i i ic |=
:

 (33)

 sinz vi i ic=-
:

, (34)

where D i  is the aerodynamic drag, ic  is the flight path angle 

i| , is the heading angle, and W i  is the weight of ith vehicle, 

, , , .i N1 2 g=

The goal of this problem is to find the continuous control 

inputs such that the UAVs, starting from an arbitrary initial state 
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FIGURE 11 The distance of any two UAVs obtained by PSO.

0 0.5 1 1.5 2 2.5
3000

3200

3400

3600

3800

4000

4200

t (sec)

T
 (

k
g
) 54

1

2

3

FIGURE 12 Computed optimal thrust force obtained by HPSOGA.

0 0.5 1 1.5 2
4500

5000

5500

6000

6500

7000

7500

t (sec)
T

 (
k
g
)

3

5

2

1
4

FIGURE 13 Computed optimal thrust force obtained by PSO.

0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3

4

t (sec)

n

5

2

4

3
1

FIGURE 14 Computed optimal load factor obtained by HPSOGA.

0 0.5 1 1.5 2
-2

-1

0

1

2

3

4

t (sec)

n

2

5

1

3

4

FIGURE 15 Computed optimal load factor obtained by PSO.



26    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | AUGUST 2013

( ( ) , ..., ( )),x x0 0N1 ! !  terminate with a relative formation at the 

optimal time T. The desired relative coordinates for each UAV 

are given with respect to those of a UAV located in the center. 

The relative coordinates of the central UAV are thus [0, 0, 0].

In our experiment, .N 5=  It means that there are five UAVs. 

, , . , . ,maxM Nc P c c400 370 0 5 2 011 2= = = = =  the initial 

value of . , . , . , , . .w P P0 8 0 9 0 05 1 0 2c m t b= = = = =  Assume 

that the third vehicle is the center of the formation. 

(km), (km).D D5 45saf comme = =  The initial states of the UAVs 

are set randomly and the relative states at time t T=  are shown 

in Table 1. After the optimal control, the UAVs can move to the 

desired relative of V-shape formation at the same altitude.

Compared with the standard PSO, the experimental results 

show that our proposed HPSOGA can obtain better solutions.

Fig. 3 describes the relationship of the 

objective function and iteration count of PSO 

and HPSOGA. From Fig. 3, we can conclude 

that the HPSOGA performs better than PSO.

Fig. 4 shows the formation reconfiguration 

trajectory of the solution obtained by HPSOGA. 

The numbers indicate the flight trajectories of 

the respective UAVs. “o” is the initial state and 

“*” is the terminal state. Fig. 5 is the formation 

reconfiguration trajectory of the solution obtained by PSO.

Fig. 6 displays the horizontal trajectory of the solution 

obtained by HPSOGA, Fig. 7 gives the horizontal trajectory of 

the solution obtained by PSO. From Fig. 6, we can see that the 

vehicles have successfully moved to the desired relative V-shape 

formation. However, the UAVs failed to move to the desired rel-

ative V-shape formation in Fig. 7.

Fig. 8 shows the vertical trajectory of the solution obtained 

by HPSOGA, while Fig. 9 gives the vertical trajectory of the 

solution obtained by PSO. From Fig. 8, it can be seen that the 

UAVs are at almost the same altitude (although there are errors) 

at the end of the trajectory reconfiguration process but from 

Fig. 9, it is obvious that the UAVs are not at the same altitude. 

The distance between any two UAVs for the solution 

obtained by HPSOGA is given in Fig. 10, and the correspond-

ing results for the solution obtained by PSO are shown in 

Fig. 11. Fig. 10 illustrates that the distance between any two 

UAVs always satisfies the constraints (12) and (13), while from 

Fig. 11, it can be concluded that the PSO solution does not 

always satisfy the constraints (12) and (13).

Fig. 12 shows the computed optimal thrust forces for all the 

UAVs for the solution obtained by HPSOGA, while the com-

puted optimal thrust forces for all the UAVs for the PSO solu-

tion are shown in Fig. 13.

Fig. 14 and Fig. 15 show the computed optimal load factors 

for all the UAVs of the solutions obtained by HPSOGA and 

PSO, respectively. 

The computed optimal heading angles for all the UAVs of 

the solution obtained by HPSOGA are shown in Fig. 16. 

Fig. 17 gives the computed optimal heading angles for all the 

UAVs of the solution obtained by PSO.

From the simulation results, we can conclude that the UAVs 

based on the HPSOGA successfully move to the desired relative 

V-shape formation in 3-D space, while the PSO solution fails. 

This result indicates that the HPSOGA has higher search verac-

ity, more rapid convergence speed, and stronger ability against 

precocity than PSO. The hybrid algorithm utilizes the advantages 

of both GA and PSO in solving optimization problems.

VII. Conclusions

Multi-UAV is often required to change its relative formation 

from one to another in the battlefield environment. In addition 

to the terminal state constraint and control action energy con-

straints, the constraints of safe distance to avoid collision and 

dependable distance to guarantee normal communication 

between each pair of UAVs are also considered. On the premise 
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FIGURE 17 Computed optimal heading angle obtained by PSO.

PSO and GA are global optimization algorithms and 

are suitable for solving optimization problems with 

linear or non-linear objective functions; Therefore, 

they are suitable for solving non-linear formation 

reconfiguration problem.
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of satisfying all the above constraint requirements, different opti-

mal objective functions fit in with different multi-UAV forma-

tion reconfiguration optimization problems. A method to solve 

the multi-UAV formation reconfiguration problem in 3-D space 

has been presented. The problem was formulated as an optimiza-

tion problem involving the minimization for a specified objec-

tive function with state relative constraints. The CPTD method 

has been used to solve this problem with a free terminal state 

constraint. Formation reconfiguration problem was focused on 

determining optimal control inputs for each UAV such that the 

group can start from the initial state and reach its final configura-

tion at the optimal time while satisfying the set of constraints.

The experiments were also conducted to show that the 

proposed HPSOGA can successfully solve the optimal control 

for the multi-UAV formation reconfiguration problem in 3-D 

space. Given a random initial state and the target relative state at 

the terminal time, the HPSOGA can find the optimal solution 

to meet the objective function requirements and various for-

mation system constraints to achieve formation reconfiguration 

in 3-D space. The HPSOGA presented in this paper is able to, 

not only solve the single-formation reconfiguration problem, 

the minimum energy control, and the shortest time and mini-

mum energy integrated control problems, but also solve the 

centralized control of complex systems, such as multi-forma-

tion reconfiguration, multi-vehicle coordinate problems.
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