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Abstract Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to

their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations

over the use of natural materials derived from animals or cadavers, including the potential immunogenicity,

pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore,

there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for

highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such

as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to

incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties

of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid

polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and

electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
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Introduction

The extracellular matrix (ECM) of native tissues is

composed of a hybrid polymer nanostructure at the

molecular level, organized with different biopolymers

and nanocrystallites [1]. Due to their hybrid and well-

organized structure, both hard and soft native tissues

demonstrate excellent physicochemical properties includ-

ing viscoelasticity and strength. They also demonstrate

excellent biological activity including cellular biocompat-

ibility and tissue-inductive ability [2]. Development of new

biodegradable biomaterials by mimicking the physico-

chemical properties and biological activity has therefore

gained increasing attention in recent years [3]. Biomimetic

polymer hybrid biomaterials play an important role

because they can be synthesized with highly tailored

physicochemical properties and bioactivity, through com-

bining different polymers and inorganic phases at the

multiple levels [4]. In past decades, biodegradable natural-

based polymers (collagen, silk, alginate, chitosan, hya-

luronic acid) and synthetic polymers (poly(lactic acid):

PLA, poly(glycolic acid):PGA, poly(lactic-co-glycolide):

PLGA, Poly(e-caprolactone):PCL, Polyhydroxyalkano-

ates: PHA) have been widely studied and their promising

biomedical applications are also well demonstrated [5–8].

These polymers have been hybridized in many forms

including 3D scaffolds, hydrogels, microspheres, and their

composites [9–14]. Hybrid hydrogel-microsphere poly-

mers with osteoconductive properties have also been

synthesized [15–17].

In addition to the hybrid structure, osteocondutive

property and electroactive ability are also very important

for the application of hybrid polymers to regenerate bone

[18]. Regeneration of bone can be accomplished by a

combination of osteoinductive materials, regenerative cells

and osteogenic growth factors. Local and long-term

treatment with bone morphogenetic protein 7 (BMP-7)

was accomplished by encapsulation of bioactive protein in

PLGA microspheres. In combination with a nanofibrous

and porous scaffold, treatment with BMP-7 significantly

enhanced in vitro osteogenic differentiation and in vivo

bone regeneration [19].

Pure biomedical polymers such as those listed above

cannot mimic the mechanical properties of native tissues
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especially the strength, elasticity and modulus, due to

intrinsic shortcomings. Nevertheless, they provide certain

advantages. It is possible to use these polymers to design

precise micro and nanoscale environments that are

beneficial for cell attachment, proliferation and differentia-

tion. They can also be tailored for tunable drug delivery.

Because of these advantages, they are being developed

widely for tissue regeneration. To improve their mechan-

ical and osteogenic properties, bioactive ceramic-based

nanophases (bioactive glass and calcium phosphate) and

various polymers (natural and synthetic polymers) have

been hybridized [20–27]. To induce elastomeric behavior,

highly elastomeric hybrid polymers were also synthesized

through incorporating inorganic phase into biodegradable

elastomers [28]. In particular, siloxane-based biodegrad-

able hybrid polymer elastomers were developed with

significantly enhanced mechanical properties and biocom-

patibility [29–31]. In recent years, electric stimulation has

been shown to exhibit a positive effect on tissue

regeneration through enhancing cell proliferation and

differentiation [32]. Therefore, conductive components

such as carbon-based materials and polymer semiconduc-

tors were added to fabricate electroactive hybrid polymer

biomaterials for tissue regeneration applications [33].

This work reviews the design, fabrication, and properties

of biodegradable hybrid polymers with a focus on their

osteoconductive functions, elastomeric property, and

electroactivity. The prospective application of hybrid

materials for bone tissue regeneration is also covered in

this review.

Synthesis and properties of hybrid
polymers

Osteoconductive hybrid polymers

Osteoconductive hybrid polymer biomaterials can be

fabricated by incorporating osteoconductive materials

into biodegradable polymers. Biodegradable polymers

typically have low elastic modulus and poor osteoconduc-

tive activity [34]. Bioactive inorganic biomaterials includ-

ing bioactive glass (BG) and calcium phosphate (CP) have

high conductive activity and bone-bonding ability, and

their enhanced potential for bone regeneration have been

well described in the literature [35–39]. Therefore, BG and

CP-based nanoparticles have been added into various

polymers to fabricate osteoconductive hybrid polymers for

bone tissue regeneration [40–43]. CP-based polymer

hybrid biomaterials have been fabricated successfully by

melting, solvent-casting and in situ precipitation [44].

Most reports showed that addition of low content-CP-

based nanoparticles can efficiently improve the mechanical

strength and modulus of polymers and improve osteocon-

ductive bioactivity [44]. Bioactive glass nanoparticles

(BGN) have an amorphous structure and typical chemical

composition of SiO2-CaO-P2O5 that enable the controlled

biodegradation and high bone-bonding activity for in vivo

implanting applications [45]. By the facile solvent-casting

method, BGNs with different morphology and size were

added into various polymers including gelatin, chitosan,

PLA, PCL, PLGA [41,46–48]. These hybrid BGN-

polymers significantly enhanced compressive strength,

tensile strength, elastic modulus, biominerialization, and

osteoblast biocompatibility (Fig. 1). Although BGN-

polymer nanocomposites have been developed well in

past years, the nanoparticle-based polymer composites still

showed uncontrolled biodegradation and mechanical

properties in vivo due to the low interface strength between

nanoparticles and polymers. These are known challenges

associated with certain BGN-polymer nanocomposites.

Advances have been made in hybrid polymer materials

to maintain controlled degradation and mechanical proper-

ties while also enhancing in vitro osteoconductive activity

[49]. Gelatin-apatite hybrid nanofibrous scaffolds fabri-

cated by thermally induced phase separation were

Fig. 1 Bioactive glass particles reinforced PCL osteoconductive hybrid polymers. Reproduced from Ref. [41] with permission.
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evaluated for biominerialization in simulated body fluid

(SBF) [49]. The gelatin-apatite hybrid scaffolds demon-

strated significantly enhanced mechanical strength and

enhanced expression of osteogenic genes in cells.

Additionally, the hybrid scaffold was coated with biolo-

gical apatite nanocrystals through an electrochemical

deposition technology (Fig. 2) [50]. The apatite layer

thickness could be tailored efficiently by the electroche-

mical parameters. The deposited hybrid polymer scaffolds

also showed enhanced physiochemical properties and

osteoconductive activity.

Agglomeration of BGNs within the polymer matrix is a

challenge associated with hybrid polymers, as these

materials may exhibit unfavorable mechanical and phy-

siochemical properties [43]. To overcome this limitation,

silica-based bioactive glass sol (SBGS) at the molecular

level has been used to develop hybrid polymer biomater-

ials for applications in tissue regeneration. For example,

SBGS-reinforced gelatin, chitosan, polyethylene glycol

(PEG) and PCL hybrid polymers have been fabricated

successfully through one-step hybridization process [51–

57]. SBGS reinforced hybrid polymers showed signifi-

cantly improved mechanical properties including strength,

toughness, controlled biodegradation and biominerializa-

tion, as well as high osteoblastic activity. The SBGS-

reinforced gelatin hybrid polymer was synthesized through

typical sol-gel process, and the interface strength between

organic and inorganic phase was controlled by siloxane

coupling agents (Fig. 3). The resulting SBGS-gelatin

hybrid showed strong compressive strength, mimicking

native bone tissue and providing evidence for its potential

application in bone fixation and repair [51]. SBGS-based

gelatin hybrid scaffolds and nanofibrous scaffolds were

fabricated through alkaline treatment technology and

thermal-induced phase separation (Figs. 4–6). Signifi-

cantly improved mechanical properties and biocompat-

ibility of SBGS-gelatin hybrids were observed

[41,43,51,58–60]. The SBGS-based hybrid polymer bio-

materials have shown promise for bone tissue regeneration.

Additional advances have been reported in the use of

carbon biomaterial-polymer hybrids as osteoconductive

scaffolds for bone regeneration. Carbon nanomaterials are

often synthesized as single sheets, referred to as graphene,

or hollow structures referred to as carbon nanotubes

(CNTs). CNTs can be single-walled or multi-walled,

consisting of concentric tubular layers of graphene. One

study compared CNT-PLLA scaffolds with graphene-

PLLA scaffolds and reported that both carbon nanomater-

ial hybrids enhanced in vivo bone regeneration but

graphene-PLLA scaffolds showed more osteoconductive

capacity than CNT-PLLA scaffolds [61]. Polymeric

scaffolds reinforced with ultrashort (US)-single walled

CNTs enhanced both ectopic and in situ bone regeneration

in rabbit subcutaneous and femoral condyle models [62].

Adsorption of ampiphilic comb-like polymer (APCLP) to

CNTs allowed for more homogenous integration of carbon

nanotubes into a bacterial cellulose (BC) scaffold [63]. In a

mouse calvarial defect model, this hybrid CNT-BC

scaffold improved bone formation and expression of

osteocalcin. Vertically aligned CNTs combined with

hydroxyapatite were made to be superhydrophilic and

subsequently dispersed in poly (D, L, lactic acid)

(PDLLA). The resulting hybrid scaffold showed suitable

mineralization and cytocompatibility in vitro and demon-

strated enhanced in vivo bone regeneration capacity in a rat

calvarial defect model [64]. In addition to increasing

Fig. 2 Schematic illustration of a hypothesized mechanism for the growth of calcium phosphate crystals over time. When a deposition voltage is

applied, pH in the vicinity of electrode increases, and some calcium phosphate crystals deposited onto the surface of PLLA nanofibers. Further

increase of deposition time leads to the generation of hydrogen bubbles and larger flower-like crystals. Reproduced from Ref. [50] with permission.
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hydrophilicity, functionalization of CNT-polymer hybrids

may improve mechanical characteristics and cytocompat-

ibility of scaffolds and was reported to enhance in vitro and

in vivo bone regeneration [65–67].

Elastomeric hybrid polymers

Many tissues in the body possess elastomeric properties.

Therefore, the development of biomaterials that demon-

strate highly elastomeric behavior has garnered much

attention. Elastomeric materials are of particular interest

because of their biomimetic mechanical properties, which

enable their use in the complicated in vivo load environ-

ment [69]. Current biodegradable elastomers include

physically crosslinked polymers such as polyurethanes

and polyesters, chemically crosslinked polymers such as

poly(glycerol sebacate) (PGS) and poly(citrate diol) (PCD)

[70]. These biodegradable elastomers have shown highly

tunable degradation, moderate biocompatibility and

good elastomeric mechanical behavior [70]. They have

Fig. 3 Formation mechanism of the biomimetic siloxane-gelatin (SGT) hybrid bone implants. (A–C) Molecular structure and composition of gelatin

(GT) (A), siloxane (GS), silicate bioactive glass sol (S); (D–F) GT (D) polymer matrix was cross-linked by GS (E), and then hybridized with the SBG

sol at the molecular and nanoscale levels (F); (G and H) semi-transparent SGT hybrid implants with different SBG weight percent, formed after

condensation and drying. Reproduced from Ref. [51] with permission from the Royal Society of Chemistry.

Fig. 4 Schematic diagram showing an experimental procedure for producing anisotropic porous gelatin-silica hybrid polymer scaffolds by

ammonium hydroxide treatment. Reproduced from Ref. [68] with permission.
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demonstrated promising applications in regeneration of

soft tissue due to their low mechanical strength or poor

bioactivity [70]. To make these elastomers effective for a

wider number of biomedical applications, developing

hybrid polymers has become an attractive option to obtain

biodegradable elastomers with optimized properties to

meet different tissue-specific requirements.

PGS-PCL hybrid elastomers have been developed

successfully by solvent electrospinning. The incorporation

of PCL significantly enhanced formation of the nanofi-

brous structure and the hybrid materials showed mechan-

ical properties in the range of human aortic valve tissues

[71]. Gelatin was also added into PGS elastomer to

fabricate hybrid polymers for tissue regeneration. The

addition of gelatin significantly enhanced the mechanical

properties and bioactivity of PGS elastomers [72].

Although polymer-polymer hybrid elastomers have been

well developed, their limited elastomeric behavior and

Fig. 5 Porous morphology of gelatin-silica hybrid polymer scaffolds. (A, C) Transverse direction; (B, D) Axial direction. Reproduced from Ref.

[68] with permission.

Fig. 6 Schematic diagram showing an experimental procedure for producing nanofibrous gelatin-silica hybrid scaffolds by the thermally induced

phase separation (TIPS) technique using the mixtures of the gelatin solution and sol–gel derived silica sol. Reproduced from Ref. [59] with permission

from the Royal Society of Chemistry.
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mechanical strength still prevent their wide application in

bone tissue regeneration.

To overcome the limitations of polymer-based elasto-

mers, inorganic phase reinforced hybrid polymer elasto-

mers have been developed in recent years [73–75]. As

osteoconductive biomaterials, hydroxyapatite nanoparti-

cles were incorporated into PCD-based elastomers to

fabricate composites for orthopedic implants [76]. Uniform

distribution of HA in the polymer matrix significantly

enhanced the mechanical properties and osteoconductive

biocompatibility of PCD-HA hybrid elastomers. Melt-

derived bioglass particles were also introduced into PGS

elastomers to improve their range of biomedical applica-

tions [77]. Bioglass particles efficiently enhanced the

elastomeric strain and cellular biocompatibility of PGS.

These hybrid elastomers still have the intrinsic problem of

poor interface intensity between the inorganic phase and

polymers. Therefore, our group introduced bioactive silica

into PCD elastomers through a one-step thermal polymer-

ization method [30,31,78,79]. The inorganic silica phase

was bonded with the PCD polymer chain through covalent

bonds. The resulting hybrid polycitrate-silicon (PCS)

elastomers demonstrated significantly improved elasto-

meric behavior, mechanical strength and cellular biocom-

patibility (Fig. 7) [30]. SBGS-based PGS hybrid

elastomers were also fabricated successfully through the

direct hybridization of SBGS and PGS solution [29].

SBGS-PGS hybrid elastomers exhibited significantly

enhanced mechanical properties, biominerialization and

cellular biocompatibility (Fig. 8). The inorganic phase-

grafted PGS and PCD hybrid elastomers have shown

promise for applications in bone tissue regeneration.

Electroactive hybrid polymers

Conducting polymers are organic polymers that possess

electrical, magnetic and optical properties that are similar

to metal, while maintaining desirable mechanical proper-

ties as well as ease of processing of polymers [80,81].

Recently, it was found that conductive polymers could tune

the properties of cells in electrically sensitive tissues under

electrical stimulation, including neural, muscle, cardiac,

and bone [82–84]. Regenerative biomaterials for the

treatment of bone diseases that need surgical intervention

have attracted more attention, particularly with extended

life expectancies. Scaffolds that regulate cellular behavior

Fig. 7 Synthesis of multifunctional silica-poly(citrate)-based hybrid prepolymers and elastomers. (A,B) Fabrication of multifunctional silica-poly

(citrate) (MSPC) and crosslinked MSPC (CMSPC) elastomers by polycondensation of citric acid (CA), 1,8-octylene glycol (OD), aminosilane (AS),

as well as the chemical crosslinking with hexamethylene diisocyanate (HDI) and (C) schematic diagram showing the formation of CMSPC hybrid

elastomers matrix. Reproduced from Ref. [30] with permission.
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are particularly interesting for such applications [85–87]. A

3-D conductive scaffold that can locally deliver an

electrical signal is needed. 3D conductive scaffolds were

prepared using poly(3,4-ethylenedioxythiophene) poly(4-

styrene sulfonate) (PEDOT:PSS), gelatin, and bioactive

glass [88]. Introduction of PEDOT:PSS enhanced the

physiochemical stability and improved mechanical proper-

ties of the composite. Increasing the content of PEDOT:

PSS in the scaffolds improved cell viability. Together,

these results indicated that these conductive scaffolds

exhibited more favorable structural properties for bone

repair. The use of conducting polymers loaded with a

bioactive molecule has been an emerging approach to

functional biomaterial use in tissue regeneration. Chon-

droitin sulfate (CS)-doped polypyrrole (PPy) was coated

via an in situ chemical oxidative polymerization onto the

non-conductive polylactide to fabricate novel osteogenic

scaffolds [89]. Electrical conductivity of PPy-coated

polylactide (PPy-PLA) scaffolds was obvious, but it

decreased with time due to de-doping.

Applications in bone tissue regeneration

Biomaterials-based bone regeneration aims to develop

bioactive bone-substitutes that repair damaged issue and

restore tissue functionality. Native bone ECM is a hybrid

structure that consists of a polymer and inorganic phase.

Therefore, biodegradable hybrid polymer biomaterials

with representative nanostructures are desirable for bone

tissue regeneration [90]. Inorganic phase reinforced hybrid

biomaterials with multifunctional properties have demon-

strated enhanced bone-binding ability, osteoblast activity,

and bone regeneration potential as compared to pure

biodegradable polymers [91]. Here, we review the recent

development of biodegradable hybrid polymer biomater-

ials for osteoblastic proliferation, differentiation, and in

vivo bone regeneration.

Silicon-based BG particles with microscale and nanos-

cale sizes have been employed to enhance biominerializa-

tion and biocompatibility [41,43]. As shown in Fig. 6,

hybrid polymers reinforced with BG microparticles or

nanoparticles could efficiently induce deposition of

biological apatite after soaking in SBF [41]. Osteoblast

attachment was also improved on the hybrid BGN-PCL, as

compared to PCL scaffold alone [43]. In addition to

bioactive glass-based hybrid polymer, the apatite-based

polymer also showed enhanced osteoblastic activity

(Fig. 9). After 1 and 4 weeks culture of MC3T3-E1 cells

on nanofibrous gelatin-apatite hybrid scaffolds (NF-

gelatin/apatite) and pure NF-gelatin scaffolds, cells

grown on the hybrid scaffolds showed significantly

increased expression of genes for bone sialoprotein

(BSP) and osteocalcin (OCN) (Fig.10) [49]. In vivo

experimentation demonstrated that the incorporation of

osteoconductive components can significantly improve

bone formation. For example, compared with pure poly

Fig. 8 Schematic illustration for preparing poly(glycerol sebacate)-silica-calcium (PGSSC) hybrid elastomers. (A) Synthesis of PGS pre-polymers;

(B) formation of silica-based bioactive glass sols; (C) fabrication of PGSSC hybrid elastomers; (D) optical images of PGS and PGSSC hybrid

elastomers: (a) PGS; (b) PGS15mol%Si (PGS15Si); and (c) PGS-15mol%Si-20mol%Ca (PGS15Si20Ca). Reproduced from Ref. [29] with permission

from the Royal Society of Chemistry.
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(lactide-co-glycolide) (PLGA), amorphous tricalcium

phosphate nanoparticles reinforced PLGA (PLGA-TCP)

nanocomposites enhanced the rapid regeneration of bone

defects in a New Zealand white rabbit model (Fig. 11) [92].

As compared to osteoconductive particle-based hybrid

polymers, silica-based sol-polymers possessed uniform

nanostructure distribution and inorganic-organic interface,

which could mimic the structure of native bone ECM.

Silica-based chitosan hybrid polymer has been used to

guide bone tissue regeneration successfully [93]. As

compared to pure chitosan, new bone formation was

significantly enhanced by the hybrid polymer while the

hybrid membrane was degraded after 3 weeks implantation

at bone defect sites (Fig. 12). A significantly higher rate of

bone formation was observed for the hybrid (93%) but not

the chitosan membrane (60%) [93]. Due to the inherent

elastomeric behavior of native bone, elastomeric hybrid

biomaterials are appealing for applications in bone

regeneration [94]. Our group developed silicon-based

polymer elastomers with controlled biodegradation for

applications in bone regeneration [29–31]. The results

demonstrated that poly(citrate-siloxane) (PCS) hybrid

elastomers significantly enhanced attachment and prolif-

eration of various cells, including cells derived from both

hard and soft tissue [30,31]. PCS-based hybrid polymer

could also significantly enhance osteoblastic differentia-

tion, cellular biominerialization of MC3T3-E1 cells

[78,79]. PCS-based hybrid biomaterials have shown

Fig. 9 In vitro biomineralization activity and osteoblast biocompatibility (MC3T3-E1) of BG micro-nanoscale particles-PCL hybrid polymers.

(A, B) Apatite formation on surface of PCL (A) and BG-PCL (B) after soaking in SBF for 7 days; (C, D) Cell attachment morphology on the surface of

PCL (C) and BG-PCL (D) after culture for 3 days. Reproduced from Refs. [41] and [43] with permission.

Fig. 10 Quantitative RT-PCR results of bone sialoprotein (BSP)(A)

and osteocalcin (OCN)(B) gene expression. MC3T3-E1 cells were

cultured on NF-gelatin and NF-gelatin/apatite scaffolds for 1 and 4

weeks. The Y-axis of the figure is the gene expression results normalized

by β actin. * represents statistically significant differences (P < 0.05).

Reproduced from Ref. [49] with permission.
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promising potential for in vivo bone tissue regeneration.

Additional in vivo experiments should be carried out to

evaluate the potential value of PCS-based hybrid bioma-

terials.

Proliferation and osteogenic differentiation of human

adipose stem cells (hASCs) on the coated and conductive

scaffolds was compared to non-coated polylactide scaf-

folds under electrical stimulation. The conductive hybrid

scaffolds greatly enhanced hASC proliferation compared

to pure PLA scaffolds [89]. Alkaline phosphatase (ALP)

activity of hASCs seeded on PLA-PPy scaffolds was

generally higher; however, electrical stimulation did not

Fig. 11 Micro-computed tomography of the cranial defects (diameter = 6 mm) in New Zealand White rabbits after 4-week implantation using

PLGA, PLGA/TCP composites. (A, B) Two examples of the CT of the entire cranial bone are shown. Defect margins and treatment modalities are

indicated. Adapted from Ref. [92] with permission.

Fig. 12 Optical micrographs of the rat bone tissue regeneration responses after the 3 weeks implantation of the membranes: (A, C) pure chitosan and

(B, D) the chitosan–silica xerogel hybrid. The fresh-formed bone tissue was revealed in blue, the calcified bones and materials were stained in red.

Reproduced from Ref. [93] with permission.
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show a significant effect on hASCs. These results

highlighted the potential application of PPy-coated PLA

scaffolds for bone regeneration. Mesenchymal stem cells

(MSCs) have great potential and are commonly used

progenitor cells in bone tissue engineering. Osteogenic

differentiation of MSCs can be guided by various types of

biomaterials. Our group found that the electroactive

biodegradable copolymers can enhance osteogenic differ-

entiation of bone marrow derived MSCs (BMSCs) [95].

These copolymers were composed of polylactide and

tunable contents of conductive aniline tetramer. Culture of

BMSCs on the electroactive copolymer films indicated that

these copolymers were not cytotoxic, in fact proliferation

of BMSCs was significantly enhanced. Osteogenic differ-

entiation of BMSCs showed that the electroactive

copolymers greatly promoted osteogenic differentiation

compared to pure PLAwith respect to expression of ALP,

OPN, and Runx2 and deposition of calcium measured by

von Kossa staining. The electroactive copolymer surface

can adsorb more protein than pure PLA, which may be a

factor that enhanced proliferation and differentiation of

MSCs. These results indicated that the electroactive

degradable polymers based on polylactide and aniline

tetramer have great potential as scaffolding materials for

bone regeneration.

Summary and perspectives

Degradable hybrid polymer biomaterials with osteocon-

ductivity, biomimetic elastomeric behavior and electro-

activity have shown promise in applications in bone tissue

repair and regeneration. However, to meet the require-

ments of efficient bone regeneration, there are still many

areas in need of improvement for these polymer hybrid

biomaterials. First, high osteoinductive activity should be

incorporated into these hybrid polymers. Second, main-

taining high mechanical strength of hybrid polymers while

preserving their elastomeric behavior should be prioritized.

Third, other functions including antibacterial activity and

bioimaging ability should be also considered in the design

of next generation hybrid polymer biomaterials.
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