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SUMMARY

A hybrid control structure that unites bounded control with model predictive control (MPC) is proposed
for the constrained stabilization of nonlinear systems. The structure consists of: (1) a finite-horizon
model predictive controller, which can be linear or nonlinear, and with or without stability constraints,
(2) a family of bounded nonlinear controllers for which the regions of constrained closed-loop stability are
explicitly characterized and (3) a high-level supervisor that orchestrates switching between MPC and the
bounded controllers. The central idea is to embed the implementation of MPC within the stability regions
of the bounded controllers and employ these controllers as fall-back in the event that MPC is unable to
achieve closed-loop stability (due, for example, to infeasibility of a given initial condition and/or horizon
length, or due to computational difficulties in solving the nonlinear optimization). Switching laws, that
monitor the closed-loop state evolution under MPC, are derived to orchestrate the transitions in a way that
guarantees asymptotic closed-loop stability for all initial conditions within the union of the stability regions
of the bounded controllers. The proposed hybrid control scheme is shown to provide a paradigm for the
safe implementation of predictive control algorithms to nonlinear systems, with guaranteed stability
regions. The efficacy of the proposed approach is demonstrated through applications to chemical reactor
and crystallization process examples. Copyright # 2004 John Wiley & Sons, Ltd.

KEY WORDS: nonlinear systems; input constraints; model predictive control; Lyapunov-based bounded
control; controller switching; closed-loop stability region; process control

1. INTRODUCTION

The stabilization of dynamical systems using constrained control is an important problem that
has been the subject of significant research work in control theory. Model predictive control
(MPC) is a popular method for handling constraints within an optimal control setting. In MPC,
the control action is obtained by solving repeatedly, on-line, a finite-horizon constrained open-
loop optimal control problem. When the system is linear, the cost quadratic and the constraints
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convex, the MPC optimization problem reduces to a quadratic programme for which efficient
software exists and, consequently, a number of control-relevant issues have been explored,
including issues of closed-loop stability, performance, implementation and constraint
satisfaction (e.g. see the tutorial paper [1]).

Many systems of practical interest, however, exhibit highly nonlinear behaviour that must be
accounted for when designing the controller. In the literature, several nonlinear model predictive
control (NMPC) schemes have been developed (e.g. see References [2–8]) that focus on the
issues of stability, constraint satisfaction and performance optimization for nonlinear systems.
A common idea of these approaches is to enforce stability by means of suitable penalties and
constraints on the state at the end of the finite optimization horizon. Because of the system
nonlinearities, however, the resulting optimization problem is non-convex and, therefore, much
harder to solve, even if the cost functional and constraints are convex. The computational
burden is more pronounced for NMPC algorithms that employ terminal stability constraints
(e.g. equality constraints) whose enforcement requires intensive computations that typically
cannot be performed within a limited time window.

In addition to the computational difficulties of solving a nonlinear optimization problem at
each time step, one of the key challenges that impact on the practical implementation of NMPC
is the inherent difficulty of characterizing, a priori, the set of initial conditions starting from
where a given NMPC controller is guaranteed to stabilize the closed-loop system. For finite-
horizon MPC, an adequate characterization of the stability region requires an explicit
characterization of the complex interplay between several factors, such as the initial condition,
the size of the constraints, the horizon length, the penalty weights, etc. Use of conservatively
large horizon lengths to address stability only increases the size and complexity of the nonlinear
optimization problem and could make it intractable. Furthermore, since feasibility of NMPC is
determined through on-line optimization, unless an NMPC controller is exhaustively tested by
simulation over the whole range of potential initial states, doubt will always remain as to
whether or not a state will be encountered for which an acceptable solution to the finite-horizon
problem can be found.

The above host of theoretical and computational issues continue to motivate research
efforts in this area. Most available predictive control formulations for nonlinear systems,
however, either do not explicitly characterize the stability region, or provide estimates of
this region based on linearized models, used as part of some scheduling scheme between a set
of local predictive controllers. The idea of scheduling of a set of local controllers to enlarge
the operating region was proposed earlier in the context of analytic control of nonlinear
systems (e.g. see References [9, 10]) and requires an estimate of the region of stability for the
local controller designed at each scheduling point. Then by designing a set of local controllers
with their estimated regions of stability overlapping each other, supervisory scheduling of the
local controllers can move the state through the intersections of the estimated regions of stability
of different controllers to the desired operating point. Similar ideas were used in References
[11, 12] for scheduled predictive control of nonlinear systems. All of these approaches require
the existence of an equilibrium surface that connects the scheduling points, and the resulting
stability region estimate is the union of the local stability regions, which typically forms an
envelope around the equilibrium surface. Stability region estimates based on linearization,
however, are inherently conservative.

In contrast to this approach, progress within the area of analytic nonlinear controller
design has made available bounded controllers with well-characterized stability properties

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:199–225

N. H. EL-FARRA, P. MHASKAR AND P. D. CHRISTOFIDES200



(e.g. References [13–15]). The class of Lyapunov-based bounded controllers in Reference [13]
was extended in References [16, 17] to handle input constraints and model uncertainty within an
inverse optimal control setting, and provide at the same time an explicit characterization of the
constrained stability region. Since the analytic controllers are designed on the basis of the
nonlinear model, and also account explicitly for the constraints in the design of the controller,
they yield a substantially larger region of stability than controllers based on linearized models.
However, the resulting closed-loop performance is not necessarily optimal with respect to
arbitrary cost functionals.

In a previous work [18], we developed a hybrid control scheme, uniting bounded control
with MPC, for the stabilization of linear systems with input constraints. The scheme was
predicated upon the idea of switching between a bounded controller, for which the region of
constrained closed-loop stability is explicitly characterized, and a model predictive controller
that minimizes a given performance objective subject to constraints. Switching laws were
derived to orchestrate the transition between the two controllers in a way that reconciles the
trade-offs between their respective stability and optimality properties, and guarantees
asymptotic closed-loop stability for all initial conditions within the stability region of the
bounded controller. The hybrid scheme was shown to provide a safety net for the
implementation of MPC under state feedback.

In this work, we propose a hybrid control structure for the stabilization of nonlinear systems
with input constraints. The central idea is to use a family of bounded nonlinear controllers, each
with an explicitly characterized stability region, as fall-back controllers, and embed the operation
of MPC within the union of these regions. In the event that the given predictive controller (which
can be linear, nonlinear, or even scheduled) is unable to stabilize the closed-loop system (e.g., due
to failure of the optimization algorithm, poor choice of the initial condition, insufficient horizon
length, etc.), supervisory switching from MPC to any of the bounded controllers, whose stability
region contains the state trajectory, guarantees closed-loop stability. The rest of the paper is
organized as follows. In Section 2, some mathematical preliminaries are presented to describe the
class of systems under consideration and briefly review how the constrained control problem is
addressed within the bounded control and MPC frameworks. In Section 3, the controller
switching problem is formulated first and then its solution is presented in the form of a hybrid
control structure that employs switching between MPC and bounded control. Two
representative switching schemes, that address (with varying degrees of flexibility) stability
and performance objectives, are described to highlight the theoretical underpinnings and
practical implications of the proposed hybrid control structure. Possible extensions of the
supervisory switching logic, to address a variety of practical implementation issues, are also
discussed. Finally in Section 4, the efficacy of the proposed approach is demonstrated through
applications to chemical reactor and crystallization process examples.

2. PRELIMINARIES

In this work, we consider the problem of asymptotic stabilization of continuous-time nonlinear
systems with input constraints, with the following state–space description

’xxðtÞ ¼ f ðxðtÞÞ þ gðxðtÞÞuðtÞ ð1Þ

jjujj4umax ð2Þ
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where x ¼ ½x1 � � �xn�0 2 Rn denotes the vector of state variables, u ¼ ½u1 � � � um�0 is the vector of
manipulated inputs, umax50 denotes the bound on the manipulated inputs, f ð�Þ is a sufficiently
smooth n� 1 nonlinear vector function, and gð�Þ is a sufficiently smooth n�m nonlinear matrix
function. Without loss of generality, it is assumed that the origin is the equilibrium point of the
unforced system (i.e. f ð0Þ ¼ 0). Throughout the paper, the notation jj � jj will be used to denote
the standard Euclidean norm of a vector, while the notation jj � jjQ refers to the weighted norm,
defined by jjxjj2Q ¼ x0Qx for all x 2 Rn; where Q is a positive-definite symmetric matrix and x0

denotes the transpose of x: In order to provide the necessary background for our main results in
Section 3, we will briefly review in the remainder of this section the design procedure for, and the
stability properties of, both the bounded and model predictive controllers, which constitute the
basic components of our hybrid control scheme. For clarity of presentation, we will focus only
on the state feedback problem where measurements of xðtÞ are assumed to be available for all t
(see Remark 15 below for a discussion on the issue of measurement sampling and how it can
be handled).

2.1. Bounded Lyapunov-based control

Consider the system of Equations (1)–(2), for which a family of control Lyapunov functions
(CLFs), VkðxÞ; k 2 K � f1; . . . ; pg has been found (see Remark 1 below for a discussion on the
construction of CLFs). Using each control Lyapunov function, we construct, using the results in
Reference [13] (see also References [16, 17]), the following continuous bounded control law

ukðxÞ ¼ �kkðxÞðLgVkÞ0ðxÞ � bkðxÞ ð3Þ

where

kkðxÞ ¼
LfVkðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLfVkðxÞÞ

2 þ ðumaxjjðLgVkÞ0ðxÞjjÞ
4

q
jjðLgVkÞ0ðxÞjj2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðumaxjjðLgVkÞ0ðxÞjjÞ

2
q� � ð4Þ

LfVkðxÞ ¼ ð@VkðxÞ=@xÞ f ðxÞ; LgVkðxÞ ¼ ½Lg1VkðxÞ � � �LgmVkðxÞ�0 and giðxÞ is the ith column of
the matrix gðxÞ: For the above controller, it can be shown, using standard Lyapunov arguments,
that whenever the closed-loop state trajectory, x; evolves within the state–space region described
by the set

FkðumaxÞ ¼ fx 2 Rn : LfVkðxÞ5umaxjjðLgVkÞ0ðxÞjjg ð5Þ

then the controller satisfies the constraints, and the time derivative of the Lyapunov function is
negative-definite. Therefore, starting from any initial state within the set FkðumaxÞ; asymptotic
stability of the origin of the constrained closed-loop system can be guaranteed, provided that the
state trajectory remains within region described by FkðumaxÞ whenever x=0: To ensure this, we
consider initial conditions that belong to an invariant subset (preferably the largest), OkðumaxÞ
(this idea was also used in References [16, 17] in the context of bounded robust inverse optimal
control of constrained nonlinear systems). One way to construct such a subset is using the level
sets of Vk; i.e.

OkðumaxÞ ¼ fx 2 Rn :VkðxÞ4cmax
k g ð6Þ
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where cmax
k > 0 is the largest number for which FkðumaxÞ*OkðumaxÞ\f0g: The union of the

invariant regions described by the set

OðumaxÞ ¼
[p
k¼1

OkðumaxÞ ð7Þ

then provides an estimate of the stability region, starting from where the origin of the
constrained closed-loop system, under the appropriate control law from the family of Equations
(3)–(4), is guaranteed to be asymptotically stable.

Remark 1
CLF-based stabilization of nonlinear systems has been studied extensively in the nonlinear
control literature (e.g. see References [13, 19–21]). The construction of constrained CLFs (i.e.
CLFs that take the constraints into account) remains a difficult problem (especially for
nonlinear systems) that is the subject of ongoing research. For several classes of nonlinear
systems that arise commonly in the modelling of practical systems, systematic and
computationally feasible methods are available for constructing unconstrained CLFs (CLFs
for the unconstrained system) by exploiting the system structure. Examples include the use of
quadratic functions for feedback linearizable systems and the use of back-stepping techniques to
construct CLFs for systems in strict feedback form. In this work, the bounded controllers in
Equations (3)–(4) are designed using unconstrained CLFs, which are also used to explicitly
characterize the associated regions of stability via Equations (5)–(6). While the resulting
estimates do not necessarily capture the entire domain of attraction, they will be used
throughout the paper only for a concrete illustration of the basic ideas of the results. It is
possible to obtain substantially improved (i.e. less conservative) estimates by using, for example,
a larger family of CLFs (see Section 4 for examples).

2.2. Model predictive control

In this section, we consider model predictive control of the system described by Equation (1),
subject to the control constraints of Equation (2). In the literature, several MPC formulations
are currently available, each with its own merits and limitations. While the results of this work
are not restricted to any particular MPC formulation (see Remark 6 below), we will briefly
describe here the ‘traditional’ formulation for the purpose of highlighting some of the
theoretical and computational issues involved in the nonlinear setting. For this case, MPC at
state x and time t is conventionally obtained by solving, on-line, a finite-horizon optimal control
problem [22] of the form

Pðx; tÞ : minfJðx; t; uð�ÞÞjuð�Þ 2 Sg ð8Þ

s:t: ’xx ¼ f ðxÞ þ gðxÞu ð9Þ

where S ¼ Sðt;TÞ is the family of piecewise continuous functions (functions continuous from
the right), with period D; mapping ½t; tþ T � into U :¼ fu 2 Rm : jjujj4umaxg and T is the
specified horizon. Equation (9) is a nonlinear model describing the time evolution of the states x:

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:199–225

HYBRID PREDICTIVE CONTROL 203



A control uð�Þ in S is characterized by the sequence fu½k�g where u½k� :¼ uðkDÞ: A control uð�Þ in S
satisfies uðtÞ ¼ u½k� for all t 2 ½kD; ðkþ 1ÞDÞ: The performance index is given by

Jðx; t; uð�ÞÞ ¼
Z tþT

t

jjxuðs; x; tÞjj2Q þ jjuðsÞjj2R
h i

dsþ Fðxðtþ TÞÞ ð10Þ

where R and Q are strictly positive-definite, symmetric matrices and xuðs; x; tÞ denotes the
solution of Equation (1), due to control u; with initial state x at time t and Fð�Þ denotes the
terminal penalty. In addition to penalties on the state and control action, the objective function
may also include penalties on the rate of input change reflecting limitations on actuator speed
(e.g. a large valve requiring few seconds to change position). The minimizing control u0ð�Þ 2 S is
then applied to the plant over the interval ½kD; ðkþ 1ÞDÞ and the procedure is repeated
indefinitely. This defines an implicit model predictive control law

MðxÞ ¼ argminðJðx; t; uð�ÞÞÞ ¼ u0ðt; x; tÞ ð11Þ

While the use of a nonlinear model as part of the optimization problem is desirable to account
for the system’s nonlinear behaviour, it also raises a number of well-known theoretical and
computational issues [22] that impact on the practical implementation of MPC. For example, in
the nonlinear setting, the optimization problem is non-convex and, therefore, harder to solve
than in the linear case. Furthermore, the issue of closed-loop stability is typically addressed by
introducing penalties and constraints on the state at the end of the finite optimization horizon
(see Reference [23] for a survey of different constraints proposed in the literature). Imposing
constraints adds to the computational complexity of the nonlinear optimization problem which
must be solved at each time instance.

Even if the optimization problem could be solved in a reasonable time, any guarantee
of closed-loop stability remains critically dependent upon making the appropriate choice
of the initial condition, which must belong to the predictive controller’s region of stability
(or feasibility), which, in turn, is a complex function of the constraints, the performance
objective, and the horizon length. However, the implicit nature of the nonlinear MPC
law, obtained through repeated on-line optimization, limits our ability to obtain, a priori
(i.e. before controller implementation), an explicit characterization of the admissible initial
conditions starting from where a given MPC controller (with a fixed performance index
and horizon length) is guaranteed to asymptotically stabilize the nonlinear closed-loop
system. Therefore, the initial conditions and the horizon lengths are usually tested through
closed-loop simulations, which can add to the computational burden prior to the implementa-
tion of MPC.

3. THE HYBRID CONTROL STRATEGY: UNITING BOUNDED CONTROL ANDMPC

By comparing the bounded controller and MPC designs presented in the previous section, some
trade-offs with respect to their stability and optimality properties are evident. The bounded
controller, for example, possesses a well-defined region of admissible initial conditions that
guarantee constrained closed-loop stability. However, its performance may not be optimal
with respect to an arbitrary performance criterion. MPC, on the other hand, provides the
desired optimality requirement, but poses implementation difficulties and lacks an explicit
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characterization of the stability region. In this section, we show how to reconcile the two
approaches by means of a switching scheme that provides a safety net for the implementation of
MPC to nonlinear systems.

3.1. Formulation of the switching problem

Consider the constrained nonlinear system of Equations (1)–(2), for which the bounded
controllers of Equations (3)–(4) and predictive controller of Equations (8)–(11) have been
designed. The control problem is formulated as the one of designing a set of switching laws that
orchestrate the transition between MPC and the bounded controllers in a way that guarantees
asymptotic stability of the origin of the closed-loop system starting from any initial condition in
the set OðumaxÞ defined in Equation (7), respects input constraints, and accommodates the
optimality requirements whenever possible. For a precise statement of the problem, the system
of Equation (1) is first cast as a switched system of the form

’xx ¼ f ðxÞ þ gðxÞuiðtÞ

jjuijj4 umax

ð12Þ

iðtÞ 2 f1; 2g

where i : ½0;1Þ ! f1; 2g is the switching signal, which is assumed to be a piecewise
continuous (from the right) function of time, implying that only a finite number of switches,
between the predictive and bounded controllers, is allowed on any finite interval of time. The
index, iðtÞ; which takes values in the set f1; 2g; represents a discrete state that indexes
the control input uð�Þ; with the understanding that iðtÞ ¼ 1 if and only if uiðxðtÞÞ ¼ MðxðtÞÞ
and iðtÞ ¼ 2 if and only if uiðxðtÞÞ ¼ bkðxðtÞÞ for some k 2 K: Our goal is to construct a
switching law

iðtÞ ¼ cðxðtÞ; tÞ ð13Þ

that provides the set of switching times that ensure stabilizing transitions between the predictive
and bounded controllers, in the event that the predictive controller is unable to enforce closed-
loop stability. This in turn determines the time course of the discrete state iðtÞ:

In the remainder of this section, two switching schemes that address the above problem are
presented. The first scheme is given in Theorem 1 (Section 3.2) and focuses primarily on the
issue of closed-loop stability, while the second scheme, given in Theorem 2 (Section 3.3),
provides more flexible switching rules that guarantee closed-loop stability and, simultaneously,
enhance the overall closed-loop performance beyond that obtained from the first scheme. The
proofs of both theorems are given in Appendix A.

3.2. Stability-based controller switching

Theorem 1
Consider the constrained nonlinear system of Equation (12), with any initial condition
xð0Þ � x0 2 OkðumaxÞ; for some k 2 K � f1; . . . ; pg; where Ok was defined in Equation (6), under
the model predictive controller of Equations (8)–(11). Also let %TT50 be the earliest time for
which either the closed-loop state, under MPC, satisfies

LfVkðxð %TTÞÞ þ LgVkðxð %TTÞÞMðxð %TTÞÞ50 ð14Þ
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or the MPC algorithm fails to prescribe any control move. Then, the switching rule given by

iðtÞ ¼
1; 04t5 %TT

2; t5 %TT

( )
ð15Þ

where iðtÞ ¼ 1 , uiðxðtÞÞ ¼ MðxðtÞÞ and iðtÞ ¼ 2 , uiðxðtÞÞ ¼ bkðxðtÞÞ; guarantees that the origin
of the switched closed-loop system is asymptotically stable.

Remark 2
Theorem 1 describes a stability-based switching strategy for control of nonlinear systems with
input constraints. The main components of this strategy include the predictive controller, a
family of bounded nonlinear controllers, with their estimated regions of constrained stability,
and a high-level supervisor that orchestrates the switching between the controllers. A schematic
representation of the hybrid control structure is shown in Figure 1. The implementation
procedure of this hybrid control strategy is outlined below:

* Given the system model of Equation (1), the constraints on the input and the family of
CLFs, design the bounded controllers using Equations (3)–(4). Given the performance
objective, set up the MPC optimization problem.

* Compute the stability region estimate for each of the bounded controllers, OkðumaxÞ; using
Equations (5)–(6), for k ¼ 1; . . . ; p; and OðumaxÞ ¼

Sp
k¼1 OkðumaxÞ:

Vn

re
gion

sta
bilit

y

re
gion

sta
bilit

y

re
gion

sta
bilit

y

x(t) = f(x(t)) + g(x(t)) u(t)
.

Supervisory layer

x(t)

V2

Performance 
objectives

MPC
controller

MPC

Switching logic

i = ?

Bounded 
controller

Bounded 
controller

Bounded 
controller

Linear/NonlinearmaxuΩ  (

maxu

maxuΩ  (  )

 )

 )

1

2

n

V1

1

2

Ω  (n

"Fallback contollers"

Constrained Nonlinear Plant

|u(t)| < umax

Figure 1. Schematic representation of the hybrid control structure merging MPC and a family of fall-back
bounded controllers with their stability regions.
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* Initialize the closed-loop system under MPC at any initial condition, x0, within O; and
identify a CLF, VkðxÞ; for which the initial condition is within the corresponding stability
region estimate, Ok:

* Monitor the temporal evolution of the closed-loop trajectory (by checking Equation (14) at
each time) until the earliest time that either Equation (14) holds or the MPC algorithm
prescribes no solution, %TT :

* If such a %TT exists, discontinue MPC implementation, switch to the kth bounded controller
(whose stability region contains x0) and implement it for all future times.

Remark 3
The use of multiple CLFs to design a family of bounded controllers, with their estimated regions
of stability, allows us to initialize the closed-loop system from a larger set of initial conditions
than in the case when a single CLF is used. Note, however, that once the initial condition is
fixed, this determines both the region where MPC operation will be confined (and monitored)
and the corresponding fall-back bounded controller to be used in the event of MPC failure. If
the initial condition falls within the intersection of several stability regions, then any of the
corresponding bounded controllers can be used as the fall-back controller.

Remark 4
The relation of Equations (14)–(15) represents the switching rule that the supervisor observes
when contemplating whether a switch, between MPC and any of the bounded controllers at a
given time, is needed. The left-hand side of Equation (14) is the rate at which the Lyapunov
function grows or decays along the trajectories of the closed-loop system, under MPC, at
time %TT : By observing this rule, the supervisor tracks the temporal evolution of Vk; under MPC,
such that whenever an increase in Vk is detected after the initial implementation of MPC (or if
the MPC algorithm fails to prescribe any control move, e.g. due to optimization failure), the
predictive controller is disengaged from the closed-loop system, and the appropriate bounded
controller is switched in, thus steering the closed-loop trajectory to the origin asymptotically.
This switching rule, together with the choice of the initial condition, guarantee that the closed-
loop trajectory, under MPC, never escapes OkðumaxÞ before the corresponding bounded
controller can be activated. The idea of designing the switching logic based on monitoring the
state’s temporal evolution with respect to the stability region was introduced in Reference [24] in
the context of control of switched (multi-modal) nonlinear systems with input constraints.

Remark 5
In the case when the condition of Equation (14) is never fulfilled (i.e. MPC continues to be
feasible for all times and the Lyapunov function continues to decay monotonically for all times
( %TT ¼ 1)), the switching rule of Equation (15) ensures that only MPC is implemented for all
times and that no switching to the fall-back controllers takes place. In this case, MPC is
stabilizing and its optimal performance is fully recovered by the hybrid control structure. This
particular feature underscores the central objective of the hybrid control structure, which is not
to replace or subsume MPC but, instead, to provide a safe environment for the implementation
of any optimal predictive control policy for which a priori guarantees of stability are not
available. Note also that, to the extent that stability under MPC is captured by the given
Lyapunov function, the notion of switching, as described in Theorem 1, does not result in loss of
performance, since the transition to the bounded controller takes place only if MPC is infeasible
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or destabilizing. Clearly, under these circumstances the issue of optimality is not very
meaningful for the predictive controller.

Remark 6
The fact that closed-loop stability is guaranteed, for all x0 2 O (through supervisory switching),
independently of whether MPC itself is stabilizing or not, allows us to use any desired MPC
formulation within the switching scheme (and not just the one mentioned in Theorem 1),
whether linear or nonlinear, and with or without terminal stability constraints or terminal
penalties, without concern for loss of stability. This flexibility of using any desired MPC
formulation has important practical implications for reducing the computational complexities
that arise in implementing predictive control algorithms to nonlinear systems by allowing, for
example, the use of less-computationally demanding NMPC formulations, or even the use of
linear MPC algorithms instead (based on linearized models of the plant), with guaranteed
stability (see Sections 4.1 and 4.2 for examples). In all cases, by embedding the operation of the
chosen MPC algorithm within the large and well-defined stability regions of the bounded
controllers, the switching scheme provides a safe fall-back mechanism that can be called upon at
any moment to preserve closed-loop stability should MPC become unable to achieve closed-
loop stability. Finally, we note that the Lyapunov functions used by the bounded controllers can
also be used as a guide to design and tune the MPC in case a Lyapunov-based constraint is used
at the end of the prediction horizon.

Remark 7
Note that no assumption is made regarding how fast the MPC optimization needs to be solved
since, even if this time is relatively significant and the plant dynamics are unstable, the
implementation of the switching rule in Theorem 1 guarantees an ‘instantaneous’ switch to the
appropriate stabilizing bounded controller before such delays can adversely affect closed-loop
stability (the times needed to check Equations (14)–(15) and compute the control action of the
bounded controller are insignificant as they involve only algebraic computations). This feature is
valuable when computationally intensive NMPC formulations fail, in the course of the on-line
optimization, to provide an acceptable solution in a reasonable time. In this case, switching to
the bounded controller allows us to safely abort the optimization without loss of stability.

Remark 8
One of the important issues in the practical implementation of finite-horizon MPC is the
selection of the horizon length. It is well known that this selection can have a profound effect on
nominal closed-loop stability as well as the size and complexity of the optimization problem.
For NMPC, however, a priori knowledge of the shortest horizon length that guarantees closed-
loop stability, from a given set of initial conditions (alternatively, the set of feasible initial
conditions for a given horizon length) is not available. Therefore, in practice the horizon length
is typically chosen using ad hoc selection criteria, tested through extensive closed-loop
simulations, and varied, if necessary, to achieve stability. In the switching scheme of Theorem 1,
closed-loop stability is maintained independently of the horizon length. This allows the
predictive control designer to choose the horizon length solely on the basis of what is
computationally practical for the size of the optimization problem, and without increasing,
unnecessarily, the horizon length (and consequently the computational load) out of concern for
stability. Furthermore, even if a conservative estimate of the necessary horizon length were to be
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ascertained for a small set of initial conditions before MPC implementation (say through
extensive closed-loop simulations and testing), then if some disturbance were to drive the state
outside of this set during the on-line implementation of MPC, this estimate may not be sufficient
to stabilize the closed-loop system from the new state. Clearly, in this case, running extensive
closed-loop simulations on-line to try to find the new horizon length needed is not a feasible
option, considering the computational difficulties of NMPC as well as the significant delays that
would be introduced until (and if ) the new horizon could be determined. In contrast to the
on-line re-tuning of MPC, stability can be preserved by switching to the fall-back controllers
(provided that the disturbed state still lies within O).

Remark 9
When compared with other MPC-based approaches, the proposed hybrid control scheme is
conceptually aligned with Lyapunov-based approaches in the sense that it, too, employs a
Lyapunov stability condition to guarantee asymptotic closed-loop stability. However, this
condition is enforced at the supervisory level, via continuous monitoring of the temporal
evolution of Vk and explicitly switching between two controllers, rather than being incorporated
in the optimization problem, as is customarily done in Lyapunov-based MPC approaches,
whether as a terminal inequality constraint (e.g., contractive MPC [5, 25], CLF-based RHC for
unconstrained nonlinear systems [26]) or through a CLF-based terminal penalty (e.g. References
[6, 8]). The methods proposed in these works do not provide an explicit characterization of the set
of states starting from where feasibility and/or stability is guaranteed a priori. Furthermore, the
idea of switching to a fall-back controller with a well-characterized stability region, in the event
that the MPC controller does not yield a feasible solution, is not considered in these approaches.

Remark 10
The idea of switching between different controllers for the purpose of achieving some objective
that either cannot be achieved or is more difficult to achieve using a single controller has
been widely used in the literature, and in a variety of contexts (see, for example, References
[10, 27–29]). In most of these works, however, switching takes place between multiple
structurally similar controllers. In this work, switching is employed between two structurally
different, though complementary, control approaches as a tool for reconciling the objectives of
optimal stabilization of the constrained closed-loop system (through MPC) and the a priori (off-
line) determination of set of initial conditions for which closed-loop stability is guaranteed
(through bounded control). The proposed switching schemes also differ, both in their objective
and implementation, from other MPC formulations that involve switching. For example, in
dual mode MPC [3] the strategy includes switching from MPC to a locally stabilizing controller
once the state is brought near the origin by MPC. The purpose of switching in this approach is
to relax the terminal equality constraint whose implementation is computationally burdensome
for nonlinear systems. However, the set of initial conditions for which MPC is guaranteed to
steer the state close to the origin is not explicitly known a priori. In contrast, switching from
MPC to the bounded controller is used in our work only to prevent any potential closed-loop
instability arising from implementing MPC without the a priori knowledge of the admissible
initial conditions. Therefore, depending on the stability properties of the chosen MPC,
switching may or may not occur, and if it occurs, it can take place near or far from the origin.
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3.3. Enhancing closed-loop performance

The switching rule in Theorem 1 requires monitoring only one of the CLFs (any one for which
x0 2 Ok) and does not permit any transient increase in this CLF under MPC (by switching
immediately to the appropriate bounded controller). While this condition is sufficient to
guarantee closed-loop stability, it does not take full advantage of the behaviour of other CLFs
at the switching time. For example, even though a given CLF, say V1; may start increasing at
time %TT under MPC, another CLF, say V2; (for which xð %TTÞ lies inside the corresponding stability
region) may still be decreasing (see Figure 2). In this case, it would be desirable to keep MPC in
the closed-loop (rather than switch to the bounded controller) and start monitoring the growth
of V2 instead of V1; because if V2 continues to decay, then MPC can be kept active for all times
and its optimal performance fully recovered. To allow for such flexibility, we extend in this
section the switching strategy of Theorem 1 by relaxing the switching rule. This is formalized in
the following theorem. The proof is given in Appendix A.

Theorem 2
Consider the constrained nonlinear system of Equation (12), with any initial condition
xð0Þ � x0 2 OðumaxÞ; where OðumaxÞ was defined in Equation (7), under the model predictive
controller of Equations (8)–(11). Let Tk50 be the earliest time for which

VkðxðTkÞÞÞ4 cmax
k

Lf VkðxðTkÞÞ þ LgVkðxðTkÞÞMðxðTkÞÞ5 0; k 2 K
ð16Þ

1

V  (
.
1 x(T))>0

V  (
.
2 x(T))>0

V  (
.
1 x(T))>0

V  (
.

x(T))<02

2
x (0)

Ω  (1 u    )

x (0)

maxu    )

"switch"

"no switching"

MPC
Bounded control

Ω   (2 max

Figure 2. Schematic representation illustrating the main idea of the controller
switching scheme proposed in Theorem 2.
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and define

T n
k ðtÞ ¼

Tk; 04t4Tk

0; t > Tk

( )
ð17Þ

Then, the switching rule given by

iðtÞ ¼
1; 04t5T n

2; t5T n

( )
ð18Þ

where T n ¼ minfTi;Tf g; Ti50 is the earliest time for which the MPC algorithm fails to
prescribe any control move, and Tf ¼ maxj fT n

j g for all j such that xðtÞ 2 OjðumaxÞ; guarantees
that the origin of the closed-loop system is asymptotically stable.

Remark 11
The implementation of the switching scheme proposed in Theorem 2 can be understood as follows:

* Initialize the closed-loop system using MPC, at any initial condition x0 within O; and start
monitoring the growth of all the Lyapunov functions whose corresponding stability
regions contain the state.

* The supervisor disregards (i.e. permanently stops monitoring) any CLF whose value ceases
to decay (i.e. any CLF for which the condition of Equation (16) holds) by setting the
corresponding T n

k ðtÞ to zero for all future times.
* As the closed-loop trajectory continues to evolve, the supervisor includes in the pool of

Lyapunov functions it monitors any CLF for which the state enters the corresponding
stability region, provided that this CLF has not been discarded at some earlier time.

* Continue implementing MPC as long as at least one of the CLFs being monitored is
decreasing and the MPC algorithm yields a solution.

* If at any time, there is no active CLF (this corresponds to Tf ), or if the MPC algorithm
fails to prescribe any control move (this corresponds to Ti), switch to the bounded
controller whose stability region contains the state at this time, else the MPC controller
stays in the closed-loop system.

Remark 12
The purpose of permanently disregarding a given CLF, once its value begins to increase, is to
avoid (or ‘break’) a potential perpetual cycle in which the value of such a CLF increases (at
times when other CLFs are decreasing) and then decreases (at times when other CLFs are
increasing) and keeps repeating this pattern without decaying to zero. The inclusion of such a
CLF among the pool of active CLFs used to decide whether MPC should be kept active, would
result in MPC staying in the closed-loop indefinitely, but without actually converging to the
origin (i.e. only boundedness of the closed-loop state can be established but not asymptotic
stability). Instead of disregarding, for all future times, a CLF that begins to increase at some
point; however, an alternative strategy is to consider such a CLF in the supervisory decision
making only if its value, at the current state, falls below the value from which it began to
increase. This idea is similar to the one used in the stability analysis of switched systems using
multiple Lyapunov functions (MLFs) (e.g. see References [24, 30]). The greater CLF-monitoring
flexibility resulting from this policy can increase the likelihood of MPC implementation and
enhanced closed-loop performance, while still guaranteeing asymptotic stability.
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Remark 13
The switching schemes proposed in Theorems 1 and 2 can be further generalized to allow for
multiple switchings between MPC and the bounded controllers. For example, if a given MPC is
initially found infeasible (e.g. due to some terminal equality constraints), the bounded controller
can be activated initially, but need not stay in the closed-loop system for all future times.
Instead, it could be employed only until it brings the closed-loop trajectory to a point where
MPC becomes feasible, at which time MPC can take over (see Section 4 for illustrations of this
scenario). This scheme offers the possibility of further enhancement in the closed-loop
performance by implementing MPC for all the times that it is feasible (instead of using the
bounded controller). If MPC runs into any feasibility or stability problems, then the bounded
controller can be re-activated. Chattering problems, due to back and forth switching, are
avoided by allowing only a finite number of switches over any finite time interval.

Remark 14
Note that the implementation of the switching schemes proposed in Theorems 1 and 2 can be
easily adapted to the case when actuator dynamics are not negligible and, consequently,
a sudden change in the control action (resulting from switching between controllers) may not
be achieved instantaneously. A new estimate of the stability region under the bounded
controllers can be generated by sufficiently ‘stepping back’ from the boundary of the original
stability region estimate, in order to prevent the escape of the closed-loop trajectory as a result
of the implementation of possibly incorrect control action for some time (due to the delay
introduced by the actuator dynamics). The switching schemes can then be applied as described
in Theorems 1 and 2, using the revised estimate of the stability region for the family of
bounded controllers.

Remark 15
When the proposed hybrid control schemes are applied to a process on-line, state measurements
are typically available only at discrete sampling instants (and not continuously). In this case, the
restricted access that the supervisor has to the state evolution between sampling times can lead
to the possibility that the closed-loop state trajectory under MPC may leave the stability region
without being detected, particularly if the initial condition is close to the boundary of the
stability region and/or the sampling period is too large. In such an event, switching to the
bounded controller at the next sampling time may be too late to recover from the instability of
MPC. To guard against this possibility, the switching rules in Theorems 1 and 2 can be modified
by restricting the implementation of MPC within a subset of the stability region, computed such
that, starting from this subset, the system trajectory is guaranteed to remain within the stability
region after one sampling period. Explicit estimates of this subset, which is parameterized by the
sampling period, can be readily obtained off-line by computing (or estimating) the time
derivative of the Lyapunov function under the maximum allowable control action and then
integrating both sides of the resulting inequality over one sampling period. Note that this
computation of a ‘worst-case’ estimate does not require knowledge of the solution of the
closed-loop system.

Remark 16
The hybrid control schemes proposed in this paper can be extended to deal with the case when
both input and state constraints are present. In one possible extension, state constraints would
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be incorporated directly as part of the constrained optimization problem that yields the model
predictive control law. In addition, estimates of the stability regions for the bounded controllers
would be obtained by intersecting the region described by Equation (5) with the region
described by the state constraints, and computing the largest invariant subset within the
intersection. Using these estimates (which now account for both input and state constraints),
implementation of the switching schemes can proceed following the same logic outlined for each
case.

4. APPLICATION TO CHEMICAL PROCESS EXAMPLES

In this section, we present two simulation studies of chemical process examples to demonstrate
the implementation of the proposed hybrid predictive control structure and evaluate its
effectiveness.

4.1. Application to a chemical reactor example

We consider a continuous stirred tank reactor where an irreversible, first-order exothermic
reaction of the form A!

k
B takes place. The inlet stream consists of pure A at flow rate F ;

concentration CA0 and temperature TA0: Under standard modelling assumptions, the
mathematical model for the process takes the form

’CCA ¼
F

V
ðCA0 � CAÞ � k0e

�E=RTRCA

’TTR ¼
F

V
ðTA0 � TRÞ þ

ð�DHÞ
rcp

k0e
�E=RTRCA þ

UA

rcpV
ðTc � TÞ

ð19Þ

where CA denotes the concentration of the species A; TR denotes the temperature of the reactor,
Tc is the temperature of the coolant in the surrounding jacket, U is the heat-transfer coefficient,
A is the jacket area, V is the volume of the reactor, k0; E; DH are the pre-exponential constant,
the activation energy, and the enthalpy of the reaction, cp and r; are the heat capacity and fluid
density in the reactor. The values of all process parameters can be found in Table I. At the

Table I. Process parameters and steady-state values

V ¼ 100:0 L
E=R ¼ 8000 K
CA0 ¼ 1:0 mol=l
TA0 ¼ 400:0 K
DH ¼ �2:0� 105 J=mol
k0 ¼ 4:71� 108 min�1

cp ¼ 1:0 J=g K
r ¼ 1000:0 g=L
UA ¼ 1:0� 105 J=min K
F ¼ 100:0 L=min
Cs

A ¼ 0:52 mol=L
T s
R ¼ 398:97 K

Tnom
c ¼ 302 K
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nominal operating condition of Tnom
c ¼ 302 K; the system has three equilibrium points, one of

which is unstable. The control objective is to stabilize the reactor at the unstable equilibrium
point ðCs

A; Ts
RÞ ¼ ð0:52; 398:9Þ using the coolant temperature, Tc; as the manipulated input with

constraints: 275 K4Tc4370 K:
Defining x ¼ ½x1 x2�0 ¼ ½ðCA � Cs

AÞ ðTR � Ts
RÞ�

0 and u ¼ Tc � Tnom
c ; the process model of

Equation (19) can be written in the form of Equation (1). Defining an auxiliary output, y ¼
hðxÞ ¼ x1 (for the purpose of designing the controller), and using the invertible co-ordinate
transformation: x ¼ ½x1 x2�0 ¼ TðxÞ ¼ ½x1 f1ðxÞ�0; where f1ðxÞ ¼ ’xx1; the system of Equation (19)
can be transformed into the following partially linear form:

’xx ¼ Axþ blðxÞ þ baðxÞu ð20Þ

where

A ¼
0 1

0 0

" #
; b ¼ ½0 1�0; lðxÞ ¼ L2

f hðT
�1ðxÞÞ

Lf
2h(T�1(x)) is the second-order Lie derivative of hð�Þ along the vector field f ð�Þ; aðxÞ ¼ LgLf h�

ðT�1ðxÞÞ is the mixed-order Lie derivative. The system of Equation (20) will be used to design the
bounded controllers and compute their estimated regions of stability. A common choice of
CLFs for this system is quadratic functions of the form, Vk ¼ x0Pkx; where the positive-definite
matrix Pk is chosen to satisfy the Riccati matrix inequality: A0Pk þ PkA� Pkbb

0Pk50: The
following matrices

P1 ¼
1:45 1:0

1:0 1:45

" #
; P2 ¼

0:55 0:1

0:1 0:55

" #
; P3 ¼

8:02 3:16

3:16 2:53

" #
ð21Þ

were used to construct a family of three CLFs and three bounded controllers, and compute their
stability region estimates, O0

k; k ¼ 1; 2; 3; in the x-co-ordinate system. The corresponding
stability regions in the ðCA;TRÞ co-ordinate system are then computed using the transformation
x ¼ TðxÞ defined earlier. The union of these regions, O0; is shown in Figure 3.

For the design of the predictive controller, a linear MPC formulation (based on the
linearization of the process model around the unstable equilibrium point) with terminal
equality constraints, xðtþ TÞ ¼ 0; is chosen for the sake of illustration (other MPC
formulations that use terminal penalties, instead of terminal equality constraints, could also
be used). The parameters in the objective function of Equation (10) are chosen as Q ¼ qI ; with
q ¼ 1; R ¼ rI ; with r ¼ 1:0; and F ¼ 0: We also choose a horizon length of T ¼ 0:25 in
implementing the MPC controller. The resulting quadratic programme is solved using the
MATLAB subroutine QuadProg, and the set of nonlinear ODEs is integrated using the
MATLAB solver ODE45.

As shown by the solid trajectory in Figure 3, starting from the initial condition ½CAð0Þ TRð0Þ�0

¼ ½0:46 407:0�0; MPC using a horizon length of T ¼ 0:25 yields a feasible solution, and when
implemented in the closed-loop, stabilizes the nonlinear closed-loop system. The corresponding
state and input profiles are shown in Figures 4(a)–4(c). Starting from the initial condition
½CAð0Þ TRð0Þ�0 ¼ ½0:45 385:0�0 (dashed lines in Figures 3–4), however, the linear MPC controller
is infeasible. Recognizing that the initial condition is within the stability region estimate, O3

0; the
supervisor implements the third bounded controller, while continuously checking feasibility of
MPC. At t ¼ 0:4; the predictive controller becomes feasible and, therefore, the supervisor
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switches to MPC and keeps monitoring the evolution of V3: In this case, the value of V3 keeps
decreasing and MPC stays in the closed-loop for all future times, thus asymptotically stabilizing
the nonlinear plant. Note that, from the same initial condition, if the horizon length in the MPC
is increased to T ¼ 0:5; MPC yields a feasible solution and, when implemented, asymptotically
stabilizes the closed-loop system (dotted lines in Figures 3–4). However, the initial feasibility,
based on the linearized model, does not necessarily imply that the predictive controller will be
stabilizing, or for that matter even feasible at future times. Furthermore, this value of the
horizon length (which yields a feasible solution) could not be determined a priori (without
actually solving the optimization problem with the given initial condition), and stability of the
closed-loop could not be ascertained, a priori, without running the closed-loop simulation in its
entirety.

While our particular choice of implementing linear MPC (using the linearized model)
facilitates implementation by making the optimization problem more easily solvable, the
stabilizability of a given initial condition is limited, not only by the possibility of insufficient
horizon length, but also by the linearization procedure itself. To demonstrate this, we consider
an initial condition, ½CAð0Þ TRð0Þ�0 ¼ ½0:028 484:0�0; belonging to the stability region O0;
(dash–dotted lines in Figures 3–4). For this initial condition, linear MPC is found infeasible, no
matter how large T is chosen to be, suggesting that this initial condition is outside the feasibility
region based on the linear model. Therefore, using the Lyapunov function, V2 (since the initial
condition belongs to O2

0Þ; the supervisor activates the second bounded controller which brings
the state trajectory closer to the desired equilibrium point, while continuously checking
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Figure 3. Implementation of the proposed hybrid control structure: Closed-loop state trajectory under
MPC with T ¼ 0:25 (solid trajectory), under the switched MPC/bounded controller(3) with T ¼ 0:25
(dashed trajectory), under MPC with T ¼ 0:5 (dotted trajectory), and under the switched bounded

controller(2)/MPC with T ¼ 0:5 (dash–dotted line).

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:199–225

HYBRID PREDICTIVE CONTROL 215



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
A
 (

m
ol

/L
)

0 1 2 3 4 5 6 7 8380

400

420

440

460

480

500

T R
 (

K
)

0 1 2 3 4 5 6 7 8
270

280

290

300

310

320

330

340

350

360

370

Time (minutes)

T c
 (

K
)

(a)

(b)

(c)

Figure 4. Closed-loop reactant concentration profile (a), reactor temperature profile (b), and coolant
temperature profile (c) under MPC with T ¼ 0:25 (solid trajectory), under the switched MPC/bounded
controller(3) with T ¼ 0:25 (dashed trajectory), under MPC with T ¼ 0:5 (dotted trajectory), and under

the switched bounded controller(2)/MPC with T ¼ 0:5 (dash–dotted line).
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feasibility of linear MPC. At t ¼ 1:925; the predictive controller with T ¼ 0:5 is found to be
feasible and is, therefore, employed to asymptotically stabilize the closed-loop system.

To demonstrate some of the performance benefits of using the more flexible switching rules in
Theorem 2, we consider the same control problem, described above, with relaxed constraints on
the manipulated input: 250 K4Tc4500 K: Using these constraints, a new set of four bounded
controllers are designed using a family of four CLFs of the form Vk ¼ x0Pkx; k ¼ 1; 2; 3; 4;
where

P1 ¼
1:03 0:32

0:32 3:26

" #
; P2 ¼

0:4 0:32

0:32 1:28

" #
; P3 ¼

1:45 1:0

1:0 1:45

" #
; P4 ¼

4:78 2:24

2:24 2:14

" #

ð22Þ

The stability region estimates of the controllers, O0
k; k ¼ 1; 2; 3; 4; are depicted in Figure 5. The

relaxed input constraints are also incorporated in the design of the predictive controller, using
the same MPC formulation employed in the preceding simulations. Starting from the initial
condition ½CAð0Þ TRð0Þ�0 ¼ ½0:75 361:0�0 (Figures 6(a)–6(c)), the predictive controller, with T ¼
0:1; does not yield a feasible solution and, therefore, the supervisor implements the first bounded
controller, using V1; instead. At t ¼ 0:95; however, MPC yields a feasible solution and,
therefore, the supervisor switches to MPC. Even though ’VV1 > 0 at this time, recognizing the fact
that the state at this time (½0:84 363:3�0; denoted by D in Figure 5) belongs to O2

0 and that ’VV250;
the supervisor continues to implement MPC while monitoring ’VV2 (instead of V1). At t ¼ 1:1; the
supervisor detects that ’VV2 > 0: However, the state at this time (½0:84 378:0�0; denoted by } in
Figure 5) is within O3

0 where ’VV350: Therefore, the supervisor continues the implementation of
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Figure 5. Closed-loop state trajectory under the switching rules of Theorem 2 with T ¼ 0:1 for MPC.
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Figure 6. Closed-loop reactant concentration profile (a), reactor temperature profile (b), and coolant
temperature profile (c) under the switching scheme of Theorem 2 with T ¼ 0:1 for MPC.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:199–225

N. H. EL-FARRA, P. MHASKAR AND P. D. CHRISTOFIDES218



MPC while monitoring V3: From this point onwards, V3 continues to decay monotonically and
MPC is implemented in the closed-loop system for all future times to achieve asymptotic
stability. Note that the switching scheme of Theorem 1 would have dictated a switch back to the
first bounded controller at t ¼ 0:95 and would not have allowed for MPC to be implemented in
closed-loop, leading to a total cost of J ¼ 1:81� 106 for the objective function of Equation (10).
The switching rules in Theorem 2, on the other hand, allow the implementation of MPC for all
the times that it is feasible, leading to a lower total cost of J ¼ 1:64� 105; while guaranteeing, at
the same time, closed-loop stability.

4.2. Application to a continuous crystallizer example

We consider a continuous crystallizer described by a fifth-order moment model of the following
form:

’xx0 ¼ � x0 þ ð1� x3ÞDa exp
�F

y2

� �

’xx1 ¼ � x1 þ yx0

’xx2 ¼ � x2 þ yx1

’xx3 ¼ � x3 þ yx2

’yy ¼
1� y� ða� yÞyx2

1� x3
þ

u

1� x3

ð23Þ

where xi; i ¼ 0; 1; 2; 3; are dimensionless moments of the crystal size distribution, y is a
dimensionless concentration of the solute in the crystallizer, and u is a dimensionless
concentration of the solute in the feed (the reader may refer to References [31, 32] for a
detailed process description, population balance modelling of the crystal size distribution and
derivation of the moments model, and to Reference [33] for further results and references in this
area). The values of the dimensionless process parameters are chosen to be: F ¼ 3:0; a ¼ 40:0
and Da ¼ 200:0: For these values, and at the nominal operating condition of unom ¼ 0; the
above system has an unstable equilibrium point, surrounded by a stable limit cycle. The control
objective is to stabilize the system at the unstable equilibrium point, xs ¼ ½xs0 xs1 xs2 xs3 ys�0 ¼
½0:0471; 0:0283; 0:0169; 0:0102; 0:5996�0; where the superscript s denotes the desired steady state,
by manipulating the dimensionless solute feed concentration, u; subject to the constraints:
�14u41:

To facilitate the design of the bounded controller, we initially transform the system
of Equation (23) into the normal form. To this end, we define the auxiliary output
variable, %yy ¼ hðxÞ ¼ x0; and introduce the invertible co-ordinate transformation:
½x0 Z0�0 ¼ TðxÞ ¼ ½x0 f1ðxÞ x1 x2 x3�0; where x ¼ ½x1 x2�0 ¼ ½x0 f1ðxÞ�0; %yy ¼ x1; f1ðxÞ ¼ �x0þ
ð1� x3ÞDa expð�F=y2Þ; and Z ¼ ½Z1 Z2 Z3�

0 ¼ ½x1 x2 x3�0: The state–space description of the
system in the transformed co-ordinates takes the form

’xx ¼Axþ blðx; ZÞ þ baðx; ZÞu

’ZZ ¼CðZ; xÞ
ð24Þ
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where

A ¼
0 1

0 0

" #
; b ¼ ½0 1�0; lðx; ZÞ ¼ L2

f hðT
�1ðx; ZÞÞ

Lf
2h(T�1(x,Z)) is the second-order Lie derivative of the scalar function, hð�Þ; along the vector field

f ð�Þ; and aðx; ZÞ ¼ LgLf hðT�1ðx; ZÞÞ is the mixed Lie derivative. The forms of f ð�Þ and gð�Þ can be
obtained by re-writing the system of Equation (23) in the form of Equation (1), and are omitted
for brevity.

The partially linear x-subsystem in Equation (24) is used to design a bounded controller that
stabilizes the full interconnected system of Equation (24) and, consequently, the original system
of Equation (23). For this purpose, a quadratic function of the form, Vx ¼ x0Px; is used as a
CLF in the controller synthesis formula of Equation (3), where the positive-definite matrix, P; is
chosen to satisfy the Riccati matrix equality: A0Pþ PA� Pbb0P ¼ �Q where Q is a positive-
definite matrix. An estimate of the region of constrained closed-loop stability for the full system
is obtained by defining a composite Lyapunov function of the form Vc ¼ Vx þ VZ; where VZ ¼
Z0PZZ and PZ is a positive-definite matrix, and choosing a level set of Vc; Oc; for which ’VVc50 for
all x in Oc: The two-dimensional projections of the stability region are shown in Figure 7 for all
possible combinations of the system states.

In designing the predictive controller, a linear MPC formulation, with a terminal equality
constraint of the form xðtþ TÞ ¼ 0; is chosen (based on the linearization of the process model of
Equation (23) around the unstable equilibrium point). The parameters in the objective function
of Equation (10) are taken to be: Q ¼ qI ; with q ¼ 1; R ¼ rI ; with r ¼ 1:0; and F ¼ 0: We also
choose a horizon length of T ¼ 0:5 in implementing the predictive controller. The resulting
quadratic programme is solved using the MATLAB subroutine QuadProg, and the nonlinear
closed-loop system is integrated using the MATLAB solver ODE45.

In the first set of simulation runs, we test the ability of the predictive controller to stabilize the
closed-loop system starting from the initial condition, xð0Þ ¼ ½0:046 0:0277 0:0166 0:01 0:58�0:
The result is shown by the solid lines in Figure 8(a)–8(e) where it is seen that the predictive
controller, with a horizon length of T ¼ 0:5; is able to stabilize the closed-loop system at
the desired equilibrium point. Starting from the initial condition xð0Þ ¼ ½0:032 0:035 0:010
0:009 0:58�0; however, the predictive controller yields no feasible solution. If the terminal
equality constraint is removed, to make MPC yield a feasible solution, we see from the dashed
lines in Figure 8(a)–8(e) that the resulting control action cannot stabilize the closed-loop system
and sends the system states into a limit cycle. On the other hand, when the switching scheme of
Theorem 1 is employed, the supervisor immediately switches to the bounded controller which in
turn stabilizes the closed-loop system at the desired equilibrium point. This is depicted by the
dotted lines in Figure 8(a)–8(e). The manipulated input profiles for the three scenarios are
shown in Figure 8(f ).

5. CONCLUDING REMARKS

In this work, a hybrid control structure, uniting bounded control with MPC, was proposed
for the stabilization of nonlinear systems with input constraints. The structure consists of:
(1) a high-performance model predictive controller, (2) a family of fall-back Lyapunov-based
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Figure 7. Implementation of the proposed hybrid control structure to a continuous crystallizer: two-
dimensional projections of the stability region for the ten distinct combinations of the process states.
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bounded nonlinear controllers, each with a well-defined stability region and (3) a high-level
supervisor that orchestrates switching between MPC and the bounded controllers in a way that
safeguards closed-loop stability in the event of MPC instability or infeasibility. The basic idea
was to embed the implementation of MPC within the stability regions of the bounded
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Figure 8. Closed-loop profiles of the dimensionless crystallizer moments (a)–(d), the solute concentration
in the crystallizer (e), and the manipulated input (f ) under MPC with stability constraints

(solid line), under MPC without terminal constraints (dashed line), and using the
switching scheme of Theorem 1 (dotted line).
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controllers, and derive a set of supervisory switching rules that monitor the evolution of the
closed-loop trajectory and place appropriate restrictions on the growth of the Lyapunov
functions in a way that guarantees asymptotic stability for all initial conditions within the union
of all stability regions of the bounded controllers. By tailoring the switching logic appropriately,
the hybrid control structure was shown to provide, irrespective of the chosen MPC formulation,
a safety net for the implementation of predictive control algorithms to constrained nonlinear
systems. Finally, the implementation of the switching schemes was demonstrated through
applications to chemical reactor and crystallization process examples.

APPENDIX A

Proof of Theorem 1
Step 1: Substituting the control law of Equations (3)–(4) into the system of Equation (1) and
evaluating the time derivative of the Lyapunov function along the trajectories of the closed-loop
system, it can be shown that ’VVk50 for all x 2 FkðumaxÞ (where FkðumaxÞ was defined in Equation
(5). Since OkðumaxÞ (defined in Equation (6)) is an invariant subset of FkðumaxÞ [ f0g; it follows
that for any xð0Þ 2 OkðumaxÞ; the origin of the closed-loop system, under the control law of
Equations (3)–(4), is asymptotically stable.

Step 2: Consider the switched closed-loop system of Equation (12), subject to the switching
rule of Equations (14)–(15), with any initial state xð0Þ 2 OkðumaxÞ: From the definition of %TT given
in Theorem 1, it is clear that if %TT is a finite number, then ’VVkðxMðtÞÞ50 8 04t5 %TT ; where
the notation xMðtÞ denotes the closed-loop state under MPC at time t; which implies that
xðtÞ 2 OkðumaxÞ 804t5 %TT (or that xð %TT�Þ 2 OkðumaxÞ). This fact, together with the continuity of
the solution of the switched system, xðtÞ; (following from the fact that the right-hand side of
Equation (1) is continuous in x and piecewise continuous in time) implies that, upon switching
(instantaneously) to the bounded controller at t ¼ %TT ; we have xð %TTÞ 2 OkðumaxÞ and uðtÞ ¼
bkðxðtÞÞ for all t5 %TT : Therefore, from our analysis in step 1, we conclude that ’VVkðxbk

ðtÞÞ50 8 t5 %TT : In summary, the switching rule of Equations (14)–(15) guarantees that, starting
from any xð0Þ 2 OkðumaxÞ; ’VVkðxðtÞÞ50 8x=0; x 2 OkðumaxÞ; 8 t50; which implies that the
origin of the switched closed-loop system is asymptotically stable. Note that if no such %TT exists,
then we simply have from Equations (14)–(15) that ’VVkðxMðtÞÞ50 8 t50; and the origin of the
closed-loop system is also asymptotically stable. This completes the proof of the theorem. &

Proof of Theorem 2
The proof of this theorem, for the case when only one bounded controller is used as the fall-back
controller (i.e. p ¼ 1), is same as that of Theorem 1. To simplify the proof, we prove the result
only for the case when the family of fall-back controllers consists of two controllers (i.e. p ¼ 2).
Generalization of the proof to the case of a family of p controllers, where 25p51; is
conceptually straightforward. Also, without loss of generality, we consider the case when the
optimization problem in MPC is feasible for all times (i.e. Ti ¼ 1), since if it is not (i.e. Ti51),
then the switching time is simply taken to be the minimum of fTi;Tf g; as stated in Theorem 2.

Without loss of generality, let the closed-loop system be initialized within the stability region
of the first bounded controller, O1ðumaxÞ; under MPC. Then one of the following scenarios will
take place:
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Case 1: ’VV1ðxMðtÞÞ50 for all t50: The switching law of Equations (16)–(18) dictates in this
case that MPC be implemented for all times. Since xð0Þ 2 O1ðumaxÞ; where O1 is a level set of V1;
and ’VV150; then the state of the closed-loop system is bounded and converges to the origin as
t ! 1:

Case 2: ’VV1ðxMðT1ÞÞ50 and xMðT1Þ 2 O1ðumaxÞ; for some finite T1 > 0: In this case, one of the
following scenarios will occur:

(a) If xðT1Þ is outside of O2ðumaxÞ; then it follows from Equations (16)–(18) that the
supervisor will set T n ¼ Tf ¼ T1 and switch to the first bounded controller at t ¼ T1;
using V1 as the CLF, which enforces asymptotic stability as discussed in step 2 of the
proof of Theorem 1.

(b) If xðT1Þ 2 O2ðumaxÞ and ’VV2ðxðT1ÞÞ50 (i.e. 05T15T2), then the supervisor will keep
MPC in the closed-loop system at T1: If T2 is a finite number, then the supervisor will set
T n ¼ Tf ¼ T2 (since T n

1 ¼ 0 for all t > T1 from Equation (17)) at which time it will
switch to the second bounded controller, using V2 as the CLF. Since ’VV2ðxMðtÞÞ50 for all
T14t5T2; and xðT1Þ 2 O2ðumaxÞ; then xðT *

�
Þ 2 O2ðumaxÞ: By continuity of the solution

of the closed-loop system, it follows that xðT nÞ 2 O2ðumaxÞ; and since O2ðumaxÞ is the
stability region corresponding to V2; this implies that upon implementation of the
corresponding bounded controller for all future times, asymptotic stability is achieved.
Note that if T2 does not exist (or T2 ¼ 1), then we simply have xðT1Þ 2 O2ðumaxÞ and
’VV2ðxðT1ÞÞ50 for all t5T1; which implies that the origin of the closed-loop system is
again asymptotically stable.

(c) If 05T25T1 (i.e. xðT2Þ 2 O2ðumaxÞ; V1ðxðT2ÞÞ50 and V2ðxðT2ÞÞ50), then it follows
from Equations (10)–(18) that the supervisor will set T n ¼ Tf ¼ T1 (since T

n
2 ¼ 0 for all

t > T2 from Equation (17)) and switch to the first bounded controller, using V1 as the
CLF. Since ’VV1ðxMðtÞÞ50 for all t5T1; and xð0Þ 2 O1ðumaxÞ; then xðT *

�
Þ 2 O1ðumaxÞ: By

continuity of the solution of the closed-loop system, we have xðT nÞ 2 O1ðumaxÞ; and since
O1ðumaxÞ is the stability region corresponding to V1; this implies that upon
implementation of the first bounded controller for the remaining time, asymptotic
closed-loop stability is achieved. This completes the proof of the theorem. &
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