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Abstract-This paper describes rapidly converging algorithms 
for computing attenuation maps from Poisson transmission 
measurements using penalized-likelihood objective functions. 
We demonstrate that an under-relaxed cyclic coordinate-ascent 
algorithm converges faster than the convex algorithm of Lange 
[l], which in turn converges faster than the expectation- 
maximization (EM) algorithm for transmission tomography 
111. To further reduce computation, one could replace the 
log-likelihood objective with a quadratic approximation. 
However, we show with simulations and analysis that the 
quadratic objective function leads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto biased estimates for 
low-count measurements. Therefore we introduce hybrid 
Poissodpolynomial objective functions that use the exact Poisson 
log-likelihood for detector measurements with low counts, but 
use computationally efficient quadratic or cubic approximations 
for the high-count detector measurements. We demonstrate that 
the hybrid objective functions reduce computation time without 
increasing estimation bias. 

I. INTRODUCTION 

ANY important medical problems occur in the human M thorax, such as breast cancer, heart disease, and lung 
cancer. To produce quantitatively accurate images of physiol- 
ogy within the thorax using emission computed tomography, 
one must correct for the effects of photon absorption or atten- 
uation [2]. Conventional calculated methods for attenuation 
correction [2] are inappropriate in the thorax, due to the 
nonuniform attenuation properties of bone, lungs, and soft tis- 
sue. Thus, most positron emission tomography (PET) centers 
have adopted the measured attenuation correction method, in 
which one precedes the emission scan with a transmission scan 
that measures the unique attenuation characteristics of each 
patient over the slices of interest [3]. Many SPECT centers are 
now using measured transmission scans for cardiac studies as 
well [4]-[7]. In PET and SPECT the primary medical interest 
is in physiology rather than anatomy. Thus the transmission 
scan is somewhat a measurement of “nuisance parameters,” 
so it is desirable to minimize its duration. Short scans yield 
noisy measurements, leading to noisy attenuation correction 
factors that propagate unwanted errors into the reconstructed 
emission image. This paper describes statistical methods for 
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reconstructing images of attenuation coefficient distributions 
(or attenuation maps) from noisy Poisson transmission scans. 

The conventional method for attenuation correction in PET 
using measured transmission scans consists of two steps: first 
compute attenuation correction factors by smoothing the ratio 
of the blank scan’ to the transmission scan measurements; 
then multiply the emission measurements by the attenuation 
correction factors in sinogram space. Therefore often no atten- 
uation map is needed. However, in some cases it is desirable to 
reconstruct attenuation maps: for anatomical localization [8], 
for fully 3-D PET studies 191, for improved noise performance 
[lo], and for quafltitative SPECT [ l l ] .  In this paper we com- 
pare reconstruction methods in terms of the statistical accuracy 
of the reconstructed attenuation maps. These attenuation maps 
will often be reprojected to form attenuation correction factors, 
in which cases a more appropriate figure of merit would be the 
statistical accuracy of these correction factors, or of the final 
reconstructed emission images. Future studies should evaluate 
the overall emissiodtransmission process. 

The conventional method for reconstructing attenuation 
maps from transmission measurements is a two-step process. 
First compute the logarithm of the ratio of the blank scan 
to the transmission scan, which gives a (noisy) estimate of 
the line integral of the attenuation distribution along each 
measurement ray. Then reconstruct the attenuation map by 
applying the conventional filtered backprojection (FBP) re- 
construction method to the logarithmic data. As we describe 
in Appendix A, for Poisson data this logarithm of a ratio leads 
to biased estimates when the transmission counts are small (see 
Fig. 1). To avoid this bias problem, one must use a method that 
incorporates the measurement statistics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121, so we estimate 
the attenuation map using a penalized-likelihood approach. 
We compare several algorithms for maximizing the objective 
function: a cyclic-coordinate ascent algorithm based on the 
work of Sauer and Bouman [ 1314 151, a convex algorithm and 
a gradient algorithm described by Lange 113, [16], [17], and the 
transmission EM algorithm [18], [19]. We demonstrate that the 
coordinate-ascent method converges significantly faster than 
the alternatives when implemented on a serial computer. The 
first part of this paper focuses on this comparison. 

For routine clinical use, we would like still faster con- 
vergence, or less computation per iteration, even for the 
coordinate ascent algorithm. Therefore, in the second part of 

’ A blank scan is a transmission scan without the patient in the scanner that 
is acquired for the purpose of calibrating the measurements. 
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Fig. 1 .  Plots of estimator bias for the scalar transmission problem discussed 

in Appendix A. The unweighted average (Le., FBP) estimator is positively 
biased and the weighted least-squares estimator is negatively biased, whereas 

the maximum likelihood estimator is nearly unbiased. The weighted cubic 
estimator is also nearly unbiased, except for very low count measurements. 

this paper we propose hybrid Poissodpolynomial objective 
functions. The basis for these hybrids is very simple: since 
the transmission measurements are independent, the Poisson 
log-likelihood separates into a sum of terms correspond- 
ing to the marginal log-likelihood for each measurement. 
For measurements with only a few counts, we retain the 
corresponding marginal log-likelihood term. However, for 
measurements with a large number of counts, we replace the 
corresponding marginal log-likelihood term with a quadratic or 
cubic approximation closely related to the expansion of Sauer 
and Bouman [ 131-1 151. These polynomial approximations 
significantly reduce the computation per iteration relative to 
the transcendental form of the log-likelihood for Poisson 
transmission measurements. 

To summarize, the contributions of this paper are the follow- 
ing. We analyze the bias properties of transmission estimators 
(Appendix A). We show empirically that coordinate ascent 
converges faster than alternative algorithms, and that under- 
relaxation accelerates convergence (Sections I1 and 111). We 
introduce the hybrid objective functions which lead to faster 
computation. Unlike the weighted least-squares objective, the 
hybrid approach properly treats nonpositive measurements 
(Section IV). We show that the resolutiodnoise tradeoff of 

penalized likelihood estimates outperforms the FBP method, 
and that the hybrid method has similar accuracy as penalized- 
likelihood but with much less computation (Section V). 
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PART 1: PENALIZED MAXIMUM LIKELIHOOD 

11. OBJECTIVE AND ALGORITHMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Problem 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = [ p l ,  . . . , pp]' denote the vector of unknown linear 
attenuation coefficients (having units of inverse length). Let 
y = [ y ~ ,  e , y ~ ] '  denote the vector of measured transmission 
counts. We assume that the yn's are realizations of statisti- 
cally independent random variables { Yn},"=l having Poisson 

distributions with 

where 

expectations { j j n ( p ) } :  

- 
y,(p) = b,e-"-(c") + T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W 

The b, > 0 factors denote the blank scan mean counts. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vn  2 0 factors represent additive background events such as 
random coincidences (PET) [19], scatter (SPECT, PET, X-ray 
CT) [19], [20], or energy channel cross-talk (SPECT) [21]. 
The anj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 factors have units of length, and describe the 
tomographic system geometry. Thus I ,  (p )  is (approximately) 
the line integral of the attenuation distribution along the 
nth ray. We assume that {a,j}, {bn } ,  and {rn} are known 
constants, so our goal is to estimate the unknown attenuation 
map p from the measurements y. This problem is relatively 
challenging due to the nonlinear relationship in (1). 

Under the Poisson model, the log-likelihood for p is: 

L ( P )  = 1% P(Y = Y; PI 

= z: Yn 1% %(PI - %(PI.  (2) 

(We ignore constants independent of p throughout.) Since 
image reconstruction is ill-conditioned, rather than estimating 
,U by maximizing L ( p ) ,  we include a roughness penalty of the 
form: 

n 

U 

where Nj is a neighborhood of the j th pixel, is a symmetric, 
twice-differentiable scalar function, and W j k  = Wk3 2 0. In 
Appendix B we specify the W j k  factors using a method that 
leads to uniform image resolution when c$ is the quadratic 
function $(z) = x2/2. If one adopts the conventional choice 
for W j k ,  then the reconstructed image resolution will be 
nonuniform [22]. 

Combining the penalty (3) and the log-likelihood (2) yields 
the penalized-likelihood objective function: 

We describe methods for choosing ,/3 > 0 to achieve a desired 
resolution in [22]. Our goal is to estimate ,U by maximizing 
+(p) subject to the nonnegativity constraint: 

f i  = arg max +(p).  
fm 

In the remainder of this section we discuss iterative algorithms 
for performing this maximization. 

B. Concavity and Convergence 

The second partials of the log-likelihood (2 )  are 
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Therefore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ( p )  is concave if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for all n [18]. However, 
if T, # 0 then L ( p )  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnor globally concave, so it is difficult 
to establish global convergence for any algorithms. Previous 
global convergence proofs for transmission algorithms have 
relied heavily on the use of concavity [l], [17], [18], [23]. 
From (6) one sees that L ( p )  is locally concave over the 
set { p :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj j i (p )  2 ynrn V n } .  Fortunately, in PET and SPECT 
the T, factors are fairly small, and since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyn FZ gn(@) and 
y n ( p )  > T,, we will usually operate in or near the concave 
region of L(p) .  All of the algorithms given below should have 
local convergence, which may be adequate since in practice 
one can initialize the iteration with a FBP image which is 
usually fairly close to the maximum. Nevertheless, further 
investigation of the convergence properties is needed for the 
case T,  # 0. 

- 

C. Cyclic Coordinate Ascent Algorithm 

Cyclic coordinate-ascent is a particularly simple approach 
to maximizing an objective function: simply update the pa- 
rameters one by one while holding the others fixed, always 
using the most recent value for each parameter. This method 
is inherently sequential, and is more suited to conventional 
serial workstations than to fine-grain or mesh parallel com- 
puters. Although this approach may have poor repute in the 
optimization literature (e.g., [24, p, 310]), Sauer and Bouman 
have shown that it is remarkably effective for tomography 
[ 131-[ 151. Advantages of coordinate-ascent methods include: 
fast convergence for high spatial frequencies, easily enforced 
nonnegativity constraints, and decoupled parameter updates 
even when using smoothing penalties. In [25] we extended 
the analysis of [13] to show that under-relaxarion can further 
improve the convergence rates of coordinate-ascent methods, 
so here we present the under-relaxed version. 

Unfortunately, for transmission tomography there is no 
analytical closed form for the exact maximizer of @ over pj 

even when holding the other parameters fixed, so one must 
resort to approximate methods. If the penalty is quadratic, we 
apply one iteration of a 1-D Newton's method with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan under- 
relaxation parameter, i.e., we cyclically update the parameters 
using the following iteration: 

where w E (0, 11 is a relaxation parameter, and [XI+ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
if x > 0 and is 0 otherwise. One iteration of this algorithm 
updates all parameters in some order; we alternate between 
four raster scan orders to improve the convergence rate [13]. 
The updates are done "in place," always using the most recent 
estimate of p j .  For nonquadratic penalties, we use the efficient 
1-D line-search method of Bouman and Sauer [14], [15]. 

Since @ is not quadratic, (7) does not guarantee mono- 
tonic increases in @. If p* satisfies the Karush-Kuhn-Tucker 

conditions for (3, i.e. 

and if @ is strictly concave in a neighborhood of p*, then ,U* 

is a fixed point of (7), and using continuity one can prove 
local convergence of the iteration (7) to p*. For reasons of 
convergence rate [25]-[27], we usually use w = 0.6. This 
under-relaxation improves the odds that (7) will yield an 
increase in @. With w = 0.6 we have never observed a 
decrease in @ over a full iteration, although we have observed 
small decreases with w = 1. Fortuitously, using w < 1 not 
only improves the convergence rate, it appears to improve the 
monotonicity as well. 

For the objective function (4), one can show that 

where 

and where $(x) = (d/dx)$(x) and $(x) = (d2/dx2)$(x). 
Substituting these formulas into (7) yields the cyclic 
coordinate-ascent algorithm. To minimize the computation 
in calculating (8) and (9) we maintain the current state [13] 
of the line-integrals during the iterations, i.e., after updating 
pixel j: 

zn(pnew) := Zn(pO'd)  + U n j ( p y  - p y ) ,  vn: a,j # 0. 

D. Convex Algorithm 

De Pierro [28], [29] has analyzed the emission EM algo- 
rithm using convexity, and Lange [l], [16] has adapted De 
Pierro's method to the transmission problem. Here we extend 
[ l ]  slightly to include nonzero background events ( T ~  > 0). 

Since the measurements are independent, the log-likelihood 
separates into a sum of N terms: 

L ( P )  = hn [L(P)l (10) 
n 

where from (1) and (2) 

hn(z) = yn log (b,e-' + rn)  - (b,e-' + rn). 
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If we define 

then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhn(.)  is strictly concave on the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-00, 1,"""). 
Following [I], if pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0 then the inequality 

holds for any p in the set': 

P '  
LP% = { p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0: + & L a )  5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,""", v j ,  n}.  

p j  

As shown by De Pierro [281, 1291, a similar decomposition 
applies to P(p) .  If 4 is convex, then 

' )  
2 p j  - pLf - pi  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2kLk + -t pi  

2 
..( 2 + 

rC y 
j kEAr ,  

. [ 4 ( 2 P j  - - P i )  + 4( -2Pk  + cl; + Cli)] 
= P*(p; p 2 )  

@*(p;  ~ 2 )  = &*(pi p i )  - PP*(P; /li) 

@ ( p )  - @(pi) 2 @*(p;  pi )  - @*(pi; p i ) .  

4 

holds for any p. Thus if we define 

(1 1) 

then one can show [l], [28], [29] that for p E Lpt :  

(12) 

Therefore, if we choose p2+l to maximize (a*(.; pi), then 
if pi+ l  E .CP, we ensure monotonic increases in a. If 
rn # 0,  then the inequality in (1 2) does not necessarily hold 
globally, and monotonicity is not guaranteed intrinsically. Our 
implementation always checks (12) to ensure monotonicity, 
and even with as much as 10% background events we have 
never observed a violation of (12) when the algorithm is 
initialized with a FBP image. As discussed in Section 11-B, 
apparently, one usually operates in the concave part L,,, of 

Unlike @ ( p ) ,  the function @*(pi p ' )  is separable in p j ,  so 
we can find the pi+1 that maximizes a*(.; pi) easily using p 
separate 1-D maximizations, which is ideal for parallel proces- 
sors. Again there is no analytical form for this maximization, 

Q*b; r12h 

*Note that in the simple case where r?, = 0, then ,Fax = x and L!,, is 
the entire nonnegative orthant. 

so as in [ l ]  we apply one step of Newton's method to each 
parameter. The partials of Q* and P* are 

(see (8)), where we precompute the terms 

prior to computing the sums in (13). Combine the above 
partials with (1 1) to yield the iteration: 

a 

7 

- @*(p* ;  P 2 )  
p;+1= max pi +wa ''1 

-- a*($; pZ) 
acl; 

a 

(14) 
where E' --f 0 as i --+ 00, and where w2 is chosen to 
assure monotonicity by starting with wa = 1 and then if 
necessary repeatedly halving it until @(pz+' )  > @ ( p Z ) .  The 
key difference between (7) and (14) is that the latter uses 
a simultaneous update, and as such it is more amenable to 
parallel implementations (although the step of choosing w' to 
ensure monotonicity may not parallelize easily). 

E. Other Algorithms 

The EM algorithm [l], [18], [19], [30], and the gradient 
algorithm of Lange [l], [17], [23] are two dtemative algo- 
rithms for penalized maximum likelihood. The straightforward 
extensions of these algorithms to include nonzero background 
events are described in [31]. 

[ 
3 = 1, . " , p  

111. CONVERGENCE RATE SIMULATIONS 

This section describes some representative simulations that 
demonstrate that the coordinate ascent algorithm converges 
faster than the convex algorithm, as well as the alternative 
algorithms described in [l]. For p we used the synthetic 
attenuation map shown in Fig. 2, which represents a hu- 
man thorax with linear attenuation coefficients O.O165/mm, 
0.0096/mm, and 0.0025/mm, for bone, soft tissue, and lungs, 
respectively. The image was a 128 by 64 array of 4.5 mm 
pixels. We simulated a PET transmission scan with 192 radial 
bins and 256 angles uniformly spaced over 180*. The anJ 
factors correspond to 6 mm wide strip integrals on 3 mm 
center-to-center spacing. (This is an approximation to the 
ideal line integral that accounts for finite detector width.) 
The b, factors were generated using pseudo-random log- 
normal variates with a standard deviation of 0.3 to account for 
detector efficiency variations, and scaled so that En Ljn was 
one million counts. The r, factors corresponded to a uniform 
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Fig. 2. From top to bottom: digital thorax phantom, typical filtered back- 
projection reconstructed image, result of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 coordinate ascent iterations for 

the penalized likelihood objective, result of 10 coordinate ascent iterations for 
the hybrid objective with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA? b  = 50. The bottom two images 

are visually indistinguishable because the hybrid objective is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan accurate 
approximation to the log-likelihood. 

field of 10% random coincidences. Pseudo-random Poisson 
transmission measurements were generated according to (1). 
The image shown in Fig. 2 was reconstructed using FBP with 
a second order Butterworth filter at a resolution of 2.5 pixels or 

1.125 cm full-width half-maximum (FWHM). This FBP image 
was used to initialize the iterative algorithms, after setting all 
negative pixels to zero. For the iterative methods, we used the 
function d(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2/2 for the penalty in (3). 

Fig. 3 compares the rates of convergence for the coordinate 
ascent algorithm with and without under-relaxation. These 
typical results confirm that under-relaxation accelerates con- 
vergence for the transmission problem just as it does in the 
emission case. 

Fig. 4 shows a plot of the objective increase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(p*) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@ ( p O )  versus iteration i for the penalized maximum likelihood 
algorithms. The computation time per iteration varies between 
algorithms, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso a more objective comparison is shown in 
Fig. 5, in which the abscissa is CPU time as measured on 

Acceleration by Under-relaxation 

2000 

I 0 Coordinate Ascent (0.6) 
+ Coordinate Ascent (1.0) I 

initialized with FBP Image, 10% randoms 1 
I 

2 4 6 6 10 12 
iteration 

Fig. 3. Plots of the objective +(pi) - + ( P O )  versus iteration for the 
coordinate ascent algorithm with w = 0.6 and (J = 1.0. Underrelaxation 
accelerates the convergence rate of coordinate ascent. 

Penalized Maximum Likelihood Algorithm 

25w1 

+ Convex Algorithm 

X Gradient Algorithm 
36 EMAigorlthm 

initialized with FBP image, 10% randoma 

0 5 10 15 20 
iteration 

Fig. 4. Plots of the objective @(pt) - @ ( P O )  versus iteration for the 

penalized likelihood algorithms described in the text. The coordinate ascent 
algorithm converges fastest. 

a DEC 3000/800. The coordinate ascent algorithm effectively 
converges (i.e., @(pi) reaches 99.9% of its peak value) in 
less than 10 iterations, whereas the other algorithms require 
many more iterations. From Fig. 5 ,  one sees that it may be 
advantageous to run two or three iterations of the convex 
algorithm and then switch to coordinate ascent. 

PART 2: HYBRID OBJECTIVES 

IV. POLYNOMIAL APPROXIMATIONS 

The results given above demonstrate that the under-relaxed 
coordinate-ascent method for transmission tomography con- 
verges faster than the alternative algorithms, in terms of both 
number of iterations and CPU time. Since the coordinate- 
ascent algorithm usually converges in seven to ten iterations, 
it will be challenging to further reduce the number of it- 
erations. However, it would be desirable to further reduce 
the computation per iteration, in light of the complexity 
of (8)+9). One could reduce computation by replacing the 
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Fig. 5. Plots of the objective zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( p l )  - @ ( P O )  versus CPU seconds (DEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3000/800) for the penalized likelihood algorithms described in the text. The 

coordinate ascent algorithm converges fastest despite using more CPU time 
per iteration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
log-likelihood with its quadratic approximation [ 131-[ 151, 
which simplifies the calculations corresponding to (8)-(9). 
As shown in Appendix A, the quadratic approximation leads 
to systematic negative bias. However, the bias decreases as 
the number of counts increase. Therefore, in this section we 
propose a hybrid Poissodpolynomial objective function in 
which we replace only the marginal log-likelihood terms for 
the high-count measurements with polynomial approximations, 
whereas for the low-count measurements we retain the exact 
log-likelihood. As we show in Section V, this approximation 
significantly reduces computation with negligible bias. 

The quadratic approximation of Sauer and Bouman 
[ 131-[ 151 disregarded the effects of nonzero background 
events, so we begin by extending their expansion slightly 
to accommodate r, > 0. Since the Poisson measurements 
are independent, the log-likelihood separates into a sum of 
N terms: 

n 

where h?)(E) = (ai /~Zi)hn(I)  and 
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Now consider a measurement for which y,, > rn, and define 
the following method-of-moments estimate of the line integral 
of attenuation I ,  : 

in = log (--) bn 
Y n  - rn 

This estimate satisfies the equality gn( in )  = yn. Substituting 
into (17)+18) yields 

h?)(in) = o  

Substituting into (16) thus shows that the nth term in (15) is 
approximately: 

A. Purely Quadratic Approximation 

Since the first term in (21) is independent of I, we can 
disregard it, and then substituting into (15) and dropping the 
cubic term yields the following objective function, which 
is based on a purely quadratic approximation to the log- 
likelihood: 

We refer to the attenuation map obtained by maximizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaq ( p )  
over p 2 0 as the penalized weighted least-squares (PWLS) 
estimate. As shown in Appendix A, this type of estimator is 
biased. 

B. Polynomial Approximation 

To remedy this bias problem, consider the following hybrid 
objective function. First pick two count thresholds Yb 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ya 2 
0 and split the measurements into three groups: 

Note that NLUNMUNH = { I ,  2, . “ ,  N}. For n E NH 
(high count measurements) we use the quadratic approxima- 
tion to hn(l). For n E NM (medium count measurements) 
we use the cubic approximation to hn(E). For n E N L  (low 
count measurements) we retain the original log-likelihood term 
hn( I). This leads to the following hybrid Poissodpolynomial 
objective function: 
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% Std. Dev. 1 
I Soft Tissue Bias 
% Luna Tissue Biar, 

where 

FBP PML Hybrid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(.r.,7b) PWLS 

12.0 6.85 6.87 7.14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.32 
4.5 -0.2 0.2 -0.3 -3.2 -5.8 
3.0 0.5 0.7 0.9 0.3 -4.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5,50) (5,20) (5,5) 

This hybrid objective function includes the penalized like- 
lihood objective as a special case by choosing = ' yb  = 
x. If one chooses = y b  = 0, then one obtains the 
penalized weighted least-squares objective (22) ,  unless there 
are any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn such that !in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,. In that case, unlike the purely 
quadratic approximation given by (22), which disregards any 
measurements such that y n  5 T,, the hybrid objective function 
retains the log-likelihood corresponding to those terms, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ya 2 0. By varying ya and ~ b ,  one can compromise between 
computation time and strict faithfulness to the log-likelihood. 

One could imagine a variety of algorithms for maximizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@ h ( p )  subject to the constraint 11 2 0. Based on the results 
above and in [ 131, [25] ,  we again use the under-relaxed cyclic 
coordinate-ascent algorithm given by (7), except here applied 
to @ ~ ( I L ) .  From (7) one sees that we need expressions for the 
partial derivatives of @ h ( p ) .  The first and second partials of 
L L ( ~ L )  are given by the corresponding terms of the sums in 
(8)-(9). The partials of L v ( / L )  are 

% Bone Tinsue Bias 2.6 -0.7 0.0 -0.3 -4.6 -8.3 

. CPU-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASeconds 1.6 136 50 47 23 
CPU-2 Seconds 119 46 44 38 

% NL 100 5 5 5 0 

I NM 0 50 25 0 

and the partials of LH( /L)  are 

Prior to iterating, we precompute the U, and t ,  terms, a5 
well as the n,2Jun terms, all of which are independent of 
11. The computational savings result both from this precom- 
putation as well as from the fact that the above derivatives 
require no exponentials. 

Combining (23) with the above expressions for the partial 
derivatives yields all of the terms necessary to perform the 
coordinate ascent update given by (7). The complete mathe- 
matical expression is more daunting than the actual software 
implementation, which is fairly straightforward if one has 
already implemented coordinate ascent iterations for either the 
pure penalized likelihood or penalized least-squares objectives. 

Convergence of the coordinate ascent algorithm has the 
same caveats described in Section 11. However, if ya = 2 b  = 0 
and the potential function (,h is quadratic, then the entire 
objective function is quadratic if y,, > T,, ' in. In this special 
case the coordinate ascent algorithm is guaranteed to converge 
monotonically to the unique global maximum [25]. 
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C. Denominator Approximation 

The denominator of the coordinate ascent algorithm (7) 
using Newton's method is usually taken to be the second 
partial derivative of the objective function ( a 2 / 8 p ; ) @ ( p 7 ) .  
There is no guarantee that Newton's method will ensure 
monotone increases in @, but again, underrelaxation seems to 
help both convergence rate and monotonicity. Therefore it is 
natural to ask: is it really worth computing the second partials 
given by (9) and (24), or would the quadratic approximation 
(25) (summed over all n) suffice? 

We have implemented a modified hybrid coordinate ascent 
algorithm in which we use the proper first partial derivatives 
in the numerator of (7), but we replace the denominator with 
the quadratic approximation (25).  The resulting estimates after 
10 iterations differed by less than 0.1%, which is negligible 
relative to the noise. 

The CPU times for 10 iterations of the various algorithms 
are given in Table I .  Using the precomputed quadratic approxi- 
mation in the denominator of (7) reduces CPU time by 5-15% 
for the case described in Section 111. 

V. PERFORMANCE SIMULATIONS 

To study the bias properties of the estimators described 
above, we performed additional simulations using the thorax 
phantom and PET system described in Section 111. In this 
case we generated 50 independent realizations of the trans- 
mission measurements. For each measurement realization, we 
reconstructed an estimate of the attenuation map using 10 
iterations of the coordinate ascent algorithms applied to the 
following objective functions: penalized likelihood (4), penal- 
ized weighted least squares (22) ,  and the hybrid objective (23) 
with Y~ = 5 and Yh = 50. (We chose these values based on the 
results in Fig. 1, which suggest that the cubic approximation 
is reasonable above 5 counts, and the quadratic approximation 
is reasonable above 50 counts.) We also reconstructed each 
realization using the FBP method with the filter described in 
Section 111, and we used those FBP reconstructed images to 
initialize the iterative algorithms in all cases. 

Fig. 6 displays the sample mean and sample standard de- 
viation images of the four methods. The sample means are 
visually very similar, since we have chosen [-l to match 
resolution [ 22 ] .  The standard deviation of the FBP images 



1446 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO IO, OCTOBER 1995 

Fig. 6. 
likelihood, penalized weighted least squares, and hybrid objective with 

Mean (left) and standard deviation (right) images from reconstructions computed from 50 realizations. From top to bottom: FBP method, penalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1~ = 50. 

is fairly uniform, whereas those of the iterative methods look 
like a blurred version of the object in Fig. 2, i.e., the noise is 
spatially variant. 

The gray scale in Fig. 6 does not reveal the bias properties, 
so Fig. 7 shows part of a horizontal profile through the sample 
mean images. This profile shows that FBP is positively biased 
and PWLS is negatively biased zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeven in a large uniform region. 
Table I shows average percent bias in several rectangular 
regions. The bias of penalized likelihood and the hybrid 
method are negligible, whereas the bias of FI3P and PWLS 
are significant. 

In addition to reduced bias, the other benefit of statistical 
methods is an improved tradeoff between resolution and 
noise. To measure resolution, we created another object by 
adding several small point sources to the object in Fig. 2. We 
repeated the process described above for generating Poisson 
measurements, and reconstructed 50 realizations of this new 
object for each of the algorithms. Subtracting the sample 
means of the two cases (with and without the point sources) 
yields an image consisting only of the blurred point sources. 

We averaged those point sources together to further reduce 
noise, and then computed the FWHM spread of the point 
sources using linear interpolation. This process was repeated 
for four values of /? for the iterative methods and for four 
cutoff frequencies for the FBP method. Fig. 8 shows a plot of 
resolution versus noise standard deviation for the four meth- 
ods. At any resolution over the range studied, the statistical 
methods show significantly smaller error standard deviations 
than the FBP method. Furthermore, the penalized likelihood 
method and the hybrid method were again indistinguishable, 
whereas the PWLS method showed a slightly higher noise 
variance for finer resolution images. 

As shown in Table I, we also reconstructed images using 
the hybrid algorithm with smaller values for and ~ b .  These 
choices yielded quantitative differences between the hybrid 
reconstructed images and the penalized likelihood images, with 
the former having either slightly higher variances or higher 
biases. Therefore for this data we prefer the higher value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tb = 50 since the additional computation (over 7 6  = 20) 
is small. Of course one will want to adjust this tradeoff 
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Profile through means from 50 realizations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Hybrid 

80 85 90 95 100 105 110 115 
Pixel 

Fig. 7. Horizontal profile through the sample mean images shown in Fig. 6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The FBP method has a systematic positive bias and the penalized weighted 
least squares (PWLS) objective has a systematic negative bias. The penalized 

maximum likelihood (PML) and hybrid estimators perform comparably with 
negligible bias. 

between computation and bias and variance for different types 
of transmission studies (based on total counts, etc.j. 

VI. DISCUSSION 

In Part 1 of this paper, we compared several algorithms 
for maximizing penalized-likelihood objective functions for 
transmission tomography. The coordinate ascent algorithm 
converged faster than three alternatives, which is consistent 
with previous work in emission tomography. Another al- 
temative algorithm is the preconditioned conjugate gradient 
method developed by Mumcuoglu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1321, 1331. We have 
not implemented this method because it is more complicated 
due to the barrier functions that are needed to enforce the 
nonnegativity constraint. Sauer and Bouman found coordinate 
ascent to converge faster than conjugate gradient for emission 
tomography zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131, although without using preconditioning. 
Except for the inconvenience of the nonnegativity constraint, 
conjugate gradients should be a natural algorithm to apply 
to the hybrid objective function since part of that objective 
is quadratic. For a meaningful comparison of coordinate 
ascent and preconditioned conjugate gradient for transmission 
tomography, the methods should be compared on the same 
data with the same convergence criteria. 

In the second part of the paper we abandoned the pure 
log-likelihood in favor of partial approximations to it that 
reduce computation. We demonstrated that the purely quadratic 
approximation leads to systematic negative bias for low count 
PET transmission scans. By using a hybrid Poissodpolynomial 
objective we obtained reconstruction accuracy indistinguish- 
able from penalized maximum likelihood, but with a factor 
of two less computing time. A statistical comparison of 
the resolutiodnoise tradeoffs demonstrated that all of the 
statistical methods improve signal to noise ratio relative to 
FBP. 

Based on our experience, for serial workstations we recom- 
mend using the coordinate ascent algorithm for transmission 

Profile through means from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 realizations 

I '  I 

Fig. 8. Resolution versus noise for the various reconstruction algorithms. 
The FBP method has significantly greater noise than the statistical methods. 
For finer resolutions, the PWLS estimates are slightly noisier than the PML 

estimates. The performance of the hybrid objective with ? A  = 5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYB = 50 
is indistinguishable from penalized likelihood. 

tomography with the hybrid objective function. For parallel 
processors the convex algorithm or conjugate gradients are 
probably preferable, and could easily be generalized to apply 
to the hybrid objective function. 

APPENDLX A 
BIAS 

In this appendix, we analyze the bias and variance of several 
nonlinear estimators in the context of a scalar simplification 
of the transmission tomography measurement model. This 
analysis gives insight into the origin of the negative bias of the 
weighted least-squares estimator, the positive bias of the FBP 
method, and the near-unbiasedness of maximum likelihood or 
its cubic approximation. 

Assume we have independent Poisson measurements Y = 
[Yl, . ' .  3 Y N ] :  

Y, - Poisson {b,e-') (26) 

where 0 is an unknown parameter and b, are known con- 
stants. We would like to estimate 0 from {Yn}E1. Since 
there is only one unknown parameter 0, this represents a 
scalar simplification of the transmission tomography problem. 
Nevertheless, this problem retains the nonlinearity associated 
with the exponential operation. 

The log-likelihood for this problem is 

L(0) = Y, log(b,e-') - b,e-'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 

By zeroing the derivative of I,(.), one can easily show that 
the maximum likelihood estimate of 0 is 
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The quadratic approximation to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL( . )  (cf. (22)) is 

By zeroing the derivative of this approximation, one obtains 
the weighted least squares (LS) estimate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH :  

( l l ~ l ; , > o )  

The cubic approximation to L( . )  (cf. (21)) is 

By zeroing the derivative of this approximation, one finds that 
the weighted cubic (WC) estimate of H satisfies the following 
quadratic expression: 

from which one can find an expression of the form 0n.c = 
C (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) by using the quadratic formula. 

For comparison purposes, we also analyze the following 
unweighted average estimator: 

{ n :  > O }  

This estimator is analogous to FBP since all nonzero measure- 
ments are treated equally (no weighting). 

Since the above estimators are nonlinear, it would be diff- 
cult to exactly compute their bias or variance. Therefore we use 
a second-order Taylor expansion. If g(Y)  = g(Y1, . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 : ~ )  
is an arbitrary functional, and TTi = bT,o-' denotes the mean 
of Yn, then 

Under the assumption that I;, . . , x v  are independent, one 
can use the Taylor expansion to show 

Let C = (1,") E,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY,, = ( l / N )  ET, bTic-' denote the 

For the ML estimate, from (27) gh4~(Y) = 0 and 
mean number of counts per measurement. 

Substituting into (31) and (32), we obtain 

For the LS estimator, from (28), ,91,s(y) = 8 ,  and 

Substituting into (31) and (32), we obtain 

1 1 

2C N C  (35) E{ljLS} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz o  - - + ~ 

1 
var (4,s)  " E' (36) 

For the WC estimator, from (29) ,9~.c(T) = 0 and 

Substituting into (31) and (32), we obtain 

Note that these two approximations are identical to the expres- 
sions (33) and (34) for the ML estimate! 

For the UA estimator, from (30) gu;\(Y) = H and 

1 a - 

~ q U A ( Y )  =-- dY7, ' Nh, c-' 

Substituting into (31) and (32), we obtain 

(39) 

Since the function 1 / ~  is convex, (1 /N)  E,, ( 1 / h T i )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
[ ( l /N) En h , ] - ' ,  with equality if and only if the h,, are 
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all equal. Thus we have the following lower bounds for the 
bias and variance of OL-,A.: 

(41) 

(42) 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E{Bu..\} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ - 

2c 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N c va r  {&-.A} 2 -. 

For PET systems, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,, terms are never equal, and in fact 
can be quite disparate. Thus the lower bound in (42) will 
not be achieved. This partially explains why FBP images are 
noisier than images reconstructed by the statistical methods 
(cf. Fig. 6). 

Fig. 1 shows plots of the bias terms (33) ,  (35). (37), and 
(41) versus mean counts C.  for a system with N = ’LO. From 
these equations and the figure, we see that the maximum 
likelihood estimator and the weighted cubic estimator are 
nearly unbiased. the weighted least squares estimator has a 
systematic negative bias, and the unweighted average estimator 
has a systematic positive bias. The solid lines in the figures 
are the formulas. whereas the symbols denote empirical results 
from 500 realizations of (26) and (27)-(30). These results 
demonstrate that the systematic biases of PWLS and FBP 
shown in Fig. 7 are not simply artifacts of that simulation. 
but are intrinsic to those methods. 

The source of the significant negative bias for 81,s can be 
seen in (28). That expression is a weighted sum, weighted 
by the noisy measurement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;) .  If Yfj is larger than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI’,,, then 
Iog(b,,/Y,,) will be smaller than 0. but the corresponding 
weight in the summation is larger. Thus the sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgives more 
weight to the under-estimated terms, leading to the negative 
bias in (35) .  In contrast. the ML estimate first averages 
the counts before taking the logarithm (27). which leads to 
negligible bias, as seen in Fig. 1. 

Although this problem is a scalar simplification of trans- 
mission tomography, the basic conclusion, that the under- 
estimated log ratios are weighted disproportionately, applies 
to the general problem as well. 

APPENDIX B 
SMOOTHNESS PENALTIES 

This appendix synopsizes our method 1221. 1341 for spec- 
ifying the u : . , ~ .  factors in (3). With U,, defined as in (20), 
define 

U?,, /if, 

1 j 
r ,  

!/,/ = . ,j = I .  ’ . . .  p.  

I )  

One can show that U, ,  is an estimate of the inverse the variance 
of if, defined in (I 9), and if these variances li,rl were all equal, 
then ,q, would be a constant independent of , j .  In general 
however, g,] will depend on . j .  Define 

1. if ,j and k are horizontal neighbors 

,? , I ; ,  = . if j and k are diagonal neighbors 

0. otherwise 

and 

I / ’ ] , +  = ! 1 ( k  m. 

This modified choice for ’wjk provides approximately spatially- 
invariant image resolution and also allows one to relate the 
smoothing parameter p directly to image resolution [ 22 ] ,  [34]. 
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