
Hybrid PGAS Runtime Support for Multicore Nodes

Filip Blagojević, Paul Hargrove, Costin Iancu, Katherine Yelick

Lawrence Berkeley National Laboratory

{fblagojevic, phhargrove, cciancu, kayelick}@lbl.gov

Abstract

With multicore processors as the standard building block for high

performance systems, parallel runtime systems need to provide ex-

cellent performance on shared memory, distributed memory, and

hybrids. Conventional wisdom suggests that threads should be used

as the runtime mechanism within shared memory, and two runtime

versions for shared and distributed memory are often designed and

implemented separately, retrofitting after the fact for hybrid sys-

tems. In this paper we consider the problem of implementing a

runtime layer for Partitioned Global Address Space (PGAS) lan-

guages, which offer a uniform programming abstraction for hybrid

machines. We present a new process-based shared memory run-

time and compare it to our previous pthreads implementation.

Both are integrated with the GASNet communication layer, and

they can co-exist with one another. We evaluate the shared memory

runtime approaches, showing that they interact in important and

sometimes surprising ways with the communication layer. Using a

set of microbenchmarks and application level benchmarks on an

IBM BG/P, Cray XT, and InfiniBand cluster, we show that threads,

processes and combinations of both are needed for maximum per-

formance. Our new runtime shows speedups of over 60% for appli-

cation benchmarks and 100% for collective communication bench-

marks, when compared to the previous implementation. Our work

primarily targets PGAS languages, but some of the lessons are rel-

evant to other parallel runtime systems and libraries.

1. Introduction

To meet the growing demand for computing capability in an

era where power density limits processor speed increases,

modern systems rely on multicore processors as their build-

ing block. As the number of cores per chip grows, and mem-

ory grows more slowly, support for parallel programming

models that provide shared memory abstractions becomes

essential.

On large-scale parallel systems, most people are look-

ing to hybrid programming models that combine the pop-

ular MPI [25] library with a shared memory model, such

as OpenMP [11]. Meanwhile, Partitioned Global Address

Space (PGAS) languages such as Titanium [29], Co-Array

Fortran [24], Unified Parallel C (UPC) [6], X10 [13] and

Chapel [4], offer the possibility of a single programming

model that runs well across the shared and distributed mem-

ory features of the machine. The PGAS languages offer a

uniform approach, but for performance and memory scaling,

their runtime systems need to use a hybrid that takes advan-

tage of shared memory when it exists. At the software level

this primarily translates into a choice of mapping language-

level task to either pthreads or processes. Threads offer the

more natural and popular alternative, because threads share

a single address space, while processes have disjoint address

spaces by default, which means data transfers go through a

network loopback.

In this paper we present an implementation of the Berke-

ley UPC runtime [3] that uses processes with shared memory

bypass for intra-node communication. We evaluate the per-

formance of the process approach when compared to a previ-

ous implementations based on POSIX threads (pthreads).

We evaluate HPC systems with Uniform Memory Access

(UMA) and Non-Uniform Memory Access (NUMA) nodes

across three networks: InfiniBand, Cray XT5 and IBM BG/P.

Our workload is representative for the scientific comput-

ing domain and it contains microbenchmarks, application

benchmarks implemented with fine-grained communication,

implementations of the NAS Parallel Benchmarks [21] using

bulk communication, as well as optimized implementations

of collective operations.

The choice of processes or pthreads requires different

runtime software engineering techniques, affects applica-

tion performance and poses different requirements when

programming model or parallel library interoperability is

desired. Contemporary high performance networking APIs

multiplex requests (with mutual exclusion for thread safety)

generated by pthreads within a process while allowing

more isolation between multiple processes. Our results in-

dicate that process based implementations are essential

for achieving high performance due to subtle interactions

with the networking software stack: at the application level

this manifests in better bandwidth achieved for small and

medium message sizes. Process based implementations have

a lower message injection overhead and are capable of sus-

taining a higher message injection rate. As shown by our re-

sults, high message injection rates can lead to performance

degradation and therefore process based implementations

are likely to require additional levels of communication

throttling. We present microbenchmark results for the at-

tainable network bandwidth that are highly correlated with

the observed application behavior and given knowledge of

the application characteristics can be used to choose the

1 2010/7/19



appropriate runtime implementation. This study makes the

following contributions:

• We designed and developed support for inter-process

communication using shared memory in the Berkeley

UPC runtime. To the best of our knowledge this is the

first runtime implementation that can seamlessly and ef-

ficiently support combinations of process and pthreads

on clusters.

• We categorize the most important design and perfor-

mance related tradeoffs between the process-based and

the pthreads-based implementations of a PGAS run-

time.

• We show that for best performance and performance

portability, hybrid implementations that support multiple

processes per node with multiple pthreads per process

are required.

In Section 3 we describe the design and implementa-

tion of the process-based shared memory communication in

Berkeley UPC and discuss the performance tradeoffs in Sec-

tion 3.1 and 4. The new process based implementation we

present improves both the performance and the interoper-

ability of the existing Berkeley UPC runtime: process based

runtimes have fewer restrictions when combined with non-

thread safe external libraries. These results are of interest to

implementors of runtimes for large scale systems, as well

as application developers, independent of the programming

model: MPI, PGAS, X10 or Chapel.

2. Experimental Platforms

Table 1 presents our experimental platforms. Ranger [26] is

a Sun Constellation Linux cluster containing NUMA quad-

socket, quad-core AMD Opteron nodes connected by Infini-

Band with a 1 GB/sec unidirectional point-to-point band-

width. We also use a two-node InfiniBand cluster with quad-

socket, quad-core Intel Tigerton UMA processors. The Cray

XT5 cluster, (Hopper [22]) contains dual-socket quad-core

AMD Opteron nodes connected with a Seastar2 Intercon-

nect with a peak bidirectional bandwidth of 9.6 GB/s. The

system runs a modified Linux operating system called Com-

pute Node Linux (CNL) and the low level networking API

exposed to applications is Portals. The IBM BG/P [18] con-

tains quad-core PowerPC 450 nodes connected by multiple

specialized networks. The nodes run a modified Linux ker-

nel: Compute Node Kernel (CNK) and the low level net-

working API is the IBM DCMF.

The OpenIB and Portals low level APIs provide thread

safety: any locking inside these libraries is beyond applica-

tion or third party runtime control.

3. Shared Memory Communication in the

UPC Runtime

PGAS languages have demonstrated [5, 23, 28] increased

productivity due to high level control over data locality and

layout and increased performance due to better exploitation

of non-blocking communication and Remote Direct Mem-

ory Access (RDMA) support. These languages provide the

abstraction of global shared memory: while any language-

level task is allowed direct access to a global heap, each

owns a part of this address space and it can access it without

using the network.

For clusters of multicore processors, achieving good per-

formance requires exploiting the shared memory within a

node: the interaction between two tasks residing on the same

node should bypass the network device. The current par-

allel programming models achieve this by either mapping

language level tasks within one node to pthreads, or to

processes with shared memory segments used for commu-

nication in the MPI case. No existing PGAS or MPI im-

plementations allow hybrid mapping approaches (combi-

nations of processes and pthreads) that exclusively use

shared memory inside the cluster nodes. The MPI implemen-

tations do provide shared memory communication between

processes on a node and place the communication bounce

buffers within this region. In contrast, PGAS implementa-

tions have to expose a much larger region of memory and

therefore face bigger implementation challenges due to re-

stricted OS support.

Prior to this work, intra-node shared memory in the

BUPC runtime was provided by mapping language-level

tasks to pthreads within a single process. We have de-

signed and implemented the Process SHared Memory (PSHM)

mechanism to provide shared memory communication among

processes that reside on the same node: besides completely

bypassing the networking layer, PSHM allows hybrid execu-

tion models, where UPC level tasks are mapped to a mix of

processes and pthreads. This paper argues that the mixing

of processes and pthreads is required for performance and

performance portability when implementing runtimes for

modern cluster programming paradigms. In the rest of this

study, we refer to the UPC shared memory process based

runtime configuration as UPC-pshm, to the UPC pthread

configuration as UPC-pthreads, and to the hybrid configu-

ration as (multiple processes and pthreads) as UPC-hybrid.

3.1 PSHM Design

The Berkeley UPC implementation [3] uses a layered ap-

proach: language level abstractions are provided by a run-

time which delegates communication and synchronization

to the GASNet [2] layer. Several implementations of PGAS

languages use GASNet as their communication layer: UPC,

Titanium, Co-Array Fortran and Chapel.

The new PSHM implementation resides in GASNet and

it provides: (1) shared memory communication through

POSIX shared memory segments, and (2) a shared memory

network abstraction for Active Messages [14] support. Exist-

ing MPI implementations may use SYSV, POSIX, or a disk

file mapped via mmap to provide shared memory communi-

cation. Our initial implementation was based on the POSIX

shared memory due to fewer restrictions on the amount of

2 2010/7/19



Processor Clock GHz Cores NUMA Network Bandwidth

Tigerton Intel Xeon E7310 1.6 16 (4x4) no Mellanox InfiniHost III Lx 10 GB/s

Ranger 4 quad-core AMD 2.3 16 (4x4) socket InfiniBand 1GB/s - unidirectional

Hopper 2 quad-core AMD 2.4 8 (2x4) socket Seastar2 9.6 GB/s - bidirectional

BG/P 4 PowerPC 450 0.85 4 (4x4) no Custom 5.1 GB/s

Table 1. Architectural configuration of systems tested.

allocated space: MPI needs to provide only buffer space

for communication while PGAS languages need to export a

significant portion of the address space. Currently, we also

support the SYSV shared memory and a shared disk file

mapped via mmap.

Most of our experimental results are obtained on Linux

based systems which impose fewer restrictions on shared

memory allocation. The Compute Node Kernel (CNK) in-

stalled on the IBM BG/P systems provides POSIX shared

memory from a reserved pool under control of an environ-

ment variable. The Compute Node Linux (CNL) OS in-

stalled on the Cray XT series systems does not provide

POSIX shared memory. On Cray XT we can use shared files

mapped via mmap, or the SYSV shared memory. Note that

the shared memory provided through a disk file can experi-

ence high startup overhead due to the time needed to allo-

cate a file on disk. Also, some OSes might force the changes

in the disk-shared file to be occasionally committed to the

disk, but we did not detect this behavior on CNL (SYSV and

POSIX shared memory do not experience these problems).

In PSHM each process allocates a shared memory seg-

ment and the global UPC heap is composed of the shared

segments contributed by the individual processes. Current

OSes impose limits on the amount of shared memory allo-

cated by an individual process and we ensure space scalabil-

ity using a distributed allocation mechanism. For portability

and scalability reasons, the starting addresses of the shared

memory segments are not aligned across individual process

address spaces and the PSHM implementation contains per

process data structures to store the starting addresses of the

segments contributed by all PSHM processes. This data is

needed to implement the UPC mandated pointer-to-shared

arithmetic semantics associated with blocked data layouts.

GASNet contains an Active Messages (AM) [14] layer

that provides both software portability and the mechanisms

used in efficient implementations of synchronization, mem-

ory allocation, locks, collective and scatter/gather opera-

tions: building a lightweight AM communication layer is a

requirement for achieving good scalability. Note that MPI

implementations use internal mechanisms very similar to

Active Messages.

The UPC-pshm implementation contains a separate PSHM-

AM network layer to handle Active Messages traffic. The

memory allocated for the PSHM-AM network is separated

in two regions, one for request AMs and the other for re-

ply AMs. Each region is split into multiple segments and

each segment contains a number of queues equal to the to-

tal number of PSHM processes as illustrated in Figure 1. A

Process 1 Process 2 Process 3 Process 4 

PSHM Net Segment 1 PSHM Net Segment 2 PSHM Net Segment 3 PSHM Net Segment 4 

qu
eu

e 
1 

qu
eu

e 
2 

qu
eu

e 
3 

qu
eu

e 
4 

qu
eu

e 
1 

qu
eu

e 
2 

qu
eu

e 
3 

qu
eu

e 
4 

qu
eu

e 
1 

qu
eu

e 
2 

qu
eu

e 
3 

qu
eu

e 
4 

qu
eu

e 
1 

qu
eu

e 
2 

qu
eu

e 
3 

qu
eu

e 
4 

AM, Proc3 -> Proc1 AM, Proc1 -> Proc4 

AM, Proc1 -> Proc3 

AM, Proc4-> Proc1 

Figure 1. PSHM Request/Reply Structure, example with 4 processes.

Each set of 4 queues represent incoming queues for one of the processes.

All other queues are the outgoing queues for the same process.

segment corresponds to a single PSHM process, and is used

for storing the incoming AM queues for that process. In the

example presented in Figure 1, the message “Process 1 to

Process 3” is written in the first queue of Segment 3. Mes-

sage “Process 3 to Process 1” is written in the third queue

of Segment 1. Every time an application-level task makes a

runtime call, the implementation contains code that polls the

AM network data structures for arrival of new messages.

The AM network data structures require O(n2) mem-

ory space, where n is the total number of UPC-pshm pro-

cesses on one node. This space is required to store the

AM header information and requires only 20B per header

(though padded to a multiple of cache line size). The buffer

space for each AM payload varies by network, but scales

only linearly with the number of cores per node. AM per-

formance under load is determined by the availability of

payload space and at the current and near future core con-

currency this term dominates the memory consumption of

the implementation. For reference, on a 16 core machine

we pre-allocate tens of MB of AM buffer space. The to-

tal amount of space is controlled by environment variables

and we also provide flow control mechanisms when this

space is temporarily exhausted. This design with statically

pre-allocated buffers, also present in MPI implementations,

provides a tradeoff between memory consumption and speed

of operation. Based on our audit of GASNet and UPC con-

structs that rely on AMs, we believe that two buffer entries

per process are enough to avoid deadlock. For example, for a

possible future 100 core node, this translates into minimum

space requirements of≈ 20MB of memory. For much higher

node concurrency, static AM buffer management might have

to be replaced with dynamic management.

For inter- and intra-node communication, GASNet uses

separate network layers: PSHM and the external network.

The decision about which network will be used is performed

inside GASNet and the communication data structure used

in the inter-node case is network dependent; in most cases it

3 2010/7/19



is encapsulated inside the low level communication library,

e.g. the InfiniBand library or the OS kernel. The GASNet

implementation polls on both inter- and intra-node networks

in order to allow progress and avoid deadlock.

The efficiency of high level programming abstractions, as

well as the interaction among various layers of the software

stack depends on the OS-level execution contexts that are

used to map language level threads. Using the UPC-pshm,

hybrid and pthreads runtime configurations, we examine

the performance tradeoffs with focus on the interaction of

the PSHM-AM network with pthreads, the efficiency of

AM processing for UPC-pshm and UPC-pthreads, interac-

tion of pthreads and processes with the networking layer,

and the performance of global locking and synchronization

operations.

3.2 AM Performance

Several UPC language level constructs use Active Messages

in their implementation: locks, barriers and optimized imple-

mentations of scatter/gather operations. AMs are also used

in the implementation of proposed UPC language exten-

sions such as remote atomic. operations, semaphores and

remote invocations. Other modern programming language

constructs such as the asynchronous activities (async) in

X10 can also be implemented using AMs.

The AM layer implements a simplified Remote Procedure

Call (RPC) paradigm, e.g. after a AM-Send operation a han-

dler is executed within the execution context of the receiver.

We measure AM latency with a microbenchmark that sends a

large number of empty AMs (no data payload) between two

UPC tasks. The results are presented in Table 2. The UPC-

pshm executables are compiled without pthreads support

and do not perform any locking for thread safety. The UPC-

pthreads executables are built without PSHM support and

perform locking for thread safety but use only one internal

network, i.e. do not add additional overhead for polling the

PSHM AM network. The UPC-hybrid executables are com-

piled with both PSHM and pthreads support.

On Ranger and Hopper, the UPC-pshm configuration

(2 procs) improves AM latency by up to 3 times when

compared to the network loopback approach previously em-

ployed. The customized network on BG/P uses shared mem-

ory for intra-node communication and the UPC-pshm AM

latency is equal to the loopback latency.

In a pure pthreads configuration, all threads share the

same address space and any datum is directly accessible to

any thread. In this implementation, AMs amount to direct

function calls within the originating thread and exhibit very

low overhead. In the process based implementations, the AM

handler has to be executed in the context of the “receiving”

task and data movement and synchronization occurs within

this operation. The latency in this case is much higher than

the pthreads case: ≈ 2µs on Ranger, ≈ 1.2µs on Hopper

and ≈ 6µs on BG/P. A pure process based implementation

requires no mutual exclusion on the runtime data structures:

adding the ability to run with multiple pthreads per process

to the runtime requires adding thread safety to the runtime

data structures and additional locks for mutual exclusion.

As illustrated, adding thread safety to a pure process based

configuration increases the AM latency by up to a factor of

1.8 on Ranger, 1.46 on Hopper, and 1.54 on BG/P.

On shared memory (single node), the capability of “in-

line” processing of AM handlers for operations within the

node is a strong advantage of pthreads that share a single

address space. The pure pthreads based implementation

with one process per node has the lowest latency when com-

pared with configurations using multiple processes per node.

This is an intrinsic difference in behavior that vanishes when

considering multiple nodes where the AM communication

is performed across the physical network. Note also that in-

line processing of AMs has implications on load balancing:

a pthreads based implementation might suffer from origi-

nator imbalance, while a process based implementation will

exhibit recipient imbalance.

3.3 Communication Performance

Two network performance metrics are usually used when

developing application level optimizations: 1) overhead of

message injection and 2) bandwidth (or inverse bandwidth).

The former is important for optimizations that employ non-

blocking operations, such as overlapping communication

with other independent activities, while the latter is also

used in message aggregation optimizations.

To measure networking performance we use a commu-

nication intensive microbenchmark where any UPC thread

communicates outside its node. We measure: (1) blocking

communication - a thread issues only one transfer at a time

and waits for its finish; and (2) non-blocking communication

- a thread issues 1024 outstanding operations before waiting

for the completion of the first one in the sequence.

Figure 2 presents the message injection cost on the

Ranger system: two 16 AMD Opteron core nodes connected

by InfiniBand. All cores within the node are active and we

vary the number of pthreads per process, e.g. the line la-

beled 2T-8P illustrates the performance of a configuration

where we run 8 processes each containing 2 pthreads. Low

level networking APIs, such as InfiniBand1 or Portals, ex-

pose to their clients (e.g. GASNet) specific data structures

to describe and manage communication. Usually, two pro-

cesses will use disjoint data structures, while two pthreads

are multiplexed on the same data structure and require ad-

ditional locking for mutual exclusion. As illustrated, the

injection cost rises as the number of pthreads per pro-

cess increases. The UPC-pshm implementation (“1T-16P”

in Figure 2) exhibits the least contention and it outperforms

the UPC-pthreads implementation (“16T-1P”) by up to a

factor of eight for medium sized and large messages.

On Ranger when a process (with multiple pthreads)

spans multiple sockets we observe a severe performance

degradation for small message sizes: for reference, the mes-

1 In the IB terminology, Queue Pairs (QP) and Completion Queues(CQ).

4 2010/7/19



Round Trip Latency (µs) 2 pthreads 2 procs 2 procs + thread-safety 2 procs + loopback 2 procs + thread safety + loopback

Ranger 0.085 1.989 3.598 6.082 6.675

Hopper 0.095 1.220 1.793 4.830 5.430

BG/P 0.305 6.203 9.569 6.229 9.512

Table 2. AM latency comparison between different runtime configurations.

sage injection overhead of UPC-pthreads for eight byte

messages is≈ 27µs. The InfiniBand software stack is thread

safe and when a process spans sockets in a NUMA sys-

tem lock contention, coherency traffic and non-local lock

accesses will cause this degradation. In contrast, the results

on a 16 core UMA Intel Tigerton InfiniBand system do not

exhibit this behavior. The UPC-pshm implementation also

exhibits much lower message injection overhead than UPC-

pthreads on both the Cray XT5 and IBM BG/P, the results

are omitted for brevity. For reference, UPC-pshm has an in-

jection overhead up to six times lower than UPC-pthreads

on Hopper. On all systems, the message injection overhead

decreases (e.g. by ≈ 0.4µs on Ranger) when increasing the

number of active nodes.

The right hand side of Figure 2 presents the aggregate

bandwidth between two nodes on Ranger when using bidi-

rectional traffic and blocking communication. For medium

and small message sizes, the UPC-pthreads implementa-

tion and “16T-1P” configuration achieve the lowest band-

width due to its high message injection overhead. Note that

the differences in message injection overhead presented on

the left hand side of Figure 2 explain only partially the per-

formance ordering observed in this experiment and do not

fully account for the bandwidth differences between the mul-

tiple configurations.

We attribute the bandwidth differences between the dif-

ferent runtime configurations and implementations to the

network (NICs and switches where applicable) response

under load: 1) message injection rate and 2) communica-

tion topology. UPC-pshm and UPC-pthreads have intrin-

sically different message injection overheads: UPC-pshm

has a lower overhead and can sustain a higher message in-

jection rate than UPC-pthreads. Under load, the networks

employ their own flow control and throttling mechanisms

that impact the achievable bandwidth.

Figure 3 presents the aggregate bandwidth between eight

InfiniBand nodes in a setting where each node commu-

nicates only with one other node. The labels contain the

number of pthreads per process, the number of processes

per node and the microbenchmark implementation, e.g. NB

stands for the non-blocking version. When using blocking

communication, the configurations with the lowest message

injection overhead (UPC-pshm) achieve the best bandwidth

for small and medium sized messages, up to five times bet-

ter than the UPC-pthreads bandwidth, as shown in the left

hand side of Figure 5. For large message sizes, all imple-

mentations achieve similar bandwidth. Figure 4 presents the

aggregate bandwidth between two nodes on the Cray sys-

tem, similar results are observed on IBM BG/P. For blocking

communication, the differences between the implementa-

tions are less pronounced, with UPC-pshm again achieving

the best bandwidth.

The performance degradation when applications have a

high sustained message injection rate is illustrated by the

behavior of the non-blocking communication benchmark. In

this case, the implementations with higher injection over-

heads achieve better aggregate bandwidth: in particular, the

UPC-pthreads implementation achieves up to five times

better bandwidth than UPC-pshm, as shown in Figure 3.

Low messaging overhead allows for high injection rates

and our non-blocking communication benchmark is de-

signed to inject a high volume of traffic into the network.

GASNet provides software mechanisms for throttling2 the

communication load at the source by limiting the number

of allowed in-flight messages. The results in Figure 3 for

non-blocking communication on Ranger correspond to the

setting tuned for the UPC-pthreads implementation. In

Figure 4 we present the impact of throttling the number

of outstanding communication requests on the Cray sys-

tem, e.g. “NB=32” denotes the setting where we allow only

32 outstanding messages per node. As shown, the lower3

the number of outstanding messages allowed, the better the

bandwidth (for the non-blocking communication). Of partic-

ular interest are the lines labeled “NB=32” where the UPC-

pthreads implementation matches the bandwidth achieved

when using blocking communication. For this best setting,

UPC-pshm still achieves only half of the UPC-pthreads

bandwidth for large messages, furthermore there is no set-

ting that improves the UPC-pshm bandwidth beyond the

reported numbers. On Ranger, throttling improves the per-

formance (results not shown) when using non-blocking com-

munication and for large message sizes UPC-pshm achieves

the same bandwidth as UPC-pthreads. This experiment il-

lustrates the benefits of additional levels of communication

throttling performed transparently inside the runtime.

On all systems, changing the communication topology

exercised by the microbenchmark does not change the trends

reported. Figure 5 presents results for the case where one

task communicates only with one other task (P2P) and the

case where one task changes the destionation of each mes-

sage (P2M). While the P2P benchmark setting, where a

node sends multiple messages to another node, captures

the behavior of hand optimized applications using bulk

transfers, the P2M setting captures the behavior of appli-

cations implemented (written in shared memory style) using

fine-grained communication. Changing the communication

topology does not affect the performance ordering of the

2 Lower level APIs also provide these mechanisms.
3 NB=240 was the default setting before the experiments in this paper.

5 2010/7/19



0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  
8	   16
	  

32
	  

64
	  

12
8	  

25
6	  

51
2	   1K
	  

2K
	  

4K
	  

8K
	  

16
K	  

32
K	  

64
K	  

12
8K

	  

Ti
m
e	  
(u
s)
	  

Size	  (Bytes)	  

InfiniBand	  Message	  InjecAon	  Overhead	  

1T-‐16P	   2T-‐8P	   4T-‐4P	   8T-‐2P	   16T-‐1P	  

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1600	  

1800	  

2000	  

8	   16
	  

32
	  

64
	  

12
8	  

25
6	  

51
2	  

1K
	  

2K
	  

4K
	  

8K
	  

16
K	  

32
K	  

64
K	  

12
8K

	  

Ba
nd

w
id
th
	  (M

B/
s)
	  

Size	  (Bytes)	  

InfiniBand	  Node	  	  Bandwidth	  (32	  Cores)	  

1T-‐16P	  

2T-‐8P	  

4T-‐4P	  

8T-‐2P	  

16T-‐1P	  

MPI	  

Figure 2. Message injection overhead and inter-node bandwidth on Ranger.

0	  

1000	  

2000	  

3000	  

4000	  

5000	  

6000	  

7000	  

8	   16
	  

32
	  

64
	  

12
8	  

25
6	  

51
2	   1K
	  

2K
	  

4K
	  

8K
	  

16
K	  

32
K	  

64
K	  

12
8K

	  

Ba
nd

w
id
th
	  (M

B/
s)
	  

Size	  (Bytes)	  

InfiniBand	  Bandwidth	  -‐	  8	  Nodes	  (128	  cores)	  

1T-‐16P	  B	  

4T-‐4P	  B	  

16T-‐1P	  B	  

1T-‐16P	  NB	  

4T-‐4P	  NB	  

16T-‐1P	  NB	  

Figure 3. Aggregate bandwidth for eight nodes (128 cores) on

Ranger. “1T-16P B” denotes 1 pthread per process with blocking

(NB=nonblocking) communication .

0	  

300	  

600	  

900	  

1200	  

1500	  

1800	  

2100	  

2400	  

2700	  

3000	  

8	   16	   32	   64	   128	   256	   512	   1K	   2K	   4K	   8K	   16K	   32K	   64K	   128K	  

Ba
nd

w
id
th
	  (M

B/
s)
	  

Size	  (Bytes)	  

Cray	  XT5	  Node	  Bandwidth	  

1T-‐8P	  B	  

8T-‐1P	  B	  

1T-‐8P	  NB=32	  

8T-‐1P	  NB=32	  

1T-‐8P	  NB=240	  

8T-‐1P	  NB=240	  

MPI	  

Figure 4. Node bandwidth on Cray XT5

-‐200%	  

-‐100%	  

0%	  

100%	  

200%	  

300%	  

400%	  

500%	  

600%	  

8	   16
	  

32
	  

64
	  

12
8	  

25
6	  

51
2	   1K
	  

2K
	  

4K
	  

8K
	  

16
K
	  

32
K
	  

64
K
	  

12
8K

	  

Sp
ee
du

p	  
O
ve
r	  
16
T-‐
1P

	  

Size(bytes)	  

InfiniBand	  Bandwidth	  (128	  Cores)	  

P2P	  1T-‐16P	   P2P	  4T-‐4P	   P2M	  1T-‐16P	  	   P2M	  4T-‐4P	  	  

‐50% 

0% 

50% 

100% 

150% 

200% 

250% 

300% 

8  16
 

32
 

64
 

12
8 

25
6 

51
2  1K
 

2K
 

4K
 

8K
 

16
K 

32
K 

64
K 

Sp
ee
du

p 
O
ve
r 4

T‐
1P

 

Size (Bytes) 

BG/P Bandwidth (128 Cores) 
P2P 1T‐4P  P2P 2T‐2P  P2M 1T‐4P  P2M 2T‐2P 

Figure 5. Bandwidth improvements of different comfigurations over UPC-pthreads(16T-1P on InfiniBand, 4T-1P on BG/P). P2P: each process has only

one communication partner. P2M: each process uses a different destination process for each message.

implementations, it affects only the magnitude of the differ-

ences.

UPC-pshm and UPC-pthreads have different message

injection overheads due to unavoidable implementation dif-

ferences. On all systems, these differences translate into the

UPC-pshm or UPC-hybrid always achieving better band-

width than UPC-pthreads for small to medium sized mes-

sages. For both blocking and non-blocking communication,

no single combination of pthreads and processes is capable

of delivering the highest bandwidth for every transfer size

and every communication type. When using non-blocking

communication, each implementation requires different tun-

ing with respect to the allowed number of in-flight messages:

UPC-pthreads allows for a larger number of in-flight mes-

sages in this case. On Ranger a tuned UPC-pshm can match

the bandwidth of UPC-pthreads for large messages. On

the Cray, UPC-pshm provides roughly half of the bandwidth

of UPC-pthreads for large messages, irrespective of addi-

tional throttling levels. Our tuning efforts also indicate that

in order to further improve performance, active traffic man-

agement solutions (individual message throttling) might be

required, as opposed to coarse grained node management.

4. Application Performance Evaluation

The workload contains the UPC NAS Parallel Benchmarks

(UPC NPB) [21] version 2.4 augmented by optimized ver-

sions of LU, BT and SP [19], fine-grained application ker-

nels (GUPS, MCOP and Sobel) and optimized implemen-

tations of collective operations. All NPB implementations

(EP, CG, IS, MG, LU, FT, BT, SP) use bulk communica-

tion. The EP, MG, FT and LU implementations also contain

critical sections and some operations implemented with fine-

grained communication. All benchmarks are compiled with

the Berkeley UPC 2.10.0 compiler. We conduct our experi-

ments on the platforms described in Section 2 and report the

average performance across at least five runs.

4.1 Shared Memory Performance

For the shared memory performance evaluation we use the

UMA (Tigerton) and NUMA (Barcelona) 4x4 systems. Our

6 2010/7/19



results indicate that for the workload considered there is little

or no observable performance difference between the three

configurations. On the NUMA system, the configurations

where the number of pthreads per process is lower than the

number of cores per socket have sometimes a very slight

performance advantage for some of the benchmarks.

4.1.1 Fine-Grained Communication Benchmarks

The fine-grained benchmarks, GUPS [16], MCOP [10] and

Sobel [15] are designed to reflect the behavior of the com-

munication pattern that occurs in applications during data

structure initializations, dynamic load balancing, or remote

event signaling. The communication pattern in GUPS also

captures the behavior of stand-alone graph based applica-

tions. In addition, we present the performance of contended

lock acquire and release operations.

The GUPS benchmark performs read/modify/write ac-

cesses to random locations in a large distributed array. This

is a common operation in parallel hash table construc-

tion. The amount of work is static and evenly distributed

among threads at execution time. The read/modify/write

loops in the benchmark are designed to allow computa-

tion/communication overlap. The MCOP benchmark solves

the matrix chain ordering problem, which is a combinato-

rial problem that captures the characteristics of a large class

of parallel dynamic programming algorithms. The matrix

columns are distributed across UPC threads, and commu-

nication occurs when UPC threads access elements in the

same row. Sobel performs edge detection with Sobel oper-

ators (3X3 filters). The application is parallelized by parti-

tioning the source image across threads into equal contigu-

ous chunks of rows. Communication is performed when a

UPC thread accesses bordering rows; remote accesses to the

next thread rows are also performed. For the locking perfor-

mance we measure the duration of a upc lock/upc unlock

sequence of operations when all threads are operating on the

same lock object.

Figure 6 shows the message sizes and it compares the

timings of all process/pthreads combinations to the UPC-

pthreads implementation on two nodes on all systems.

Values below one indicate better performance than the UPC-

pthreads implementation. The execution time comparison

for the fine-grain communication benchmarks is consistent

with the microbenchmarks behavior: e.g. due to the irreg-

ular fine-grained communication, the hybrid of processes

and pthreads outperforms UPC-pshm and UPC-pthreads

by up to 85% on Ranger. For the locking benchmark,

the pthreads implementation is two orders of magnitude

slower. On Hopper and BG/P, the differences between UPC-

pshm and -hybrid are smaller, with UPC-pthreads always

attaining the lowest performance.

4.1.2 UPC NPB Performance

Figure 7 presents the performance of the NPB implementa-

tions on Ranger, Hopper and IBM BG/P. The execution time

is normalized to the UPC-pthreads implementation, values

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L
 

L
o
c
k
/

U
n
lo
c
k
 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L
 

L
o
c
k
/

U
n
lo
c
k
 

G
U
P
S
 

M
C
O
P
 

S
O
B
E
L
 

L
o
c
k
/

U
n
lo
c
k
 

T
im

e
 N
o
rm

a
li
z
e
d
 t
o
 P
th
re
a
d
s
 

Ranger, Cray XT, BG/P Performance  

1 Pthread/Process  4 Pthreads/Process 
Pthreads Reference 

Ranger  Hopper  BG/P 

GUPS MCOP SOBEL Lock

Msg. Sizes 200B-400B 4B 6B 8B

Figure 6. Performance of fine grain communication benchmarks. For

each configuration, the results are normalized to 16 pthreads per process.

below one signify performance better than UPC-pthreads.

All implementations perform blocking communication; Ta-

ble 3 shows the message sizes.

The results show that the UPC-pthreads implementa-

tion is not the best option, and a process based implementa-

tion often performs better. For the majority of benchmarks,

the best performance is attained by the UPC-pshm or hybrid

implementations where the number of pthreads per pro-

cess is less than or equal to the number of cores per socket.

Prior to this work, the underlying assumption in the commu-

nity of implementors of parallel programming models was

that providing pthreads implementations is sufficient to ex-

ploit the shared memory within a node.

The EP benchmark contains one critical section dur-

ing which a reduction is performed. The overhead of the

upc lock() operations, as well as the small size messages,

cause a performance degradation of up to 80% when the

UPC-pthreads implementation is used on InfiniBand. IS

and FT perform all-to-all communication, and for the mes-

sage sizes used in these applications, hybrid and pthreads

based implementations achieve a slightly better bandwidth

on InfiniBand (according to Figure 5). This translates into

roughly 10% for IS and 5% for FT communication (bar la-

beled Bulk) performance improvements for UPC-hybrid and

UPC-pthreads when compared to UPC-pshm. FT also con-

tains a critical section which causes the large performance

degradation with UPC-pthreads on InfiniBand.

For CG, UPC-pthreads outperforms UPC-pshm and -

hybrid on InfiniBand, due to the large message sizes used

in this benchmark (again, according to Figure 5). MG uses

message sizes of various granularities, with most messages

falling into the small to medium range. On Ranger, the UPC-

hybrid configurations have a slight (3%-4%) performance

advantage over UPC-pshm and UPC-pthreads. Most of

the MG performance degradation on InfiniBand with UPC-

pthreads is due to a critical section.

In LU, BT and SP tasks exchange small to medium

messages, which translates in UPC-pshm and UPC-hybrid

performance gains (up to 6% on InfiniBand) over UPC-

pthreads, due to better bandwidth. They all implement

a pipelined algorithm with point-to-point synchronization,

7 2010/7/19



128 UPC Threads EP CG IS MG LU FT BT - 256 SP - 256

Class B 8B 37KB 8B, 6.5KB - 11KB 24B - 34KB 200B - 480B, 50KB, 100KB 32KB 1KB, 6KB - 11KB, 50KB 2KB - 8KB, 50KB

Class C 8B 75KB 8B, 20KB - 40KB 24B - 130KB 160B - 800KB, 250KB 128KB 4KB, 20KB - 40KB, 120KB 5KB - 20KB, 120KB

Table 3. UPC NAS Benchmarks - Message sizes and number of barriers for 128 UPC Threads.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  16  1  4  8  1  4  16  1  4  16  1  4  16  1  4  16 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  MG‐B  MG‐C  FT‐B  FT‐C  LU‐B  LU‐C  BT‐256‐B  BT‐256‐C  SP‐256‐B  SP‐256‐C 

Ti
m
e 
N
o
rm

al
iz
ed

 t
o
 P
th
re
ad

s 

Ranger 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8  1  4  8 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  FT‐B  FT‐C  MG‐B  MG‐C  LU‐B  LU‐C  BT‐256‐B  BT‐256‐C  SP‐256‐B  SP‐256‐C 

Ti
m
e 
N
o
rm

al
iz
ed

 t
o
 P
th
re
ad

s 

Cray XT5 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4  1  2  4 

EP‐B  EP‐C  CG‐B  CG‐C  IS‐B  IS‐C  FT‐B  FT‐C  MG‐B  MG‐C  LU‐B  LU‐C  BT‐256‐B BT‐256‐C SP‐256‐B SP‐256‐C 

Ti
m
e 
N
or
m
al
iz
ed

 to
 P
th
re
ad

s 

BG/P 128 Cores 

Bulk 

Fence 

Fine‐Grained 

Comp 

Figure 7. UPC NPB on Ranger, Hopper, and BG/P, using 128 cores. The charts present the performance of various UPC threads process/pthreads

mapping, relative to the UPC- pthreads configuration.

highly optimized for communication/computation overlap.

The implementation uses the upc fence operation to qui-

esce the network, which results in frequent polling opera-

tions. On InfiniBand, the UPC-pthreads implementation

suffers the highest overhead due to lock contention in the

low level networking stack. On the BG/P, a significant dif-

ference is observable in computation time across various

configurations. When pthreads support is added to the run-

time configuration, file scope variables need to be replicated

and are accessed indirectly through pointers: the IBM XLC

compiler generates code that runs slower in this case. This

behavior is also observed by Duell [12].

On all platforms, the process based configurations per-

form better than a pure pthreads based configuration. On

the Cray and IBM systems, the pure process based config-

uration provides best performance, while on the InfiniBand

system a hybrid configuration where processes do not span

sockets provides the overall best performance.

4.1.3 Collective Operations

The BUPC runtime provides optimized collective operations

that use the best intra-node synchronization mechanisms,

optimal communication topologies (trees) and non-blocking

communication for overlap. These implementations are se-

lected by an installation time autotuning stage. Pthreads

within a process perform all the intra-node operations within

one step, followed by inter-node (inter-process) communi-

cation: this step is performed by only one pthread within

a process. Thus, a pure process based implementation will

have the highest degree of inter-node communication paral-

lelism, while in a pthreads based implementation the com-

munication is “serialized”.

Figure 8 presents the speedup of different runtime con-

figurations over the performance of UPC-pthreads for a

broadcast and an all-to-all operation. In the broadcast op-

eration the communication is uni-directional with a num-

ber of active tasks determined by the tree topology. In the

all-to-all operation communication is bi-directional and all

tasks are active. As illustrated, on InfiniBand best perfor-

mance is again attained by a hybrid configuration which

provides performance improvements of up to 130%. Over-

all, for collective operations a hybrid configuration where a

processes spans a socket (4T-4P) provides best performance.

For small message sizes, the UPC-pshm implementation

which exhibits the highest communication parallelism pro-

8 2010/7/19



-‐60%	  

-‐10%	  

40%	  

90%	  

4	   16
	  

64
	  

25
6	  

1K
	  

4K
	  

16
K	  

64
K	   8	   32
	  

12
8	  

51
2	  

2K
	  

8K
	  

32
K	  

12
8K

	  

Broadcast	   All-‐To-‐All	  

Sp
ee
du

p	  
O
ve
r	  
Pt
hr
ea
ds
	  

Size(bytes)	  

InfiniBand	  256	  Cores	  

1T-‐16P	   2T-‐8P	   4T-‐4P	   8T-‐2P	  

-‐40%	  

-‐20%	  

0%	  

20%	  

40%	  

60%	  

4	   16
	  

64
	  

25
6	   1K
	  

4K
	  

16
K	  

64
K	   8	   32
	  

12
8	  

51
2	   2K
	  

8K
	  

32
K	  

12
8K

	  

Broadcast	   All-‐To-‐All	  

Sp
ee
du

p	  
O
ve
r	  P

th
re
ad

s	  

Size(bytes)	  

IBM	  BG/P	  256	  Cores	  

1T-‐4P	   2T-‐2P	  

Figure 8. Broadcast and all-to-all performance comparisons. On InfiniBand, we compare against 16T-1P, on BG/P against 4T-1P.

vides slightly lower performance than the UPC-pthreads

configuration. For large message sizes a process based con-

figuration outperforms the pure pthreads based implemen-

tation.

On the IBM BG/P the pure process based configuration

usually provides the best performance. On the Cray XT sys-

tem, the pure process based implementation provides signif-

icantly lower performance than any combination containing

pthreads. We are still investigating the cause of this behav-

ior, which we believe to be caused by a lack of proper tuning

of the collectives implementation in the process case.

5. Related Work

The initial implementation of shared memory regions be-

tween OS processes in the BUPC runtime was performed

by Duell [12]. He implemented only a shared memory run-

time without support for inter-node communication and we

extend his work beyond a single node across multiple low

level networking APIs.

A large amount of work has been performed on inter-

node communication optimizations in PGAS and MPI run-

times. Several studies focus on manual and automatic com-

munication/computation overlap using one-sided communi-

cation provided by the PGAS languages [7, 8, 17]. Our work

is complementary to these studies. Bhatelé et al. [1] com-

pare the communication performance of three supercom-

puter architectures: IBM BG/P, Ranger and Cray XT5. They

find network contention to cause a low aggregate bandwidth

when multiple MPI processes simultaneously initiate inter-

node communication. This observation confirms the results

presented in our study, and strengthens the argument in favor

of a runtime that allows mixing of processes and pthreads.

Underwood et al. [27] propose a CPU-based remote address

computation, without the usage of E-registers on Cray T3E

and report that only a few cores can saturate modern Net-

work Interface Cards.

Several application-level studies compare the perfor-

mance of processes and pthreads. Madduri et al. [20]

compare pthread and MPI implementation of GTC on

various shared memory platforms. While the authors ob-

serve significant speedup achieved by pthreads over the

MPI implementation, they also suggest that the straight-

forward partitioned grid approach will not scale linearly

beyond 16 threads due to the increased contention when

the shared grid is updated. Antonopoulos et al. [9] explore

fine-grain pthreads-based parallelization in Parallel Con-

strained Delaunay Mesh generation software. They also find

that the locking overhead introduced by pthreads out-

weighs the potential benefits and propose better perform-

ing implementations using hardware locking mechanisms.

Our work shows that when taking into account the inter-

actions with third party software communication libraries

pure pthreads based implementations are not capable of

providing best performance due to unavoidable software in-

teractions.

6. Conclusions

In the multi- and many-core era, implementations of pro-

gramming models for scientific computing need to provide

both shared and distributed memory performance. In this pa-

per we consider the problem of mapping language (or exe-

cution model) level tasks onto OS execution abstractions:

processes or pthreads. We have developed PSHM, a new

process-based shared memory implementation of the Berke-

ley UPC runtime and explored the most efficient mapping

of PGAS tasks to cores on clusters of multicore processors.

We consider multiple strategies: mapping PGAS tasks to

pthreads, mapping them to processes with OS-supported

shared memory between them, or some hybrid of the two.

We believe this is the first PGAS language implementation

that allows a hybrid mapping of language threads to both

pthreads and processes using shared memory for intra-

node communication. By combining PSHM with pthreads,

fine-grain communication benchmarks, as well as imple-

mentations of the NAS Parallel Benchmarks and collective

operations, experienced speedups of more than 60%.

We discuss and isolate some of the likely factors for these

performance differences, which include locking overhead in

the thread version and network contention in the process

version. This behavior is unavoidable and captures a funda-

mental difference when building runtimes for parallel com-

puting: sharing of data structures requires mutual exclusion

and affects network message injection rates. We present mi-

crobenchmark results that can be used to select the runtime

configuration able to provide best performance and discuss

the tuning required by different configurations. Our results

reveal that inter-node communication, as well as communi-

cation dependent language-level constructs, are heavily in-

fluenced by the processes/pthreads choice and a hybrid

approach where processes do not span sockets is likely to

provide best performance.

9 2010/7/19



References

[1] A. Bhatele, L. Wesolowski, E. Bohm, E. Solomonik,

and L. V. Kale. Understanding Application Perfor-

mance on Three Predominant Supercomputer Architec-

tures: Intrepid, Ranger and Jaguar, using Micro-benchmarks.

http://charm.cs.uiuc.edu/papers/, 2010.

[2] D. Bonachea. GASNet Specification, v1.1. Technical report,

University of California at Berkeley, Berkeley, CA, USA,

2002.

[3] Berkeley UPC. Available at http:upc.lbl.gov.

[4] D. Callahan, B. L. Chamberlain, and H. P. Zima. The Cas-

cade High Productivity Language. In in Ninth International

Workshop on High-Level Parallel Programming Models and

Supportive Environments (HIPS04, pages 52–60, 2004.

[5] F. Cantonnet, Y. Yao, M. Zahran, and T. El-ghazawi. Pro-

ductivity Analysis of the UPC Language. In In IPDPS 2004

PMEO workshop, 2004.

[6] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, and

K. W. E. Brooks. Introduction to UPC and Language Spec-

ification, 1999.

[7] W.-Y. Chen, D. Bonachea, C. Iancu, and K. Yelick. Automatic

Nonblocking Communication for Partitioned Global Address

Space Programs. In ICS ’07, pages 158–167, New York, NY,

USA, 2007. ACM.

[8] W.-Y. Chen, C. Iancu, and K. Yelick. Communication Opti-

mizations for Fine-Grained UPC Applications. In PACT ’05,

pages 267–278, Washington, DC, USA, 2005. IEEE Com-

puter Society.

[9] Christos D. Antonopoulos and Xiaoning Ding and Andrey

Chernikov and Filip Blagojevic and Dimitrios S. Nikolopou-

los and Nikos Chrisochoides. Multigrain Parallel Delaunay

Mesh Generation: Challenges and Opportunities for Multi-

threaded Architectures. In ICS ’05, pages 367–376. ACM

Press, 2005.

[10] T. Cormen, C. Leiserson, and R. Rivset. Introduction to

Algorithms. The MIT Press, 1994.

[11] L. Dagum and R. Menon. OpenMP: An Industry-Standard

API for Shared-Memory Programming. IEEE Comput. Sci.

Eng., 5(1):46–55, 1998.

[12] J. Duell. Pthreads or Processes: Which is Better for Imple-

menting Global Address Space Languages? . Masters Report,

Computer Science Division, UC Berkeley, 2007.

[13] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming

for Hierarchical Parallelism and Non-Uniform Data Access.

In Proceedings of the International Workshop on Language

Runtimes, OOPSLA, 2004.

[14] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.

Active Messages: a Mechanism for Integrated Communica-

tion and Computation. In In Proceedings of the 19th Annual

International Symposium on Computer Architecture, pages

256–266, 1992.

[15] T. El-Ghazawi and F. Cantonnet. UPC Performance and Po-

tential: a NPB Experimental Study. In Supercomputing ’02:

Proceedings of the 2002 ACM/IEEE conference on Supercom-

puting, pages 1–26, Los Alamitos, CA, USA, 2002.

[16] B. R. Gaeke and K. Yelick. GUPS (Giga-Updates per Second)

Benchmark .

[17] C. Iancu, W. Chen, and K. Yelick. Performance Portable Opti-

mizations for Loops Containing Communication Operations.

In ICS ’08, pages 266–276, New York, NY, USA, 2008. ACM.

[18] IBM. Overview of the IBM Blue Gene/P Project. IBM J. Res.

Dev., 52(1/2):199–220, 2008.

[19] H. Jin, R. Hood, and P. Mehrotra. A Practical Study of UPC

with the NAS Parallel Benchmarks. The 3rd Conference on

PGAS Programming Models, 2009.

[20] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,

E. Strohmaier, and K. Yelicky. Memory-Efficient Optimiza-

tion of Gyrokinetic Particle-to-Grid Interpolation for Multi-

core Processors. In SC ’09: Proceedings of the Conference on

High Performance Computing Networking, Storage and Anal-

ysis, pages 1–12, New York, NY, USA, 2009. ACM.

[21] The GWU NAS Benchmarks. http://www.gwu.edu/∼upc.

[22] National Energy Research Scientific Computing Center.

http://www.nersc.gov/nusers/systems/hopper.

[23] R. Nishtala, G. Almasi, and C. Cascaval. Performance With-

out Pain = Productivity: Data Layout and Collective Commu-

nication in UPC. In PPoPP ’08, pages 99–110, New York,

NY, USA, 2008. ACM.

[24] R. W. Numrich and J. Reid. Co-array Fortran for Parallel

Programming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-

garra. MPI-The Complete Reference, Volume 1: The MPI

Core. MIT Press, Cambridge, MA, USA, 1998.

[26] Texas Advanced Computing Center.

http://www.tacc.utexas.edu/resources/hpcsystems/.

[27] K. D. Underwood, M. J. Levenhagen, and R. Brightwell. Eval-

uating NIC Hardware Requirements to Achieve High Message

Rate PGAS Support on Multi-Core Processors. In SC ’07:

Proceedings of the 2007 ACM/IEEE conference on Supercom-

puting, pages 1–10, New York, NY, USA, 2007. ACM.

[28] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta,

J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands,

C. Iancu, A. Kamil, R. Nishtala, J. Su, M. Welcome, and

T. Wen. Productivity and Performance Using Partitioned

Global Address Space Languages. In PASCO ’07, pages 24–

32, New York, NY, USA, 2007. ACM.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,

A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella,

and A. Aiken. Titanium: A High-Performance Java Dialect. In

In ACM, pages 10–11, 1998.

10 2010/7/19


